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Abstract

This thesis presents transport measurements of carbon nanotube electronic devices

operated in the quantum regime. Nanotubes are contacted by source and drain

electrodes, and multiple lithographically-patterned electrostatic gates are aligned to

each device. Transport measurements of device conductance or current as a function

of local gate voltages reveal that local gates couple primarily to the proximal section of

the nanotube, hence providing spatially localized control over carrier density along the

nanotube length. Further, using several different techniques we are able to produce

local depletion regions along the length of a tube. This phenomenon is explored in

detail for different contact metals to the nanotube.

We utilize local gating techniques to study multiple quantum dots in carbon nan-

otubes produced both by naturally occurring defects, and by the controlled applica-

tion of voltages to depletion gates. We study double quantum dots in detail, where

transport measurements reveal honeycomb charge stability diagrams. We extract val-

ues of energy-level spacings, capacitances, and interaction energies for this system,

and demonstrate independent control over all relevant tunneling rates.

We report rf-reflectometry measurements of gate-defined carbon nanotube quan-

tum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically

coupled to carbon nanotube devices and detect single electron charging phenomena
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in the Coulomb blockade regime. Simultaneous correlated measurements of single

electron charging are made using reflected rf power from the nanotube itself and from

the rf-SET on microsecond time scales. We map charge stability diagrams for the

nanotube quantum dot via charge sensing, observing Coulomb charging diamonds

beyond the first order.

Conductance measurements of carbon nanotubes containing gated local depletion

regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h,

the quantum of conductance for a single (non-degenerate) mode. Plateau structure

is investigated as a function of bias voltage, temperature, and magnetic field. We

speculate on the origin of this surprising quantization, which appears to lack band

and spin degeneracy.
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Chapter 1

Introduction

1.1 Motivation

“There’s plenty of room at the bottom,” the portentous 1959 talk [52] presented

by Richard Feynman looking towards the future of physics, guides (in an indirect

way) much of the research currently being pursued in experimental condensed matter

and chemical physics. “What I want to talk about is the problem of manipulating

and controlling things on a small scale.” This simple statement has in some regards

become the foundation of the nascent and rapidly developing field of nanotechnology,

in which scientists aim to manipulate, design, and control devices at the atomic level

[48]. Feynman continued, “At the atomic level, we have new kinds of forces and new

kinds of possibilities, new kinds of effects.” Despite a tremendous amount of hype

and spin flying about in the press regarding nanotechnology, the previous statement

captures an essential component of nanotech which is generally overlooked. While

with the use of nanotechnology one might produce a better paint, or a more efficient

1
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transistor, or stronger composite materials, the great promise of nanotechnology lies

in those applications that rely on fundamentally “new kinds of effects.”

Nanotechnology is a term broadly used to label fields of scientific inquiry focused

on materials systems whose size scale (in at least one dimension) is on the order of

nanometers (nanotechnology being eponymous with the prefix nano = 10−9). There

are official definitions of what constitutes nanotechnology, mainly employed as a dis-

tinction for research funding agencies, but it is generally accepted that research in

submicron electronic devices may be considered nanotech. It is worth noting that

the addition of the suffix “-technology” to the name of the field at large should not

necessarily imply that research is only applied in nature.

Among those researchers in the field of “nanoelectronics” at the present time,

there seem to be two prevailing approaches to the problem of building nanoscale

electronic devices: bottom-up and top-down. The bottom-up approach focuses on

the controlled synthesis of nanoscale structures from a “blank slate,” while top-down

seeks to build nanoscale components starting with bulk materials such as Si or GaAs

wafers and appropriate processing techniques. Naturally, key players in both camps

(who shall remain nameless) believe that their approach is—with mutual exclusivity—

the correct one to pursue.

As with all great ideological divides, the truth (in this case the usefulness of a tech-

nique) lies somewhere in the middle. Accordingly, this thesis will discuss nanoscale

electronic devices which are fabricated using a combination of top-down and bottom-

up techniques. It will explore the “new possibilities” and “new kinds of effects” found

only at the nanoscale, where quantum mechanics strongly influences phenomena as
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familiar as electrical conductance.

The experiments described in this thesis focus on electron transport measurements

performed on carbon nanotubes. Much of the work presented here will describe

technological advancements we have made in order to produce electronic devices from

carbon nanotubes with functionality similar to those which have been fabricated in

two-dimensional electron systems for over a decade. These advancements have largely

come in the realm of producing local electrostatic gates on single nanotubes, and in

that respect borrow heavily from the top-down community of researchers. We are

not, however, patterning conducting channels from a semiconductor heterostructure;

instead we utilize a molecular form of carbon grown synthetically in situ as the

fundamental unit of our devices – a decidedly bottom-up approach.

While the transport measurements presented in this thesis stand on their own,

there is a unifying theme to all of the experiments presented herein. Our work has

aimed to provide carbon nanotube devices the necessary functionality for applica-

tions in coherent electronics. While little of the work presented here will deal with

quantum mechanical phase coherent processes, it has been performed in preparation

for more advanced measurements in which such processes will be studied. For ex-

ample, measurements of the interactions between two phase-coherent, isolated spins

in a carbon nanotube require techniques to independently control both spins. This

work has focused on providing the necessary technical infrastructure to the field in

order to facilitate a move towards useful coherent logic applications employing carbon

nanotubes.
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1.2 Organization of this Thesis

Despite a clear focus on technology, the work presented in this thesis relies heavily

on both the basic physics of electron transport in low-dimensional structures as well as

device and semiconductor physics. In the midst of the technical journey taken to build

these devices we made several fundamental physics pit-stops which will be described in

detail and will be prefaced by adequate background material and discussion. Although

many technical advances follow one another in chronological order, there are several

places where chronology will be trumped by a logical organization which suggests

that some work stand independent of other experimental achievements.

A natural place to begin is with carbon nanostructures, including detailed discus-

sions of the structure and electrical properties of carbon nanotubes—the fundamental

component of the devices detailed in these experiments. Chapter 2 will continue with

a discussion of previous measurements of carbon nanotube electronic devices, and a

presentation of the state of the art in the field at the time the work presented in this

thesis began.

After introducing carbon nanotubes and providing background material on previ-

ous experiments, I will continue with a discussion of fabrication techniques employed

in our lab in chapter 3. This chapter will include a description of the various local

gating techniques we developed and employed in our experiments. These approaches

include the growth of carbon nanotubes across pre-defined metal gates (“undergat-

ing”), laterally aligning gates to carbon nanotubes (“sidegating”), and lithographi-

cally aligning gates to carbon nanotubes buried under an insulating dielectric layer

(“topgating”).
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Chapter 4 will introduce in detail the concept of single electron charging in isolated

puddles of electrons known as quantum dots. The transport characteristics of single

and double quantum dots will be presented, and previous experiments discussed.

Chapter 5 will present transport measurements demonstrating local gate control

in carbon nanotube double quantum dots using a top-gated geometry; top-gating

being the most successful and robust technique employed in our work. The device

described in this section relies upon naturally occurring (and minimally controllable)

tunnel barriers at the metal-nanotube interface and in the middle of the tube itself.

Subsequently, in Chapter 6, I will describe our efforts to produce controllable

tunnel barriers in the middle of carbon nanotubes via mechanical deformation using

an atomic force microscope tip. Transport measurements indicating a preferential

gating effect on the mechanically deformed sections of the nanotube will be presented.

A comparison between tubes contacted with Schottky contacts and those ohmically

contacted will be made.

Chapter 7 will describe the next generation of intratube quantum dots defined and

controlled solely by the application of electrostatic gate voltages when nanotubes are

contacted ohmically. Transport measurements of single and double dots fabricated

in this manner will be presented and analyzed in detail. A comparison of dielectric

materials for applications in nanotube top-gated devices will be presented.

Next, capacitive charge detection will be introduced and other experiments in

which charge detection or “listening” was employed will be discussed. I will then

briefly introduce the concepts of rf-reflectometry, impedance matching networks,

wavelength division multiplexing and the characteristics and operation of the radio-
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frequency single electron transistor (rf-SET) for applications in ultra-sensitive elec-

trometry, all in the first section of Chapter 8. Following this introduction, I will

describe the fabrication of, and recent measurements on, gate-defined intratube quan-

tum dots with integrated Al rf-SETs. Transport measurements demonstrating capac-

itive charge sensing of single electron addition on microsecond time-scales will be

presented.

In the final chapter of this thesis, Chapter 9, I will present background theory

on the phenomenon of 1D transport. The Landauer formalism, giving rise to the

now familiar conductance quantum, will be introduced, and transport measurements

on 1D systems discussed. This will be followed by the presentation of transport

measurements on carbon nanotubes with ohmic contacts and locally gated intratube

depletion regions. A surprising observation emerged from these experiments; namely

the appearance of conductance plateaus spaced by the nondegenerate conductance

quantum, e2/h. Possible mechanisms leading to this observation will be discussed.

At the conclusion of this thesis I will present two useful appendices on such topics

as low-temperature atomic layer deposition and patterning of thin film dielectrics in

Appendix A, and transport measurements on undergated nanotube devices (Appen-

dix B).
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Carbon nanotubes

2.1 Nanotube structure

Observations of crystalline molecular forms of carbon existing distinct from the

familiar diamond and graphite began in 1985 [95] with the discovery of nanoscale car-

bon molecules later named fullerenes, the most famous of which is the C60 molecule.

A few years later, in 1991, Professor Iijima discovered what he called carbon “mi-

crotubules,” which turned had a molecular structure similar to that of an elongated

fullerene [78]. Today such structures are widely recognized by the name “Carbon

Nanotubes.”

The structure of carbon nanotubes is derived from that of the graphene sheet,

the 2D building block of 3D graphite. In graphene, carbon atoms are arranged on a

hexagonal bravais lattice with a 2-atom basis yielding what is commonly known as

a honeycomb lattice. Carbon nanotubes share the honeycomb structure of carbon

bonds possessed by graphene, but, as their name suggests, do not exist in a planar

7
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However, these nanotubes have not been
widely available to and used by researchers,
because Hyperion has generally sold nano-
tubes compounded as a minority component
in plastics and has traditionally required pur-
chaser agreements that restrict the indepen-
dent pursuit of patents by customers. Further-
more, MWNTs produced catalytically by
gas-phase pyrolysis, like the Hyperion nano-
tubes, have high defect densities compared to
those produced by the more expensive car-
bon-arc process (11). However, the catalyti-
cally produced tubes are adequate for many
applications, especially because they can be
directly synthesized without major contami-
nation by carbonaceous impurities.

When Hyperion’s extremely strong com-
position-of-matter patent coverage on
MWNTs (15) expires (in 2004 in the United
States), other large-scale producers of
MWNTs are likely to emerge. Mitsui recently
announced plans to build a $15.2 million
production facility in Japan that will be ca-
pable of producing 120 ton/year (16). The
company plans to market 20-nm-diameter
MWNTs at about $75/kg.

Nanotube sheets, fibers, and composites
should retain the properties of the individual
nanotubes as far as possible. A generic prob-

lem is that impurities readily coat the surface
of nanotubes (as do gases such as oxygen)
(17). Even nanometer-thick coatings can af-
fect nanotube dispersibility, binding in com-
posites, and the electronic and mechanical
properties of junctions between nanotubes.
Also, SWNTs normally form bundles of par-
allel tubes (Fig. 1F) (18), such that the full
surface area of the individual nanotubes is not
usually available for stress transfer with the
matrix. Nanotube sheets (called “nanotube
paper” or “bucky paper”) are conventionally
obtained by filtering SWNTs dispersed in a
liquid, peeling the resulting sheet from the
filter after washing and drying, and annealing
the sheet at high temperatures to remove
impurities (19). If SWNTs were not so ex-
pensive and if there were a commercial need,
one could make nanotube sheets with similar
methods (and at a similar scale) to those used
to make ordinary paper. However, the maxi-
mum Young’s modulus of sheets made by the
filtration process does not substantially ex-
ceed that of sheets of ordinary organic poly-
mers (typically �1 to 4 GPa), and it increases
from �0.3 to �6 GPa as increasing care is
taken in removing secondary impurities
(“bucky goo”) introduced during purification
(20).

Advances have been made in producing
polymer-containing SWNTs by melt spinning
and in aligning the nanotubes by drawing.
However, the melt viscosity becomes too
high for conventional melt spinning when the
nanotube content is much more than 10%,
and demonstrated increases in strength and
modulus are much smaller than those predict-
ed from the rule of mixtures (21). Vigolo and
others have developed a coagulation-based
process that enables them to spin continuous
fibers containing mostly SWNTs (22, 23).
Currently, however, the draw rate from the
coagulation bath is slow, the nanotube load-
ing in the spinning solution is low (�0.4
weight %), and the nanotubes are not well
aligned. The highest modulus obtained for
fibers spun by a modification of Vigolo and
others’ coagulation-based process is �50
GPa (20, 22), more than an order of magni-
tude lower than the intrinsic modulus of in-
dividual SWNTs. Trace poly(vinyl alcohol)
from the coagulation solution binds the nano-
tubes together in air more effectively than do
van der Waals interactions, and it causes fiber
swelling and corresponding degradation of
mechanical properties in aqueous electro-
lytes; its removal by pyrolysis decreases
Young’s modulus to �15 GPa. Creep is also
a major problem for these spun fibers (20). A
recently developed fiber-spinning method for
SWNTs, which appears to involve a lyotropic
liquid crystal phase, increases the nanotube
concentration in the spinning solution by
more than an order of magnitude and yields
oriented nanotube fibers (24). An improve-
ment in coupling between nanotubes appears
necessary to optimize the Young’s modulus
and tensile strength of these spun nanotube
fibers, which are presently low.

Technologies for patterned deposition of
nanotubes on the micro- to nanometer scale
are important for electronic devices, displays,
and nanoscale actuators. With selected area
deposition of catalyst, nanotubes have been
grown as forests of vertically aligned
MWNTs (25) (Fig. 1G), nanoprobes (26),
and structures for field emission displays (27,
28). By combining surface-patterning tech-
niques with fluidic assembly methods, Huang
and co-workers (29) have made networks of
crossed nanowire arrays that are individually
addressable at each junction.

Carbon Nanotube Composites
The first realized major commercial applica-
tion of MWNTs is their use as electrically
conducting components in polymer compos-
ites. Depending on the polymer matrix, con-
ductivities of 0.01 to 0.1 S/cm can be ob-
tained for 5% loading; much lower conduc-
tivity levels suffice for dissipating electrostat-
ic charge (30). The low loading levels and the
nanofiber morphology of the MWNTs allow
electronic conductivity to be achieved while

Fig. 1. Schematic illustrations of the structures of (A) armchair, (B) zigzag, and (C) chiral SWNTs.
Projections normal to the tube axis and perspective views along the tube axis are on the top and
bottom, respectively. (D) Tunneling electron microscope image (72) showing the helical structure
of a 1.3-nm-diameter chiral SWNT. (E) Transmission electron microscope ( TEM) image of a MWNT
containing a concentrically nested array of nine SWNTs. (F) TEM micrograph (18) showing the
lateral packing of 1.4-nm-diameter SWNTs in a bundle. (G) Scanning electron microscope (SEM)
image of an array of MWNTs grown as a nanotube forest (micrograph courtesy of L. Dai).

S C I E N C E ’ S C O M P A S S
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Figure 2.1: Various representations of carbon nanotube structure, adapted from [15].
Panels A, B, and C show schematics of armchair, zigzag and chiral nanotubes. D)STM
image of chiral nanotube. E) TEM of a multiwalled nanotube showing multiple carbon
shells. F) Cross-sectional TEM of a nanotube rope showing multiple tubes in a close-
packed configuration. G) SEM of a MWNT nanotube forest.
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structure. Rather, nanotubes may be thought of as a 2D graphene sheet which has

been rolled-up onto itself to form a cylindrical structure with a diameter typically ∼1–

5 nm . There is an additional complication as well: the manner in which the sheet is

rolled up produces nanotubes with dramatically different geometrical configurations,

a property called chirality. Starting with the graphene sheet, one may arbitrarily

choose any two lattice sites to be connected when forming the nanotube structure.

Such a scenario is demonstrated in Fig. 2.4 and labeled by the wrapping vector ~w =

n~a1 − m~a2, where ~a1 and ~a2 are the primitive translation vectors of the hexagonal

lattice and the prefactors n and m are integers. Hence the wrapping vector labels

the number of primitive translation vectors one must move circumferentially from the

origin to return to the same point on the cylinder. Accordingly, tubes are generally

labeled by their wrapping vectors as (n, m): (n, 0) are generally called “armchair,”

and have carbon bonds perpendicular to the long axis of the nanotube (Fig. 2.1a);

(n, n) tubes are called “zigzag” and have carbon bonds parallel to the longitudinal axis

of the tube (Fig. 2.1b); all remaining (n,m) configurations are referred to as chiral

(Fig. 2.1c). With atomic resolution this structure has been observed via scanning

tunneling microscopy, as in Fig. 2.1d.

Nanotubes need not possess only a single outer wall, however. Thus we distinguish

between single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs)

which possess many concentric shells around a common core. High-resolution trans-

mission electron microscopy can reveal these multiple shells in images such as Fig.

2.1e. In contrast, another nanotube supermolecular structure distinct from the MWNT

exists in the form of a SWNT rope, similar to a bunching of soda straws into a close-
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packed lattice (Fig. 2.1f).

2.2 Electronic properties

At this point, carbon nanotubes as a material system are relatively well-understood.

Accordingly, I will present only a few of the salient properties of carbon nanotube

band structure, directing the reader to reference [138] for an incredibly detailed and

useful treatment of the topic.

2.2.1 Graphene

Starting with graphene, the two-dimensional sheet of carbon atoms from which

nanotubes are derived, one notes that due to the planar arrangement of carbon-carbon

σ-bonds (each carbon atom is bonded to three others) the carbon atoms are in an

sp2 electronic configuration. This leaves one free electron per atom in a pz orbital,

perpendicular to the plane of the graphene sheet. Graphene band structure may be

calculated using a tight-binding formulation which considers only the electrons in the

pz orbitals, and ignores any influence of the sp2 electrons [161].

The Brillouin zone of graphene is hexagonal and contains two nonequivalent K -

points, as there are two carbon atoms per unit cell of the Bravais lattice. It is

straightforward to show that the band structure derived from tight-binding mirrors

these symmetries as represented in Fig. 2.2. Further, the symmetric and antisym-

metric combinations of atomic orbitals leads to bonding (π) and antibonding (π∗)

orbitals which cross at the Fermi level. At this energy, the density of states vanishes.

Normally, a material with two electrons per unit cell behaves as an insulator, but
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A B

π

π∗

Figure 2.2: Band structure of graphene as calculated using the tight-binding ap-
proximation. A) Side view of the π and π∗ bands crossing at the Fermi level. The
Fermi surface of graphene consists of the six points of intersction. B)The hexagonal
symmetry of the graphene sheet is plainly visible in this top-view of the calculated
bandstructure. Calculation produced with Maple.

graphene, due to the band-crossing at the Fermi level behaves, and is classified, as a

semimetal.

Semimetals, more generally, are materials with a small band overlap near the Fermi

Level, such that a nonzero carrier population exists in the upper band. Graphene does

not have band overlap, but does have (in the absence of external doping) an equal

number of thermally excited carriers (electrons in the conduction band and holes in

the valence band) in each band.
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2.2.2 Nanotubes

The band structure of graphene provides the foundation for that of carbon nan-

otubes. In fact, the only difference between the two arises because of the imposi-

tion of periodic boundary conditions on the momentum wavevector perpendicular to

the tube axis, ~k⊥. This leads to a quantization of ~k⊥ after fulfilling the condition

~k · ~w = 2πq, where ~w is the wrapping vector and q is an integer. Hence, the spacing

between allowed values of the transverse momentum vector satisfies the relationship

∆ ~k⊥ = 2/d, with d the tube diameter. In reciprocal space this can be represented as

a series of lines spaced by ∆ ~k⊥ traversing the Brillouin zone, representing the allowed

wavevectors.

The form of the 1D subbands of a nanotube are determined by taking 1D slices

of the graphene band structure represented in Fig. 2.2. Under certain conditions

(Fig. 2.3), the allowed ~k fall directly on the K -points of the graphene Brillouin zone.

Recalling that these points constitute the Fermi surface of graphene, the 1D dispersion

relation E(~k‖) for the nanotube (1D slices through the graphene bandstructure) yields

bands which cross at the Fermi level, and hence metallic behavior. If instead the

allowed ~k do not cross the K -points the E(~k‖) has a gap around the Fermi level and

hence the tube will behave as a semiconductor [119, 69, 139]. The resulting band

structure of a particular nanotube thus depends sensitively upon its chirality.

As the bandgap of a semiconducting tube arises from the quantization of ~k⊥, it is

straightforward to show that the gap varies inversely with d. Further, projection of ~k

into the Brillouin zone for a nanotube of arbitrary chirality (n,m) yields a condition

for determining the electrical properties of that tube; all tubes satisfying the condition
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Figure 1.9: Imposing periodic boundary conditions on the graphene Brillouin
zone for (5,5) (a) and (6,4) (b) tubes.

functions in the direction of the rollup vector C. We must have

k �C = 2�q;

where k is the wave vector and q is an integer. The wave vector component
parallel to the tube axis T can take any value for an in�nite tube. The
quantization condition for k can be represented as a set of parallel lines
in reciprocal space, spaced by �k = 2�=jCj = 2=d, where d is the tube
diameter. We show this in Fig. 1.9 for two di�erent tube geometries, (5; 5)
in (a) and (6; 4) in (b). Only k vectors ending on these lines are allowed.
For the armchair tube in (a) some of the quantization lines pass through the
corner points of the Brillouin zone. Here there is no gap between the valence
and conduction bands and thus k vectors at the Fermi level are allowed at
these gapless points. The tube will be metallic with a �nite density of states
at the Fermi level. For the chiral tube in (b) the situation is di�erent. The
quantization lines do not cross the K points. For any allowed k vector, there
will therefore be a �nite gap between the valence and the conduction bands
and the tube is a semiconductor (with a gap around 1 eV). Although the
tubes in Fig. 1.9 are both derived from the same graphene sheet and their
diameters, 6.86 �A and 6.91 �A, are almost identical, their band structures are
completely di�erent.

For all armchair tubes (n; n), the quantization lines will cross the K
points, while it only happens for some of the chiral and zig zag tubes. Gen-
erally, tubes will be metallic only if

(n�m) = 3p; (1.1)

where p is an integer [29]. Therefore, roughly 1/3 of all tubes should be
metallic, the rest semiconductors.

Figure 2.3: Allowed ~k after imposing periodic boundary conditions for (5, 5) and (6,
4) tubes. Adapted from [123]

(n−m) = 3p, where p is an integer, are metallic while all others are semiconducting.

Accordingly all armchair tubes are metallic, while overall approximately two-thirds

of tubes should be semiconducting. One should note that in addition to the bandgap

induced by the imposition of periodic boundary conditions, a bandgap varying as

1/d2 may be induced in very thin metallic tubes due to curvature of the graphene

sheet [88].

Near the Fermi level of a metallic nanotube the bandstructure may be approxi-

mated with a linear dispersion relationship, E = h̄vF |~k|, where vF ∼ 8.1 × 105 m/s

is the Fermi velocity [138]. This linearization of the nanotube bandstructure for

low-energy excitations is standard in the literature.

For a more detailed description of the structural and electronic properties of car-

bon nanotubes, including detailed calculations of band structure for arbitrary chirality
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Figure 2.1: Various carbon nanotubes characterized by (n,m). The carbon nanotubes
that are metallic and semiconducting, respectively are denoted b open and solid circles
on the map of all chiral vectors in the honeycomb lattice.

two primitive vectors ~a1, ~a2, the coordinates of the carbon atom at any lattice point

can be indicated by a pair of integers (n,m). When the single layer graphene sheet

is rolled in such a way that its origin (0, 0) coincides with the selected lattice point

(n,m), the diameter and the helicity of the carbon nanotube obtained in this way is

uniquely determined by the coordinates of the lattice point. Therefore, any carbon

nanotube can be specified by a pair of integers (n, m). The vector from the origin

(0, 0) to the lattice point (n, m) is called the wrapping vector or chiral vector

~Ch = n~a1 + m~a2 ≡ (n, m), (0 ≤ |m| ≤ n) (2.1)

The angle between the wrapping vector and the direction of rolling is called the

Figure 2.4: Nanotube type as a function of tube chirality (n, m).

the reader is invited to explore reference [138].

2.3 Chemical vapor deposition (CVD) growth of

carbon nanotubes

While there are many nanotube growth techniques available, including arc dis-

charge, laser ablation [65], and HiPCO, the work in this thesis will rely exclusively

on a technique known as chemical vapor deposition, or CVD. The main distinction

of this technique is that nanotubes are not grown in bulk, but are instead grown

(with controllable density) on-chip. Thus, while those interested in mass production

(kgs/day) would shy away from this technique [1], for researchers working with single

tube devices, CVD is the nanotube growth method of choice.

The development of this technique followed a long-standing practice for the fab-
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Figure 2.5: Nanotube CVD growth system built for nanotube synthesis using CH4

as a carbon feedstock. At right are mass-flow controllers and an MKS multi-gas
controller. At left is the Lindberg-Blue tube furnace, opened to reveal the quartz
tube housing a quartz boat into which samples are loaded.

rication of vapor-grown carbon fibers [126], in which a gas phase carbon precursor is

reacted in a high-temperature (∼ 1000 C) furnace with a catalyst. We follow a recipe

[90] originally developed at Stanford University by Jing Kong, in which methane is

used as a carbon feedstock and nanotubes are grown from patterned catalyst islands.

Catalyst islands are patterned using standard electron-beam lithography tech-

niques, and metallized with ∼ 0.7–1.1 nm of 4N purity Fe, deposited by thermal
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evaporation. (Alternative approaches involve the use of FeNO3 nanoparticles, but all

of the work presented in this thesis uses Fe as a catalyst). Immediately following

liftoff in acetone and an isopropanol rinse, the chip is placed in a quartz boat and

loaded into the CVD system. Further, it is oriented such that gas flow is perpen-

dicular to the long axis of the catalyst island array (see Fig. 2.6a). In addition, an

unpatterned chip coated with either Fe or FeNO3 catalyst nanoparticles is loaded in

the boat upstream from the target chip. The growth recipe follows: 1) 5.0 slm Ar

purge at RT; 2)0.8 slm Ar + 0.1 slm H2, heating RT→900 C over 30 m; 3)0.1 slm H2

+ 1.5 slm CH4, 900 C for 15 m; 4) 0.75 slm Ar 900 C→RT over ∼ 2 h.

Nanotubes may subsequently be imaged and/or mapped relative to alignment

markers through the use of an atomic force microscope (AFM). Single tubes typically

range from ∼ 1–5 nm in diameter. Ropes of nanotubes are also typically present after

growth, clearly identifiable by both large diameters and branching geometries.

Using transmission electron microscopy (TEM), we are able to identify single tubes

with diameters less than ∼4–5 nm. Such tubes exhibit no visible internal structure,

but do show a clearly defined outer wall. In contrast, ropes show considerable internal

structure and often branching geometries, consistent with AFM analysis (Fig. 2.6b).

We are therefore able to select single-walled nanotubes through AFM height and

geometry analyses.
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A) B)

Figure 2.6: A) Carbon nanotubes grown from Fe catalyst islands in an AFM topo-
graphical image. Scale bar = 10 µm. B) TEM image of nanotubes grown across a
slit in a Si3N4 membrane under standard growth conditions. A central rope with
significant internal structure is visible with a single-walled tube branching off to the
upper right of the image. Amorphous carbon deposited during TEM imaging is visible
around the tube.
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Local gating of carbon nanotubes

In the field of condensed-matter physics, one ubiquitous technique for probing the

electronic structure of a material or the interactions of charge carriers within it, is

the measurement of transport through a device consisting of a piece of the material

contacted by metal leads. For one disdainful of the field, a common insult slung at

condensed-matter experimentalists is that we measure resistance for a living. In fact,

this is not far from reality, but the amount of information accessible via transport is

truly staggering; one needs only examine reference [17] to fully appreciate this. All

of the material discussed in that now-famous review article relates to semiconductor

heterostructures, but the field of carbon nanotube research has developed in a similar

manner.

Shortly after the discovery of carbon nanotubes and subsequent theoretical treat-

ments of their electronic properties, a number of research groups became involved in

the study of electron transport in carbon nanotube devices. At the time of writing,

an ISI publication search for “carbon AND nanotube AND transport” yielded 872

18



Chapter 3: Local gating of carbon nanotubes 19

publications, while “carbon AND nanotube AND electronic” yielded 1292. I will not

perform a historical overview of the field, but will instead insert references to pre-

vious work as appropriate in later sections of this thesis. For the interested reader,

significant background material on the history of carbon nanotube electronic devices

can be found in references [138, 2].

3.1 Fabrication of 2-terminal carbon nanotube de-

vices

Carbon nanotubes are grown as described in section 2.3 from Fe catalyst islands

patterned on an n++ As doped Si wafer with resistivity ρ < 5 mΩ-cm. This material

is degenerately doped and hence conducting at all temperatures. The Si wafer was

capped with a thermally grown layer of insulating SiO2, typically 1 µm thick. Both the

Si and SiO2 emerge from the CVD growth process unaltered, with surface roughness

comparable to to that measured prior to nanotube growth. By contrast, attempts to

grow nanotubes on bulk GaAs or thin film Al2O3 deposited via atomic layer deposition

largely failed due to a significant increase in surface roughness.

After growth, atomic force microscopy is used to locate nanotubes relative to the

catalyst islands (see section 2.6). The catalyst islands are in turn aligned to both

coarse and fine ebeam alignment markers patterned prior to tube growth. The AFM

images are then imported into a CAD program after distortion from AFM imaging

is subtracted. The images are fitted to the CAD drawing used in previous steps

to pattern the catalyst islands relative to alignment markers. Using this procedure
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ebeam contacts are aligned to single-walled nanotubes selected for location, length,

and diameter. In all cases contacts are designed in order to produce two-terminal

devices. Such devices are limited by contact resistances, but there have not, to date,

been successful four-terminal measurements on individual single-walled nanotubes.

Contacts are then patterned and metallized, and subsequently an outer contact layer

is aligned to these via optical lithography. The contacting material chosen has a

significant impact on device performance and characteristics as will be discussed in

the following two sub-subsections.

3.1.1 Tunnel contacts

Due to its chemical stability and ease of deposition and patterning, gold is the

material of choice for the fabrication of nanoscale electronic wires for applications

in cryogenic transport measurements. Gold, however, sticks poorly to most semi-

conductor substrates, and accordingly a wetting layer metal is generally deposited

underneath the Au layer. This is typically Cr or Ti, either of which can be deposited

via thermal evaporation using a standard W boat. The use of these metals in the fab-

rication of surface gates for semiconductor heterostructures carried over into the much

younger field of carbon nanotube electronics, but brought with it a serious complica-

tion. The workfunction of Ti is 4.3 eV and that of graphite is ∼ 4.5. Considering that

the bandgap of a nanotube is of order 1 eV, and that most nanotubes are p-doped by

ambient oxygen or water [10], using Ti as a contact material generally results in the

formation of a Schottky barrier [74]. At cryogenic temperatures transport through

such devices demonstrate characteristics linked to electron tunneling across a barrier
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as described in chapter 4.

3.1.2 Ohmic contacts

Considerable research investments were made worldwide in search of a technique to

fabricate high-transparency contacts to carbon nanotubes. Early work demonstrated

this ability using Au [102] without a Cr or Ti wetting layer, but device fabrication was

complicated by poor adhesion and mechanical stability. Following this work, there

were a number of papers published by IBM on transparent TiC contacts formed by

annealing Ti contacts. However, total device resistance remained in the MΩ range,

considerably higher than the ideal value of ∼ 6kΩ for a single 1D subband (for a

further discussion see section 9.1). Further, we were unable to successfully produce

low-resistance contacts to nanotubes via annealing of Ti contacts. All of the experi-

ments described in this thesis involving the use of ohmic contacts follow a 2003 paper

[81] which detailed the use of Pd to produce transparent (non-Schottky) contacts to

nanotubes (the workfunction of Pd=5.1 eV, nearly aligning it with the Fermi level of

a nanotube which is doped into the valence band). Although following the contact

recipe as prescribed in that text was never successful for us, we find that evaporating

∼ 15 nm of Pd typically yields devices with resistance of order 10–50 kΩ.

3.2 Local gating techniques

Considerable effort has focused on incorporating single-walled carbon nanotubes

(SWNTs) into nanoscale analogs of solid-state electronic devices. SWNT transistors

have been realized [147, 110, 167], as have nanotube circuits exhibiting more subtle
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features such as Coulomb charging and the Kondo effect [125, 146, 25]. In order to

fully explore the richness of nanotube device physics, independent control of relevant

physical parameters is required. Many of these may be controlled by electrostatic

gating, in which the SWNT device is capacitively coupled to one or more nearby gate

voltages.

There have been a number of recent advances in gating of SWNT devices, including

the use of Al backgates with thin oxide layers [11, 144], the use of high-k dielectrics

[82], metallic side gates [80], liquid-phase electrolyte solutions [137], and external

scanned gates [56, 26, 145]. However, a technique for implementing local gating via

standard lithography in devices utilizing chemical vapor deposition (CVD) nanotube

growth had not yet been presented at the time our experiments commenced. In

previous work, nanotube devices with multiple electrostatic topgates [82] or a metallic

gate underneath the nanotube [83] were fabricated to produce multigate devices,

including OR logic transistors. In these cases, however, data appeared consistent

with a global coupling of all topgates. More recently, experimental work has also

indicated that it is possible to gate spatially localized sections of a nanotube device

[166]. This work focused specifically on gate control over room-temperature SWNT-

based field effect transistors fabricated using random nanotube deposition, however.

In this section I will describe the several techniques we have employed in order to

achieve local gating of carbon nanotubes.
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3.2.1 Undergating

Introduction

In this section we report a technique for achieving local control of CVD-grown

nanotube conduction via multiple electrostatic gates. Device fabrication is based on

growth of SWNTs from Fe catalyst, and takes advantage of two notable processing

features: (1) Thin Mo ”finger gates” ( 150 nm wide), robust against the CVD process,

are defined lithographically, allowing nanotubes to be grown across them. (2) A

high-k dielectric layer is patterned by photolithography and a liftoff procedure using

low-temperature atomic layer deposition (ALD) [23]. Transport data (see B) from a

nanotube device fabricated in this manner indicate that the effect of individual finger

gates is qualitatively different from that of a global backgate.

Device fabrication

Devices were fabricated on doped Si wafers with 1 mm of thermally grown oxide

as a base substrate, allowing the conducting Si to be used as a global backgate.

Before nanotube growth, sets of five parallel Mo finger gates roughly 150 nm wide

and ¡ 10 nm thick, spaced by ∼400 nm, extending approximately 100 mm in length

(Fig. 3.1), were patterned using electron-beam lithography liftoff and deposited using

electron-beam evaporation. Larger Mo lines connected to the fine Mo gates were then

patterned with photolithography liftoff.

Mo was chosen for its tolerance to the high temperatures and reducing atmosphere

used in CVD processing, combined with reasonably low resistivity in thin-film form.

Similar conclusions favoring Mo for this purpose were reached independently in Ref.
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Figure 3.1: a) Schematic of finger gated devices. Mo gates (150 nm wide 10 nm thick)
were defined lithographically on a Si/SiO2 substrate and subsequently coated with
25 nm of HfO2 grown by low-temperature ALD. Nanotubes were grown across these
local gates by CVD and contacted with Ti/Au electrodes. Not to scale. b) Atomic
force micrograph of nanotubes grown across Mo finger gates and contacted (far left
and far right) by Ti/Au leads. Note one finger gate passes directly underneath the
nanotube-metal contact. Arrows indicate the location of the nanotube. Finger gates
are labeled as in the text.
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Figure 3.2: Scanning electron micrograph showing liftoff-patterned ALD oxide mesa
edge (middle) showing Ti/Au wires on top of the mesa (upper left) and Mo wires
running underneath the patterned ALD (bottom)

[55]. Thin gate metallization (<10 nm thickness) was used to avoid bending defects

created by a nanotube ”draping” over raised contacts [18]. We found that 5 nm films

of Mo exposed to CVD processing vanished, while thicker layers remained intact

(minus ∼5 nm). Thus, metal which was exposed to the CVD environment always

included a ∼5 nm sacrificial layer.

After fabrication, the finger gates and their connections were covered by 25 nm of

HfO2, deposited using low-temperature ALD and patterned using photolithography

and liftoff [23]. The dielectric layer was patterned to form large mesas that covered

the finger gates but left the contacts exposed, as shown in Fig. 3.2. Next, rectangular

patterns (∼ 1mm × 5mm) were defined in a poly(methyl methacrylate) (PMMA)

layer using electron-beam lithography, and ∼1 nm Fe was deposited using thermal

evaporation. The rectangles were oriented in rows on either side of the Mo finger

gates, and served to locate the Fe catalyst to promote nanotube growth across the

underlying finger gates. A standard CVD recipe using methane as a carbon source
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was employed for tube growth (see section 2.3), after which SWNTs crossing the finger

gates were located using an atomic force microscope (AFM). Finally, SWNTs were

contacted with Ti/Au contact pads to complete the devices (Fig. 3.1b). Typical device

dimensions (between contacts) were 3 – 5mm. Atomic force and (post-measurement)

scanning electron microcopy ensured that the finger gates were continuous.

Unfortunately, this fabrication technique proved quite difficult, and transport mea-

surements (Appendix B) did not clearly demonstrate the ability to locally deplete

carriers in multiple sections of a single nanotube. As such, this gating method was

eventually abandoned for alternative approaches described in the following subsec-

tions.

3.2.2 Sidegating

An alternative approach employed for the fabrication of spatially localized electro-

static gates along the length of a nanotube requires lateral alignment of gate electrodes

in close proximity to the tube. Gates are aligned to nanotubes in a manner similar

to that in which contacts are aligned. Alignment error of order 100 nm intrinsic to

AFM imaging on our Veeco multimode system makes lateral alignment somewhat

irreproducible.

Measurements have shown that in order to apply a spatially localized voltage,

sidegates must be within 100 nm of a nanotube. A common failure mode for these

devices involved poor alignment resulting in nanotubes shorted to gate electrodes.

Due to these difficulties this technique is used only occasionally, but was utilized in

the acquisition of the data presented in section 9.2. A representative device is shown
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Figure 3.3: AFM height image of a carbon nanotube with laterally aligned sidegates.

in Figure 3.3.

3.2.3 Topgating

By far the most successful technique in locally gating nanotubes has involved a

topgating geometry in which nanotubes were embedded in an insulating layer, and

electrostatic gates aligned over the nanotube devices. Here I will briefly describe the

techniques developed and employed in our lab.

Top-gating was demonstrated successfully by two groups prior to our adoption of

the technique [167, 82]. In our lab, considerable effort went into the formulation of a

recipe which did not damage nanotubes or lithographically patterned electrodes, and

also produced thin-films of sufficient quality to minimize gate leakage. Initial suc-

cesses came with the use of an electron-cyclotron resonance (ECR) plasma-enhanced

chemical vapor deposition (PECVD) system to deposit SiO2. Standard recipes for

oxide deposition, however, required the use of highly energetic plasmas (microwave

power in excess of 500W) during deposition, which destroyed nanotube devices. A

new recipe utilizing both low microwave power and a high process pressure (in order

to reduce plasma mean free path) was developed to address these problems without
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sacrificing oxide film quality. Etch tests, SEM analysis, and electrical characteriza-

tion showed that films with thickness ∼ 20–30 nm were similar in quality to thermally

grown oxide. The recipe follows:

PECVD recipe: Purge: 25 sccm (standard cubic centimeters per minute) Ar at

P = 7 mTorr, 30 s. Equilibrate: 10 sccm Ar + 20 sccm O2 + 50 sccm SiH4 (3%) at

P = 100 mTorr, 60 s. Deposit: 10 sccm Ar + 20 sccm O2 + 50 sccm SiH4 (3%) at P

= 100 mTorr, 50W microwave, 90–120 s.

For reasons described in subsequent experimental sections, we eventually aban-

doned the use of PECVD grown SiO2, and moved to an alternative deposition tech-

nique called atomic layer deposition (ALD) [99]. Details of the atomic layer deposition

process may be found in Appendix A, but the recipe used for the fabrication of nan-

otube devices coated with ∼ 35 nm of Al2O3 is presented below, and a representative

ALD system is depicted in Figure 3.4.

ALD recipe: Substrate Temperature: 120 C. Valve Temperature: 70 C. Pump:

20 min at P ∼ 10−2 Torr. Pulse 1: 15 ms H2O. Exposure: 15 s wait. Pump: 15 s.

Pulse 2: 15 ms TMA. Exposure: 15 s wait. Repeat starting with Pulse 1, 350 cycles.

After dielectric deposition, gate electrodes are patterned via ebeam lithography

such that a series of gates crosses a single tube. Gate widths and configurations

vary by experiment, but most are ∼ 150 nm across, and ∼ 50 nm thick. Top-gates

were generally connected to on-chip voltage buses such that multiple devices were

addressed by a single dc connection. After optical contacting of the ebeam pattern,

this technique facilitated the fabrication of ∼10 nanotube devices per chip, each with

3–5 topgates, without the necessity of 30–50 individual connections to cryostat wiring.
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A B

Figure 3.4: A) Image of NEXX Cirrus PECVD system B) Cambridge Nanotech ALD
system. Both images are similar to actual systems used.

Figure 3.5: False-color SEM image of a carbon nanotube contacted with metal elec-
trodes under an insulating dielectric layer. Electrostatic top-gates aligned to the
device are highlighted in yellow.



Chapter 3: Local gating of carbon nanotubes 30

A representative top-gated device is shown in Figure 3.5.



Chapter 4

Single electron charging

Electron transport diverges radically from Ohm’s law in small conductors mea-

sured at sufficiently low temperatures. Generally, when a conductor is coupled to

leads via a tunnel junction (a classical energy barrier through which electrons may be

transported via quantum mechanical tunneling), a well-defined electrostatic energy

is required to move charge across a barrier. A double tunnel junction with a central

island and capacitively and resistively coupled leads is often referred to as a single

electron transistor or a quantum dot. In this chapter I will detail some of the rele-

vant properties of quantum dots, and describe the transport characteristics which we

measure in the lab. For a more detailed discussion of single electron charging, the

interested reader is referred to Ref. [94].

31
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4.1 Single electron tunneling and the Coulomb block-

ade

The phenomenon of single electron tunneling arises from classical electrostatics,

but results from quantization of charge in units of e. It is therefore not straightforward

to claim that it is a purely classical or quantum mechanical effect. Here I will outline

some of the basic characteristics of single electron tunneling.

4.1.1 The single electron transistor

Figure 4.1a represents a simple equivalent circuit for a single electron transistor

(SET), or quantum dot: an island coupled capacitively and resistively to electron

reservoirs. In addition, a capacitively coupled gate voltage, Vg, which shifts the

electrochemical potential of the island linearly with applied voltage may be present,

but largely will be ignored in this section. The material from which the single electron

transistor is fabricated can vary from laterally and vertically defined quantum dots

in semiconductor heterostructures [93], to carbon nanotubes, to small metal grains

[134]. The basic phenomena observed in these diverse structures are all identical,

and linked (as their names imply) to the addition of single electrons to the island.

It is worthy of note that single electron tunneling, also known phenomenologically

as Coulomb blockade, can occur in any tunnel junction. Our discussion will focus

exclusively on the quantum dot, however.

The first energy scale relevant to single electron charging is derived from the

classical energy to charge a capacitor. The requirement that an electron have sufficient
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energy to overcome this energy barrier to tunnel onto the island results in the now

famous Coulomb blockade of transport which will be discussed in the following section

of this chapter. In this case, the charge added to the capacitor (the island) is a single

electron of charge e, yielding a classical charging energy, EC = e2/CΣ, where CΣ =

CL + CR + CG is the total capacitance of the island. Phenomena associated with this

energy scale will only be visible when temperature is the lesser energy. The dimensions

of a typical single electron transistor are of order microns or nanometers, producing

total island capacitances ∼ aF. Thus, in order to satisfy the relation EC > kBT ,

measurements temperatures must be of order mK–K, requiring cryogenic systems. C

increases with increased island size, and hence the requisite measurement T decreases.

Modern dilution refrigerators are capable of cooling to 5–10 mK, thus placing a limit

on the absolute size of the SET to be measured.

In addition to the classical charging energy there is an additional energy scale

in the problem of single charge tunneling, namely the mean level spacing, ∆. This

is the energy level separation arising from quantum confinement of electrons to the

island. In a simple particle-in-a-box picture, it is the discrete energy level spacing

between allowed modes in a quantum mechanical treatment. Coulomb blockade may

be observed in systems in the classical regime where ∆ < kBT , so long as the the

charging energy dominates temperature. The influence of the mean level spacing will

become apparent in the following section.

In order to observe single electron charging, it is necessary that quantum mechan-

ical fluctuations of charge (δe) across the tunnel barriers isolating the SET from its

leads be less than |e|, hence a charge on the island will be well localized if δe < EC .
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This imposes a constraint on the resistance of the tunnel barriers. From the uncer-

tainly principle we know that δe = h̄/τRC where τRC = RiCΣ = CΣ/Gi is the time

constant associated with charging the island across barrier i. Replacing EC with its

definition above we find a constraint on the barrier conductance, Gi < 2e2/h. A

similar result may be reached through a quantum mechanical treatment of tunneling

across a barrier [41]. Note that 2e2/h is also the spin degenerate quantum of con-

ductance (See section 9.1). Hence, junction resistance must be > h/2e2 in order to

sufficiently suppress extended state wavefunctions and produce an electron localized

on the island.

4.1.2 Transport properties of quantum dots

For the circuit diagram shown in Figure 4.1a, it is possible to determine the

transport characteristics of a quantum dot exclusively using classical electrostatics,

considering the addition of a single charge to a capacitor (for a thorough investigation

of this problem see Reference [32]). Instead, I will primarily approach this problem

from the single particle energy level perspective.

The Coulomb gap

I have already introduced the classical charging energy, EC required to add an

electron to a quantum dot. The most prevalent manifestation of this energy gap

between allowed single particle levels appears in the IV curve for a quantum dot. As

a function of applied voltage bias, VSD, conductance is suppressed for |VSD| < |e/2C|,

the Coulomb gap. Alternatively this may be expressed by saying that conductance
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Figure 4.1: a) Circuit diagram for a quantum dot resistively and capacitively coupled
to source and drain electrodes. A gate voltage is also capacitively coupled to the dot.
b - upper panel) induced charge on the quantum dot as a function of gate voltage.
The dotted line is the continuous gate charge while the solid line is the actual charge
on the island. b - lower panel) Conductance as a function of gate voltage showing
Coulomb blockade peaks at the degeneracy points between discrete charge numbers
on the island. c) Schematic level diagram for a quantum dot showing the charging
energy, EC , the effect of temperature and lifetime broadening. d) Zero-bias condition
of ground state alignment of the dot chemical potential with that of the leads. Single
particle levels spaced by ∆ are represented. e) Finite bias condition illustrating
allowed transport through multiple levels in the dot. Figure adapted from [84].
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is suppressed until a virtual charge of e/2 is induced on the dot by VSD across CS,

overcoming the Coulomb gap and permitting a charge to tunnel onto the island.

In the zero-bias case it is also possible to induce a charge on the quantum dot

via the capacitively coupled gate voltage. The upper panel of Fig. 4.1b shows the

continuous gate charge (dotted line) induced on the island Ng = CgVg. As mentioned

above, however, charge is quantized in units of e, and as such the island charge cannot

change continuously. Instead it changes in a stepwise manner, with each charge added

when the induced gate charge Ng = e/2. At this degeneracy point current flow

through the quantum dot is permitted, producing a peak in conductance (Fig. 4.1b,

lower panel) whose lineshape is determined as described below. In the single particle

picture (Fig. 4.1d), this occurs when an energy level of the dot is aligned with the

Fermi level of the leads. As such, one may consider the gate voltage to shift the

bottom of the energy band in the quantum dot, moving energy levels into and out of

alignment with the source and drain chemical potentials. When the band has been

moved by EC , a single particle state becomes accessible, a single electron is added

to the dot and current is allowed to flow. The charging energy is a Fermi surface

property of the quantum dot, i.e. occupied energy levels are not spaced by EC , but

only ∆ (Fig. 4.1c, d). Thus the charging energy is often included only in discussion

of the addition energy of an electron to the dot.

Coulomb blockade peak shape

The rate of tunneling across the barriers defining the dot, Γ, depends upon the

physical characteristics of the barriers. In addition Γ is also used to denote the FWHM
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linewidth of the Coulomb blockade peaks for the case of resonant tunneling. One may

show that the lineshape of a single particle energy level is given by the Lorentzian

[41]

T (E) =
(

Γ1Γ2

Γ1 + Γ2

)
Γ1 + Γ2

(E − ER)2 + ((Γ1 + Γ2)/2)2
. (4.1)

where the subscripts 1, 2 denote the two tunnel barriers defining the dot. Physically,

one may envision this as a broadening of the energy level due to the uncertainty

principle: the electron has a finite lifetime in the dot set by the tunnel rates into and

out of the dot which requires energy uncertainty.

In practice, however, the dominant lineshape of a Coulomb blockade peak is de-

rived from thermal broadening of the Fermi seas in the source and drain leads. Finite

temperature produces a smearing of the Fermi function with approximate width kBT

around the Fermi Energy (Fig. 4.1c), and accordingly transport will be allowed when

the energy level of the dot is aligned within this energy window. We know that the

current through a state may be written [41]

I =
∫

i(E) dE (4.2)

i(E) =
2e

h
T (E)[f1(E)− f2(E)] (4.3)

where T (E) is the transmission function through a 1D mode and f(E) is the Fermi

function. Here the subscripts refer to the reservoirs on either side of a tunnel barrier.

In the linear response we may write

δI =
2e

h

∫ (
T eq(E)δ(f1 − f2) + (f1 − f2)δT eq(E)

)
(4.4)
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δ(f1 − f2) = −
(

∂f0

∂E

)
[µ1 − µ2] (4.5)

where µi is the Fermi level of conductor i. Thermal smearing of the Fermi sea enters

through the term

FT (E) = −
(

∂f0

∂E

)
=

1

4kBT
cosh−2

(
E

2kBT

)
. (4.6)

Thus the lineshape of a thermally broadened Coulomb blockade peak has the form

cosh−2(E/T ). The numerical factors in this form vary slightly depending upon the

relative values of the relevant energy scales. For the case Γ < kBT < ∆, EC , the width

of the peak in energy, ∆EFWHM = 3.5kBT , while in the case of classical Coulomb

blockade where Γ < ∆ < kBT < EC , and many single particle levels participate in

transport, ∆EFWHM ≈ 4.4kBT . In both cases, however, peak conductance scales as

1/T while peak width scales as T .

Application of a finite dc bias

Between Coulomb blockade peaks the dot conductance is suppressed as there are

no available single particle level at the lead chemical potentials. At zero bias one

thus sits in a “Coulomb valley” with fixed electron number on the dot (lower panel,

Fig. 4.1b). If the dc bias, VSD, across the dot is increased sufficiently, an unoccupied

state above the zero-bias lead chemical potentials will now fall in the bias window,

and become accessible to transport (Fig. 4.1c). For a fixed drain voltage, shifting VSD

implies applying a voltage to the source electrode, increasing its chemical potential

linearly with VSD. Similarly the bottom of the dot energy band (and hence any

single particle level) shifts linearly with applied Vg. Thus, in order to access a state
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which has been shifted in energy by eVg, one must apply VSD = α−1Vg in order to

lift the Coulomb blockade, where α−1e is the conversion factor between gate voltage

and energy. This phenomenon is symmetric in the sign of VSD. If one plots current

as a function of both VSD and Vg, Coulomb blockade peaks evolve as straight lines

away from the VSD = 0 line. Completing this plot leads to the formation of Coulomb

diamonds, outside of which current flow is allowed. Like the VSD = 0 Coulomb valleys,

charge number is fixed on the dot inside the finite bias diamonds.

The application of a finite VSD across the dot also allows multiple quantum levels

of the dot to be occupied (Fig. 4.1e). Thus transport measurements often reveal a

Coulomb staircase in the IV curve of a quantum dot: a step in current is observed

each time another quantum level is accessed (there are additional requirements on

relative tunnel barrier strengths, see Ref. [70]).

(It is worthy of note that in the electrostatics derivation of single electron tunneling

across a tunnel junction, the nature of the bias across the junction determines whether

or not Coulomb blockade is observable. The application of a voltage bias across a

junction, through the simple relationship Q = CV dictates that the tunnel junction

resistance, RT , will produce an ohmic response. This results because a fixed voltage

bias implies a fixed charge on the capacitor. Any charge that tunnels is instantly

compensated by the voltage bias, and the current through the junction is given simply

by V/RT . If instead the junction is current biased, the current source continuously

charges the capacitor, and the finite RT allows single charge tunneling. In this case,

energetic considerations related to the charging/discharging of a capacitor dictate

the IV curve, producing a Coulomb gap. In a quantum dot, under a voltage bias,
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the first junction may be considered a current source, thus single electron tunneling

characteristics are observable.)

Influence of electron spin

The Pauli exclusion principle states that no two electrons may exist in the same

quantum state. Thus, only two electrons may be added to any discrete state in a

quantum dot, each with opposite spin quantum numbers. In the simplest case of

noninteracting electrons, this influences the spacing of Coulomb blockade peaks in a

quantum dot (in the quantum Coulomb blockade regime) by adding the requirement

that every other electron be added to a new quantum level. Thus, starting with zero

electrons one may add an electron of e.g. spin up for a cost of EC . The next electron

may be added to the same quantum state with opposite spin for EC . Adding the

third electron, however, requires accessing the next available quantum level. Thus an

energy, EC +∆ is required, followed by an electron with EC , the next at EC +∆ and

so forth. Accordingly, Coulomb blockade peaks are spaced by alternately small and

large gate voltages, corresponding respectively to single particle spacings of EC and

EC + ∆. This is often referred to as even-odd filling, and combined with magnetic

field spectroscopy of energy levels, is a clear indication of spin physics in quantum

dots. In the presence of a magnetic field each two-fold degenerate state splits into

its two spin-polarized components due to the Zeeman energy EB = σgµBB where

σ = ±1/2 is the electron spin, µB is the Bohr magneton and B the magnitude of the

applied field.
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4.2 Measurement of Coulomb blockade in single

quantum dots

4.2.1 2-wire voltage bias configuration

Coulomb blockade is generally measured at VSD = 0 where the source and drain

chemical potentials are aligned. As the Coulomb blockade is a manifestation of a non-

linear IV response, it is necessary to probe the low-bias subspace in order to observe

blockade peaks. This is generally accomplished in one of two ways; the linear response

regime may be probed directly by exciting the system with a small oscillating voltage,

or the nonlinear dc IV curve may be measured and numerically differentiated. In ei-

ther case, the measurement provides information about the differential conductance,

dI/dV , of the system.

Typically, dI/dV is measured using a lock-in amplifier; the lock-in outputs an

oscillating voltage bias which is applied to the device (after division) and the output

current is measured. In a cryogenic system it is necessary that the ac excitation

Vac < kBT such that the effective electron temperature induced by the oscillating

potential does not mask the physical phenomena one is looking to explore. Using

the conversion 1 K ∼ 86 µV, one must generally use Vac ∼ 10 µV in either a 3He or

dilution refrigerator. In our lab it is standard practice to feed the output current into

a current preamplifier which converts the current into a voltage with a user-defined

ratio. The resulting voltage, oscillating at the source frequency, is then fed back into

the lock-in amplifier and mixed with a reference signal at the same frequency, yielding

dc and 2f outputs (the 2f component is filtered out).
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Alternatively, one may simply source a dc bias across the device, using, for ex-

ample, a digital-analog converter (DAC) or another voltage source such as a source-

measure unit. Again, the sourced voltage is generally divided down before being

applied to the sample, and the resulting dc current is measured as above. This has

the advantage of allowing faster data collection than ac measurements, as sweeping

the dc VSD may introduce harmonics of VAC which can overload a lock-in and require

a wait time at each point in a scan. A dc measurement, however, does not benefit

from the noise filtering capabilities of the phase sensitive detector which forms the

basis of the lock-in amplifier, and considerable pickup in a measurement may make

numerical data differentiation difficult or impossible.

A 4-wire configuration is often used to measure devices in which the device resis-

tance may be smaller than other series resistances. In quantum dots, however, the

total measured reistance is generally dominated by the tunnel barriers (exactly what

we wish to measure) and hence this technique is not typically used. Further, as we

will see in the next section it is quite difficult to fabricate a four-terminal device using

a carbon nanotube.

4.2.2 Quantum dots based on carbon nanotubes

Coulomb blockade in carbon nanotubes was first studied in detail by Bockrath

et. al [25] in 1997. In that study, and many others to follow, a quantum dot was

formed from the section of a nanotube (either a rope or a single tube) between metal-

lic contacts. The contacts formed tunnel barriers at the metal-nanotube interface

and allowed the observation of single electron charging effects at low temperatures.
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Figure 4.2: A carbon nanotube 2-terminal device operated as a quantum dot. Figure
adapted from [43].

Tremendous research effort has been invested in studying carbon nanotube quantum

dots [25, 26, 125, 103] with new results emerging to this day (e.g. Ref. [140]) from

simple 2-terminal devices consisting of a nanotube contacted at source and drain

and a capacitively coupled backgate electrode, usually the Si substrate of the device.

Here I will provide a bit of background on carbon nanotube quantum dots, and in

Chapter 7 I will introduce a new device geometry for the fabrication of gate-defined

quantum dots along the length of a single nanotube, which does not rely upon tunnel

barriers at the metal-nanotube interface.

In nanotube quantum dots, EC is generally of order mV, and is set by the capaci-

tance of the device. Approximating the capacitance per unit length from the formula

for a coaxial cable C/L = 2πεε0/ ln(2h/r) where ε is the dielectric constant of SiO2

∼ 2.5, h the tube to backgate distance and r ∼ 1 nm the tube radius, we find a

capacitace per unit length, C/L ∼ 19 aF/µm, and hence a charging energy, EC ∼ 8

meV/µm, for 1 µm gate oxide.
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The zero-dimensional energy level splitting, ∆, may also be calculated for a carbon

nanotube quantum dot of length L. In addition to the quantization of transverse

momentum along the circumferential direction, the finite extent of a carbon nanotube

quantum dot leads to quantization of momentum along the tube axis as ∆k = 2π/L.

Linearity of the bands near the Fermi level suggests that one may write

∆ =
h̄vF ∆k

2× 2
(4.7)

which gives ∆ ∼ 0.8 meV/µm. The factors of two account for the band and spin

degeneracy of the 1D subbands, and may be omitted as appropriate for a particular

device (e.g. band degeneracy is often lifted by strain).

Transport measurements on two-terminal nanotube devices with tunnel contacts

show clear signatures of Coulomb blockade as shown in Fig. 4.3 [123]. Differential

conductance measured as a function of gate voltage shows Coulomb blockade peaks

which evolve with applied VSD to form familiar Coulomb diamonds. Excited states

are clearly visible outside of the diamonds, and state splitting in an applied magnetic

field is also evident.

For contacts that are sufficiently transparent, additional features such as the

Kondo effect [125] become visible (a full discussion of this feature is beyond the scope

of this thesis and may be found in Ref. [123]). In addition, the four-fold degeneracy

of the carbon nanotube band structure has been revealed in linear response Coulomb

blockade measurements as in Fig. 4.4. Here, four electrons may be added to a single

orbital level (spaced by EC) due to the appearance of band and spin degeneracy in

the tube. The spin filling of these orbitals and the effect of exchange coupling is

examined thoroughly in Ref. [103]. Similar measurements derived from excited state
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Figure 4.11: (a) G�Vg trace for a device at 75 mK at zero �eld, showing four
CB peaks. (b) Bias spectroscopy plot for the same region, at zero �eld. The
numbers refer to the labelling of Fig. 4.7. (c) Bias spectroscopy in magnetic
�eld of B = 6 T perpendicular to the tube axis. The transitions marked by
arrows are Zeeman split when the �eld is applied.
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Figure 4.12: Schematic diagrams of a quantum dot in magnetic �eld, for elec-
tron numbers N even (a) and N odd (b). Occupied spin states are indicated
by arrows. The levels are assumed to be spin degenerate at zero �eld, but
Zeeman split for �nite magnetic �elds. (a) For even N , the next electron can
be added to two spin states of the level, split by the Zeeman energy, thus
yielding two closely lying transition lines in the bias spectroscopy plot. (b)
In contrast, for odd N , the next electron can only be added to one empty
spin state and no splitting will be observed.

Figure 4.3: a) Conductance as a function of gate voltage showing Coulomb blockade
peaks measured at T = 75 mK in a nanotube quantum dot. b) Bias spectroscopy
reveals Coulomb diamonds with excited states visible. c) Measurement conducted at
B = 6 T showing Zeeman splitting of electron states marked by arrows. Figure from
[123].
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��1 2�e2�h exhibit a distinct four-electron periodicity for electron addition as well as signatures of
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incorporates the nanotube band structure and Coulomb and exchange interactions.
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Over the past five years, single-electron transistors of
individual molecules [1], nanocrystals [2–4], and single-
walled carbon nanotubes (SWNTs) [5–13] have emerged
as a powerful experimental probe of the electronic mo-
tion in chemical nanostructures. Electron transport in these
structures is strongly influenced by single-electron charg-
ing and energy level quantization, and transport measure-
ments provide detailed information on their quantum-level
structure [14]. Among chemical nanostructures, metallic
SWNTs have served as a model system for transport stud-
ies, providing evidence for energy-level quantization [5,6],
spin filling [7,8], Luttinger liquid behavior [10], and Kondo
physics [11]. Detailed knowledge on the electronic struc-
ture of SWNTs is still lacking, however, and such basic
information as the ground state electronic configuration re-
mains to be established [7,8].

Here we report a systematic transport study of metal-
lic nanotube quantum dots with conductance ��1 2�e2�h
[the value of e2�h is 38.8 mS or �25.8 kV�21] that en-
ables the characterization of electronic shell filling and
exchange coupling in SWNTs. Transport measurements
of these nanotube devices reveal a distinct four-electron
periodicity for electron addition as well as signatures of
the Kondo resonance [11,15–20] and inelastic cotunneling
[11,21]. These observations are analyzed using an elec-
tronic shell-filling model that explicitly incorporates the
band structure of SWNTs and exchange and Coulomb in-
teractions between electrons within the Hartree-Fock ap-
proximation [22–25]. Specifically, five parameters that
completely determine the electronic structure of nanotube
quantum dots are obtained from an analysis of the experi-
mental data alone: these parameters include the mean level
spacing D, the subband mismatch d, the exchange parame-
ter J, the charging energy U, and the excess Coulomb
energy dU to put two electrons into a single level. The
energetic contribution of exchange coupling is determined
to be �10% 20% of the single-particle level spacing, in
accordance with theoretical predictions [22].

Isolated SWNTs were synthesized by chemical va-
por deposition using a procedure reported previously
[12,13,26]. The chemical vapor deposition method was
optimized to synthesize well-isolated SWNTs free from

graphitic contamination, which, in turn, enabled the
fabrication of nanotube devices with varying contact
resistances. Nanotubes with a diameter of #1 nm were
located relative to alignment marks, and electrical leads
were defined by electron-beam lithography by depositing a
thin layer of chromium, followed by gold [Fig. 1(a) inset].
Electrical characterization was performed as a function
of bias voltage �V � and gate voltage �Vg�. The degener-
ately doped silicon substrate acted as a gate electrode to
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for a nanotube device with a nanotube length of �100 nm
at T � 1.5 K. (Inset) Schematic diagram of device geometry.
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Vg tuned to the first valley of the second four-electron group.
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respectively.
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Figure 4.4: Coulomb blockade peaks for a tube ∼ 100 nm between contacts. Four-fold
periodicity of the peaks is evident. Figure from [103].

spectroscopy have recently been reported in Ref. [140] as well.

4.3 Transport in double quantum dots

While considerable effort is still being focused on transport measurements of sin-

gle quantum dots, there has been a shift in the community towards more complex

systems. The motivation for this new focus is largely derived from a growing interest

in demonstrating the formation and manipulation of coherent quantum states in a

solid-state system. The incremental (and logical) extension of a single quantum dot is

the double dot, whose transport characteristics are derived from the physics of single

electron charging, similar to transport in single dots. Additional complexity enters

the problem, however, due to the possible interaction between the two quantum dots.

In this section I will describe the transport characteristics of series double quantum

dots (Fig. 4.5), laying the groundwork for the experimental results presented in Ch. 5.

Much of the material presented in this section is derived from reference [154], a review

of transport experiments in double quantum dots.
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Figure 4.5: a) Circuit diagram for a series double quantum dot. b) Energy level
diagram for resonant and c) nonresonant level alignment between dots. d) Schematic
diagram of a double dot charge stability diagram. Dotted intersecting lines represent
the positions of Coulomb blockade peaks as a function of two independent gate volt-
ages in the absence of interactions between the dots. The electron number in both
dots is well defined in each cell of the square pattern, and crossing a line represents
the addition of an electron to one dot. The addition of a mutual capacitance, CM ,
between the dots splits the intersection points into a pair of vertices (circles) known
as triple-points (as they correspond to energy degeneracy between three charge con-
figurations), and produces a honeycomb charge stability plot. In the case of a series
double dot, the vertices correspond to resonant alignment of energy levels between
the two dots and represent the only locations in gate-space where transport through
real states is allowed. See text for a more detailed description of the honeycomb cell
dimensions. e) The application of a finite dc VSD causes the expansion of the triple-
points into triangular regions defined by the magnitude of VSD, and the extremal
positions of the two dot chemical potentials within the bias window. The resonant
alignment of excited states in the two dots produces a series of stripes within the
finite bias triangles, and representative level diagrams show energy level alignments
at various points on the charge stability diagram. f) The addition of tunnel cou-
pling between the two dots also leads to a splitting of the charge degeneracy points
due to the formation of symmetric and antisymmetric combinations of energy states.
The magnitude of the splitting is given by the tunnel coupling strength. The axis E
represents the total energy axis, diagonal bottom-left to top-right in the honeycomb
diagram shown in panel d. ∆E is the dc detuning between the energy levels of the
two dots. Parts after [154].
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4.3.1 The charge stability diagram

In the absence of interactions between two quantum dots, each with an indepen-

dent gate electrode (Fig. 4.5a), Coulomb blockade would occur in both dots indepen-

dently (if it could be measured, for example in a parallel configuration where transport

could be measured through each dot). In a two-dimensional plot of Coulomb block-

ade peak position as a function of both gate voltages (dotted lines, Fig. 4.5d) peaks

would evolve to form a square grid. As the space between each line corresponds

to a Coulomb valley for a single dot, the square grid defines regions of gate-space

with well-defined charge number in both dots. Further, at the intersection points of

these lines, energy levels in both dots are aligned with the Fermi levels of the leads

(Fig. 4.5b), and transport is allowed. Along the edges of these squares, however, only

a single dot’s energy level is aligned with the leads (Fig. 4.5c), and transport through

real states is forbidden.

The addition of a mutual capacitance between the dots shifts the charge stability

diagram to the honeycomb pattern shown in Fig. 4.5d. Here, the addition of a charge

e to dot 1 induces a charge on dot 2 by way of the capacitace CM . Using a vector

formalism for the relationship between charges, capacitances and energies [154], one

may define a series of renormalized charging energies

EC1 =
e2

C1

(
1− C2

M

C1C2

)−1

EC2 =
e2

C2

(
1− C2

M

C1C2

)−1

ECM =
e2

CM

(
C1C2

C2
M

− 1

)−1

.

(4.8)

The honeycomb charge stability diagram includes the splitting of the original

vertices (where energy levels were aligned) into a pair of “triple-points,” so named
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as they correspond to gate values where there exists an energy degeneracy between

three distinct charge configurations (as labeled in Fig. 4.5d). Again, these are points

where energy levels are resonantly aligned between the dots, and are the only points

for a series double quantum dot where transport is allowed through real states.

It is useful to define the chemical potential for each dot and a given electron

configuration (N1, N2) as

µ1 = U(N1, N2)− U(N1 − 1, N2) (4.9)

µ1 =
1

2
(N1 −

1

2
)EC1 + N2ECM − 1

e
(CG1VG1EC1 + CG2VG2EC2) (4.10)

where CGi is the capacitance of gate i to dot i, etc. One notes

µ1(N1 + 1, N2)− µ1(N1, N2) = EC1 (4.11)

µ1(N1, N2 + 1)− µ1(N1, N2) = ECM (4.12)

and may now relate the dimensions of the honeycomb cell in applied gate voltage

to device capacitances. Along the honeycomb edges the chemical potential of the

appropriate dot is aligned with the Fermi level of the leads, and hence µ = 0.

Therefore we may equate µ1(N1, N2; VG1, VG2) = µ1(N1 + 1, N2; VG1 + ∆VG1, VG2)

and µ1(N1, N2; VG1, VG2) = µ1(N1, N2 + 1; VG1 + ∆V M
G1 , VG2) to find

∆VG1 =
|e|
CG1

, ∆V M
G1 =

|e|CM

CG1C2

(4.13)
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where C1(2) is the total capacitance of dot 1(2), and similarly for dot 2. The pres-

ence of a finite level spacing renormalizes the honeycomb cell size as ∆VG1(2) =

|e|
CG1(2)

(
1 + ∆/EC1(2)

)
.

4.3.2 Measurements at finite VSD

Applying a finite dc VSD causes the triple points to expand into triangular regions

as the dot chemical potentials may fall anywhere within the bias window and still

allow transport. This is illustrated in Fig. 4.5e. At the extrema of each quadrant in

the figure we sit in a honeycomb cell with fixed charge number. Representative dot

chemical potential values are illustrated in the figure, with dotted lines representing

the zero-bias honeycomb boundaries.

Resonant energy level alignment between the two dots occurs only along a line

parallel to that connecting the original triple points. In addition, excited state res-

onant alignment may occur in the body of the triangles, appearing schematically as

lines in the lower triangle of Fig. 4.5e. These resonances may be due to the alignment

of two excited states, or of one excited state with the ground state of the other dot.

Schematic level diagrams appear in the figure to illustrate these effects. It is also

common to find off-resonance conduction in the body of the finite bias triangles due

to either cotunneling or phonon emission [57] (for further discussion, see chapter 5).

Using an analysis similar to that in section 4.3.1 we utilize the size of the finite

bias triangles to extract the final capacitance ratios necessary to calculate all germane

capacitances for both dots. Such a calculation gives δVG1(2) =
C1(2)

CG1(2)
VSD.
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4.3.3 The effect of interdot tunnel coupling

Similar to a mutual capacitance, the addition of finite tunnel coupling |t| between

a pair of quantum dots leads to a splitting of the original vertices in the square charge

stability diagram. Each line represents the single particle ground state energy for a

particular dot (dotted lines, Fig. 4.5f), E1(2). In the basis of dot 1/dot 2 occupa-

tion, the addition of tunnel coupling adds off-diagonal matrix elements to the system

Hamiltonian as

H =

 E1 t21

t12 E2

 . (4.14)

Diagonalization of this Hamiltonian results in “bonding” and “antibonding” energies

E = 1
2
(E1 + E2) ±

√
1
4
(∆E)2 + |t12|2. These two energies are shown schematically

in Fig. 4.5f, as hyperbolas which approach the original states E1(2) asymptotically

in ∆E. At zero detuning the energy splitting is given by 2|t12|, and expands with

increased ∆E. In the presence of a mutual capacitance, the two forms of triple-

point splitting act additively, and the relative components of the splitting must be

determined independently.



Chapter 5

Local gate control of a carbon

nanotube double quantum dot

5.1 Introduction

Carbon nanotubes have been considered leading candidates for nanoscale elec-

tronic applications [44, 127]. Previous measurements of nanotube electronics have

shown electron confinement (quantum dot) effects such as single-electron charging

and energy-level quantization [146, 25, 91]. Nanotube properties such as long spin

lifetimes make them ideal candidates for spin-based quantum computation based on

double quantum dots [105] or multiple series quantum dots [47]. However, realizing

such devices requires independent gate control over multiple charges and spins. This

ability has not been achieved in previous measurements, where device properties were

controlled with a single global gate such as the doped silicon substrate [80, 98]. We

report the fabrication and measurement of a nanotube-based double quantum dot

52
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Figure 5.1: A) Schematic of top-gated device. B) Electron micrograph of a represen-
tative device. Arrows indicate the embedded nanotube.

with multiple, independent gates. The gates are used to manipulate and study single

electron charging as well as charge interactions, and relevant device parameters are

extracted directly from transport data.

The device under study consists of a nanotube ∼ 2 nm in diameter of length L ∼

1.5 mm between metal contacts, with three top gates [21, 167] and a doped Si backgate

(Fig. 5.1). Room temperature measurements of conductance as a function of any

gate voltage indicate that the nanotube is either metallic with a strong resonance or

a small band-gap semiconductor. At low temperatures, single electron charging is

observed as Coulomb blockade conductance peaks, measured as a function of applied

gate voltages. The observed peak pattern is different for each gate, and in some

regions shows considerable super-structure, which appears with increasing source-
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drain voltage, VSD. We observe a double periodicity of Coulomb charging phenomena,

which is consistent with a nanotube quantum dot, defined by tunnel barriers to the

leads, that has been split into two dots of roughly equal size by a defect in the

middle of the device. (Measurements of conductance as function of bias voltage and

gate voltage show Coulomb blockade with two nearly equivalent charging energies,

indicating the two dots are of equal size. The symmetry of the honeycombs in Fig. 5.2

also indicates that the charging energies of the two dots are nearly equal). Structural

defects often create tunable tunnel barriers [26, 34, 92, 36], and typically appear in

nanotubes longer than ∼ 200 nm. While such defects can be controllably fabricated

[20], in this case the defect is inherent to the tube. The resulting dots each have

a quantized energy level spacing of ∆ = hvF /2L ∼ 1 meV (assuming only spin

degeneracy) where vF = 8.1× 105 m/s is the Fermi velocity for a metallic nanotube

[25].

5.2 Materials and methods

Carbon nanotubes were grown via chemical vapor deposition (CVD) from Fe cat-

alyst islands using methane as a carbon source on a Si wafer. Nanotubes are lo-

cated using an atomic force microscope and selectively contacted with Ti/Au leads

(25nm/15nm), using electron beam lithography and liftoff. The devices are then

coated with insulating SiO2 deposited via plasma enhanced chemical vapor deposition

(PECVD) at room temperature. This technique is found to produce a high quality

oxide films that does not damage the nanotube devices. Cr/Au top gates (200 nm x

20 nm) are subsequently aligned and patterned over the oxide-covered nanotube de-



Chapter 5: Local gate control of a carbon nanotube double quantum dot 55

vice, again, using electron-beam lithography and liftoff. In the device discussed, gates

G1 and G3 cover the nanotube-metal contacts and G2 covers a middle section of the

tube. The n++ Si substrate forms the backgate (Fig. 5.1). Numerous samples have

been produced in this geometry, with a typical yield of 75% functional devices (with

∼ 10 total per chip) at the end of the fabrication process. One device is reported

in detail here, although similar results have been obtained on others. The structural

defect producing the double dot in this system does not generally appear in devices

fabricated as above.

Measurements were made a 3He cryostat, at a temperature of ∼ 320 mK, where

Coulomb blockade is evident as a function of top gate voltages VG1 and VG2, as well

as backgate voltage VBG (gate G3 was not used). Conductance was measured by

sourcing a dc voltage and measuring dc current with an Ithaco 1211 current preamp

and a digital multimeter. Differential conductance is measured using standard ac lock

in techniques.

5.3 Transport characteristics

5.3.1 Honeycomb charge stability diagrams

The top gate voltages have differential capacitive coupling to the quantized energy

levels of the two dots. Transport measurements indicate that gate G1 predominantly

couples to dot 1 and gate G2 to dot 2. In the transconductance, dI/dVG1, as a func-

tion of VG1 and VG2 (Fig. 2A), paired regions of large dI/dVG1 appear on the vertices

of a hexagonal lattice. The resulting honeycomb-shaped array of high dI/dVG1 can
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be contrasted with the straight lines that would appear if each applied gate voltage

coupled equally to the dots. The observed pattern strongly resembles the charge

stability diagram for a found for weakly tunneling double quantum dot (inter-dot

tunneling � 2e2/h), where each cell of the honeycomb corresponds to a well-defined

electron configuration for the double dot [154]. The vertex pairs are points of de-

generacy between the two dots that have split because of inter-dot coupling (either

capacitive or tunneling). At these vertices, energy levels resonantly align between

the dots as well as the leads (Fig. 5.2C). For a series double dot, resonant transport

only occurs at the vertices; finite non-resonant conductance along the edges of the

honeycomb cells (Figs. 5.2D-E) occurs via cotunneling, which is suppressed in the

weak-tunneling regime [154].

5.3.2 Vertices at finite dc bias

At finite bias, the vertex points expand into triangular regions (Fig. 5.2B) defined

by lines where the energy levels of each dot align with either the top or bottom of

the bias window. According to theory, resonant tunneling should occur only along

the one side of the triangle that connects the original vertices. The observation of

off-resonance tunneling in the body of the triangles has previously been attributed to

both inelastic phonon contributions and cotunneling processes [153, 57, 9]. Because it

appears that cotunneling is suppressed in this region (we do not see conduction along

the edges of the honeycomb), conductance inside the finite-bias triangles suggests,

perhaps, a significant contribution from electron-phonon coupling to transport. How-

ever, this conclusion appears inconsistent with the predicted suppression of electron-
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Figure 5.2: Experimental charge stability diagrams for the series double quantum
dot as a function of two gate voltages, each shifting the energy levels of a single dot.
Voltages VG1 and VG2 are divided by five before being applied to the gates of the
device. (A) Color scale displays dI/dVG1 calculated from dc current (IDC) at VSD =
500 µV. White lines are guides to the eye showing the honeycomb pattern of peaks in
conductance. Vertex pairs correspond to points of degeneracy between the two dots
where resonant transport occurs, while cotunneling may produce finite conductance
along the honeycomb edges. B) Zoom-in of a vertex pair at VSD = 500 µV with lines
of constant energy designated by white dashed lines. Colorscale displays IDC . Vertex
dimensions are indicated on the diagram, as are particular electron configurations on
the two dots for different regions of gate space. Note the triangular shape resulting
from finite VSD, and nonzero off-resonance conductance within the triangles. C) Level
diagrams for a double quantum dot depicting resonant transport with Γm the inter-
dot tunnel rate. The bias window VSD = (µS−µS)/e, D-E) Level diagrams depicting
configurations where cotunneling may contribute to transport.
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phonon coupling in nanotubes at low temperatures [76, 158]. It seems more likely

that inelastic processes are occurring via electron interactions with the source/drain

reservoirs or the substrate. Figure 5.2B does not show resonant excited-state levels

inside the finite-bias triangles, as are observed in lateral quantum dots [154]. This

is not surprising, as eVSD < ∆ in the present case. Increasing VSD causes the trian-

gles to grow, as expected, but also inhibits our ability to resolve individual vertices

and even individual honeycomb cells. Overall, however, the transport characteristics

of this nanotube double dot are qualitatively similar to those observed for double

dots fabricated in semiconductor heterostructures [153, 104]. Such similarities sug-

gest that more complex quantum devices formed from molecular conductors such as

nanotubes will continue to share features with well-studied semiconductor quantum

dot systems. However, the larger energy scales in carbon nanotubes allows operation

at higher temperatures.

5.4 Extraction of device parameters from trans-

port

5.4.1 Dot capacitances

Double dot capacitances are obtained by measuring the sizes and separations of

the honeycombs and vertices (Fig. 5.2) [154]. The size of the honeycomb in Fig. 5.2A

determines ∆VG1(2) , where ∆VG1(2) = |e|
CG1(2)

(1+∆/EC1(2)) with CG1(2) the capacitance

of dot 1(2) to gate 1(2) and EC1(2)) ∼ 2 meV the charging energy for dot 1(2).

EC1(2)) ∼ is determined from |eVSD| measured at the apex of a conductance diamond
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in a plot of conductance as a function of VSD and any gate voltage (not shown).

From the size of the finite-bias triangles in Fig. 5.2B we determine capacitance ratios

using δVG1(2) =
C1(2)

CG1(2)
VSD . With the above relationships we calculate typical dot

capacitances of C1(2) ∼ 160 aF and CG1(2) ∼ 45 aF.

5.4.2 Interdot interaction

The amount of capacitive coupling and inter-dot tunneling can be determined

from the vertex splitting [94, 86]. These couplings cause an energy shift related to

the formation of charge polarized, or “bonding,” states between the quantum dots

(tunnel coupling is analogous to covalent bonding and capacitive coupling to ionic

bonding). Both coupling parameters can be tuned with gate voltages that open the

inter-dot constriction, so it is difficult to determine their relative contributions to

vertex splitting. If we assume the vertex splitting is due to capacitive coupling alone,

we find a mutual capacitance between dots Cm ∼ 90 aF, using ∆V m
G1(2) = |e|Cm

CG1(2)C2(1)

, where ∆V m
G1(2) is the horizontal (vertical) component of the diagonal splitting mea-

sured between vertices [154]. A separate determination of the mutual capacitance

based on single-dot capacitances (determined above) and the magnitude of the charg-

ing energy using the relation EC1(2) = e2

C1(2)
(1 − C2

m/C1C2)
−1 gives Cm ∼ 100 aF.

The similarity between these two values for Cm indicates that the vertex splitting

in this region is dominated by capacitive coupling. The interaction energy is then

approximately Em = e2

Cm
(C1C2/C

2
m − 1)−1 ∼ 700 µeV.

Opening the inter-dot constriction is expected to increase the tunnel coupling

exponentially faster than the capacitive coupling [94]. We can therefore compare
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Figure 5.3: A) Experimental charge stability diagram demonstrating weak inter-
dot tunnel coupling. VSD = 500 µV. Vertex peak splitting (∆VS) and honeycomb
cell dimensions (∆VP ) indicated on the plot. B) Moving to a different region of
VG1 changes the tunnel coupling between dots, producing a smeared charge stability
diagram. C-E) Experimental stability diagrams for fixed charge configuration at
various VBG. VSD = 800 µV. The capacitive coupling of the backgate to the two dots
requires that slightly different ranges of VG1 and VG2 be used to cover the same charge
configurations at different VBG values.
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the amount of inter-dot tunnel coupling in different gate configurations using the

fractional peak splitting, defined f = 2∆VS/∆VP where ∆VS is the diagonal splitting

measured between vertices and ∆VP is the distance between vertex pairs (Fig. 5.3A)

[104]. A value of f = 1 corresponds to a transparent inter-dot constriction, while

f = 0 indicates two isolated dots in the limit of zero mutual capacitance between

dots. Changes in f , however, should be dominated by tunnel-coupling, so measuring

how f changes as a function of gate voltage allows the contribution to the vertex

splitting from inter-dot tunneling to be inferred. We observe an evolution of f by

holding the range of VG2 fixed and examining different regimes of VG1 (Figs. 5.3A-

B). In Fig. 5.3A, where honeycomb cells and vertices are well defined, we find that

f ∼ 0.3. This regime can be contrasted with that of Fig. 5.3B, where an increase in

inter-dot tunnel coupling leads to a smearing of vertices and honeycomb cells. In this

region, vertex splitting grows to a value of f ∼ 0.7.

In Figs. 5.3C-E we use a combination of VG1 and VG2 to maintain a fixed electron

configuration while tuning tunneling with the backgate. The evolution evident here

shows how varying VBG from 250 mV to 375 mV changes our stability diagram from

weak to strong cotunneling regimes. The corresponding increase in vertex heights

indicates that we are also influencing the total amount of tunneling through the

double-dot. Because the vertex splitting does not change significantly, it seems that

the backgate is primarily tuning the transparency of the tunnel barriers at the source

and/or drain electrodes [26].
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5.5 Temperature dependence of CB peaks

Increasing temperature increases cotunneling conductance (i.e. conductance on

honeycomb edges) by a relation well described by a power-law, Gcot ∝ T η, over the

range investigated,where η is between 1 and 2 with a typical value of η ∼ 1.3

(Fig. 5.4A and Fig. 5.4C, upper curve). In contrast, resonant vertex peak conduc-

tance is roughly independent of temperature, or only slightly increases with increasing

temperature (Fig. 5.4B and Fig. 5.4C, lower curve). Power law behavior with η = 2

has been predicted for cotunneling peaks in the weak inter-dot tunneling regime

(Gint � e2/h) at low temperatures (kBT � ∆) [114]. A power law with η = 1.25

— comparable to what we find — is predicted [114] for intermediate tunnel coupling

and ∆ � kBT (corresponding to temperatures higher than those of our measure-

ments). The nearly temperature-independent behavior we observe for resonant peaks

does not appear consistent with predictions of peak height scaling as as 1/T in the

low-temperature regime [86] ( 1/T behavior is expected for G < kBT � ∆). Given

that other measurements of this system correspond relatively well to predicted behav-

ior, it is surprising that the temperature dependence deviates so far from theoretical

expectations. These unexplained features will be investigated in future experiments

employing controlled defect placement along with local gating.
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Chapter 6

Locally addressable tunnel barriers

within a carbon nanotube

6.1 Introduction

Carbon nanotubes are a leading material system for molecular electronic device

applications as well as for fundamental studies of the electronic properties of low-

dimensional systems. Single-walled carbon nanotubes can function as nanoscale ana-

logues of electronic elements such as field-effect transistors [147, 110, 11, 167, 166]

and interconnects [75, 100] in integrated circuits. In addition, nanotubes behave as

ballistic conductors with large current density capacity, and also display single elec-

tron (quantum dot) charging and quantum effects at low temperatures [26, 35, 79,

117, 124, 143]. Conformational changes in nanotubes modify their electronic proper-

ties: devices such as diodes have been created using intra-tube tunnel barriers formed

from mechanically induced defects or“kinks” [130, 131, 27]. Scanned-gate microscopy

65
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indicates that the kinks serve as scattering centers[26, 27] consistent with theoretical

predictions for bending defects in nanotubes[33, 118]. The properties of individual

tunnel barriers were not independently adjustable in previous studies, however, as

only a single backgate was available.

In this section we describe the realization of locally-addressable, fully-tunable

tunnel barriers within a single carbon nanotube. We study tunnel barrier forma-

tion in nanotubes contacted with Ti/Au and Pd for comparison. In the former case,

the barriers are due to bending defects, formed by mechanically kinking the nan-

otube with an atomic force microscope [130]. We show that electrostatic gates placed

near each of the kinks independently tune these tunnel barriers from transparent to

opaque, whereas gates placed away from the kinks (over undeformed sections of the

nanotube) have little or no effect. Previous studies have shown that spatially local-

ized electrostatic gates can deplete the middle of a nanotube device [166], or tune

naturally occurring scattering centers within a nanotube [21]. The results presented

in subsection 6.2.2 and highlight the role of mechanical defects in creating such lo-

calized scattering centers and in determining the transport characteristics of carbon

nanotube devices. In addition, the ability to manipulate defects provides another

level of device control, along with the application of spatially localized electrostatic

gates.

In contrast, devices contacted with Pd electrodes may be depleted locally, without

the fabrication of mechanical defects along the length of the nanotube. We describe

this effect and postulate a mechanism for the difference between these two sets of

experiments.
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6.2 Mechanically deformed tubes contacted with

Ti/Au

6.2.1 Methods

Carbon nanotubes were grown via chemical vapor deposition from patterned Fe

catalyst islands on a degenerately doped Si/SiO2 wafer, using methane as the car-

bon source19. After locating a target nanotube with an atomic force microscope (in

conventional raster mode), the cantilever tip was lowered and then used to push the

nanotube laterally under computer control. The resulting kinks had slightly differ-

ent shapes, with typical lateral deviations of ∼ 200 nm from their undisturbed (i.e.,

straight) configuration. After kinking, the nanotubes were contacted with Ti/Au

electrodes, forming devices of length ∼ 1–2 µm. The wafers were then coated (with-

out patterning) with ∼ 25 nm SiO2 deposited via plasma-enhanced chemical vapor

deposition [111]. Multiple Cr/Au top gates (∼ 200–300 nm across, ∼ 40 nm thick),

patterned using electron beam lithography and lift-off, were positioned over each tube,

with a gate placed near each kink and at least one additional gate over an unkinked

section of the same nanotube as a control. In addition, the doped Si substrate was

used as a global backgate.

6.2.2 Single kink device

We first discuss a device with one kink and three top gates, one gate near a kink

(G2) and two gates over unkinked sections of the nanotube (G1 and G3), as shown in

the inset to Fig. 6.1a. Two-terminal conductance is measured from 1.7 K to 300 K
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using a voltage bias of 10 mV and measuring dc current using an Ithaco 1211 current

amplifier and digital voltmeter. All gates are connected to dc voltage sources, and

are set to 0 V (relative to tube ground) unless otherwise specified. Measurements

of conductance as a function of backgate voltage, VBG, at room temperature show

field-effect behavior consistent with p-type doping. Setting VBG = 0 V and applying

a voltage, VG2, to G2 gives a strong gate response, while applying voltages VG1 and

VG3 to gates G1 and G3 produces little change in conductance (Fig. 6.1a). In the

latter case, the voltage applied to G2 determines the value of this nearly constant

conductance. These results, as well as those below, demonstrate the local effect of the

top gates. The lack of gate response to G1 and G3 demonstrates that the field-effect

behavior observed as a function of VBG is likely not due to a depletion of the bulk of

the nanotube. In addition, we find that at temperatures below ∼ 200 K the backgate

has little effect on conductance.

At temperatures below ∼ 135 K, regions of charges confined by one or more kinks

give rise to Coulomb blockade oscillations in conductance as a function of various

gate voltages. In this Coulomb blockade regime, measurements of conductance as

a function of VG2 and dc bias, VSD, produce a series of irregular diamonds (Fig.

6.1b), suggesting that the single kink defines several small quantum dots (i.e., the

device has two or more barriers). Previous experiments have established that closely

spaced mechanical defects can create quantum dots [131, 27]. Measurements of the

conductance diamonds show that the dots in our device have a large charging energy

(>20 meV) (The typical charging energy is determined by finding the apex of a

single electron diamond in a 2D plot of current or conductance as a function of bias
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Figure 6.1: (a) Gate response of single-kink device measured at T=135 K. Plot shows
dc current as a function of three gate voltages, VG1, VG2 and VG3 over different sections
of the nanotube, (bottom, left axes) and of VBG at room temperature (top, right axes).
Inset: SEM image of the device with small arrows indicating the position of the
nanotube under the SiO2 insulating layer and large arrowhead indicating the location
of the kink. Scale bar ∼ 500nm. (b) Absolute value of dc current as a function of VSD

and VG2 presented on a logarithmic grayscale showing irregular Coulomb diamonds
with charging energies > 20 meV. (c) Gate response of kinked device to VG2 (over
kink) at low temperature showing Coulomb charging. Inset: Grayscale plot of dc
current as a function of VG2 and VG3 displaying resonant transport through multiple
dots in series. Fig. 1(d) Horizontal slices through grayscale plot in Fig. 1(b) at on-
and off-peak values for VG2. On peak shows coulomb blockade as a function of VG3

while off-peak shows total suppression of current.



Chapter 6: Locally addressable tunnel barriers within a carbon nanotube 70

voltage and gate voltage (as in Fig. 6.1b)). Because the diamonds do not close

near zero bias, we measure current or conductance at larger dc biases. Figure 1c

shows irregularly spaced Coulomb blockade peaks that appear when VG2 is swept

at 1.7 K and VSD=10 mV. We note that the applied dc bias is smaller than the

typical charging energy measured as above. With VG2 tuned to a conductance peak,

Coulomb oscillations are seen as a function of either VG3 or VG1 on a gate-voltage

scale different from that measured for VG2 (Inset Fig. 6.1c, Fig. 6.1d). This

is consistent with additional quantum dots forming between the defect and tunnel

barriers at the contacts [146, 35], with energy levels modulated by VG1 and VG3. In

this case, resonant transport occurs only when the energy levels between all dots

(source-kink, kink, kink-drain) are resonantly aligned. At VG1=0V the source-kink

dot is transparent; the resulting double-dot system is evident in a two-dimensional

plot of dc current as a function of VG2 and VG3 (inset to Figure 6.1c). The pattern of

alternating high and low conductance regions is due to energy levels moving in and

out of resonant alignment between the two dots [154].

6.2.3 Double kink device

We next discuss a device with multiple kinks, each with a nearby gate. The

inset to Figure 6.2 shows a realistic schematic of a device with two gated kinks

(under G4 and G6) and an additional top gate (G5) over the section of the nanotube

between the kinks. Room temperature measurements show a strong response to VBG

(Fig. 6.2a). When VBG is swept below ∼ 150 K (here at 70 K) the field-effect behavior

is superposed with irregular oscillations. In this device we find an appreciable effect
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Figure 6.2: (a) Room temperature conductance of double-kink device displaying ap-
proximate p-type field-effect behavior. Inset: Schematic of double kink device, show-
ing kinks of different shapes and bending angles. (b) Grayscale plot of dc current as
a function of VBG and VG5 at T = 70 K. Coulomb oscillations appear in VBG, but
no effect of VG5 is evident. (c) dc current as a function of VBG and VG4 showing
the ability to tune transport through gate control of a kink. Two scales of voltage
additivity are present, indicated by dotted and dashed lines.
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of sweeping VBG at low temperatures, in contrast to the device discussed earlier. The

top gates in this device are ∼ 100 nm wide, compared to ∼ 200 nm gates for the

device in Figure 6.1, and therefore may produce less screening of the backgate over

the deformed sections of the tube. At temperatures below ∼ 30 K we are unable

to measure conductance within applied dc biases and gate voltages, likely because

the formation of multiple quantum dots along the length of the nanotube inhibits

transport. A two-dimensional plot of dc current (VSD=10 mV) as a function of VBG

and VG5 shows the negligible effect of VG5 (Fig. 2b). In contrast, measurements of

dc current as a function of VBG and VG4 show a strong gate response to VG4. The

nearly horizontal features visible in Fig. 6.2c correspond to values of VG4 at which

transport is suppressed by reducing the transparency of the underlying kink. The

dashed line points out one such feature, which has a slight slope because of capacitive

coupling between the backgate and the kink. Oscillatory features as a function of

VBG persist, again with a slope (dotted line) due to coupling between VG4 and VBG.

The slope indicates that the VG4 and VBG may be affecting the same sections of the

nanotube, and that the effect of VG4 may not be restricted to the proximal section of

the nanotube directly under the gate.

Local control over individual kinks is demonstrated in Figure 6.3a, where dc cur-

rent (VSD=10 mV) is plotted as a function of VG4 and VG6. To maximize conductance

we set VBG=-10 V. When both VG4 and VG6 are large and negative, current through

the device is large, indicating that both kinks are transparent. Beyond this corner of

the plot, conductance is strongly suppressed by either of the two top-gate voltages.

The sharp turn-on of the double-kink device in response to multiple input voltages
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Figure 6.3: (a) dc current as a function of VG4 and VG6, both over kinks in the
nanotube, demonstrating the ability to inhibit transport through the device by ap-
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almost no effect on transport through the device.
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is equivalent to an AND logic element. The appearance of perpendicular horizon-

tal and vertical bands indicates that G4 and G6 have very little cross-capacitance.

Measurements at smaller negative backgate voltages produce similar features with a

suppressed current flow. Measurements of dc current as a function of VG4 and VG5 pro-

duce the same features in response to VG4, but show no response to VG5 (Fig. 6.3b).

Despite differences in the shapes of the three kinks studied here, we note that all

respond to gate voltages on approximately the same scale.

6.3 Semiconducting tubes contacted with Pd

Nanotubes contacted ohmically using Pd demonstrated considerably different be-

havior than those contacted with Ti/Au. Top-gated devices fabricated as described

in Section 3.2.3 using Pd as a contact material showed carrier depletion, and hence

a suppression of conductance as a function of any applied top-gate voltage, without

the need for mechanical deformation of the tube.

The difference between Ti/Au and Pd contacted nanotubes may be due to de-

creased band bending in Pd contacted tubes, as the valence band edge in a semicon-

ducting nanotube is very close to the work function of Pd, while the offset between

the tube band edge and metal work function is much larger in the case of Ti contacts

[22]. In fact, considerable experimental effort has been invested in the operation of

Ti/Au contacted nanotubes as Schottky barrier transistors [74], consistent with our

experimental findings.
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Figure 6.4: Differential conductance (color scale, units e2/h after subtraction of series
resistance RS = 34kΩ) as a function of two independent top-gate voltages with dc
VSD = 36 mV. The appearance of a corner instead of diagonal structure indicates that
the two gates act independently and can each suppress conductance with appropriate
biasing.
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6.4 Conclusions and acknowledgements

In conclusion, we have fabricated and investigated nanotube devices with inten-

tional bends and kinks created using an atomic force microscope, and electrostatic

top gates near the kinks. These kinks behave as controllable tunnel barriers with

local gate addressability. In contrast, gates placed away from the kinks on the same

nanotubes had little or no effect on conductance. It is possible, however, that gates

placed away from the kinks could affect conduction, or locally deplete the nanotube,

at higher voltage scales than the ones we studied, or with different contact mate-

rials. In fact, we find that when nanotubes are contacted with Pd we are able to

locally deplete any section of the tube. The results of these experiments highlight the

role of defects and local scattering centers in the transport properties of nanotubes,

and suggest that other recent results on top-gated nanotube FETs contacted with

Ti/Au leads may rely on inherent local scattering centers to deplete the middle of the

nanotubes [166]. Further, the fact that carrier depletion in Pd contacted nanotubes

occurs at different voltages for different top-gates suggests a nonuniform band model

of a nanotube where defects locally deform the potential along the nanotube length.

This work was supported by funding from the NSF under EIA-0210736, the Army

Research Office, under DAAD19-02-1-0039 and DAAD19-02-1-0191, and the Harvard

MRSEC. M.J.B. acknowledges support from an NSF Graduate Research Fellowship

and from an ARO Quantum Computing Graduate Research Fellowship. N.M. ac-

knowledges support from the Harvard Society of Fellows.
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Gate-defined intratube quantum

dots

7.1 Introduction

A number of proposed solid-state devices [17, 93] take as their fundamental ele-

ment the quantum dot-a classically isolated island of electrons with a discrete energy

spectrum [17, 93]. As a substrate for realizing multiple quantum-dot devices, carbon

nanotubes [78] offer a variety of appealing physical properties. However, nanotube-

based electronics in general have been limited by the difficulty of fabricating com-

plex devices on a single tube. In previous studies, isolated quantum dots formed

in carbon nanotubes were defined either by tunnel barriers at the metal-nanotube

interface [115, 125], or by intrinsic [26, 111] or induced [131, 20] defects along the

tube. These devices demonstrated the potential of nanotube-based quantum devices

but did not allow independent control over device parameters (e.g., charge number

77
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and tunnel barrier transparency), and also placed stringent geometric constraints on

device design. In the present study, we address some of these challenges by forming

the quantum dots on the nanotube using only patterned gates, while the contacts to

the nanotube remain highly transparent. This design allows multiple quantum dots

to be arbitrarily positioned along a tube (quantum dots connected to 1D nanotube

leads), with independent control over tunnel barriers and dot charges. A backgate is

used to set overall carrier density. Here, we show that quantum dots fabricated in

this manner exhibit familiar characteristics, yet provide significant advances in device

control. In particular, full control over tunnel barrier locations and transparencies

should allow improvements in the study and control of spin and charge dynamics in

carbon nanotubes.

7.2 Materials and Methods

Nanotubes were grown via chemical vapor deposition from lithographically de-

fined Fe catalyst islands on a degenerately doped Si wafer with 1µm of thermally

grown oxide (See Fig. 7.1a). Atomic force microscopy was used to locate nanotubes

relative to alignment markers, and single-walled tubes with diameters less than ∼ 3

nm were contacted with 15 nm of Pd, patterned by electron beam lithography [81].

Device lengths were in the range 5–25 µm. After contacting, the entire sample was

coated with 25–35 nm of either SiO2 deposited by plasma-enhanced chemical vapor

deposition (PECVD) or Al2O3 deposited by atomic layer deposition (ALD). Cr/Au

top-gates, 150–300 nm wide, were then patterned over the tubes using electron-beam

lithography, with care taken to prevent overlap between the gates and the Pd contacts.
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Figure 7.1: a) Schematic of a gate-defined carbon nanotube quantum dot showing
vertically integrated geometry and ohmic contacts. Pd provides high-conductance
contacts at the metal-nanotube interface which do not form tunnel barriers at low
temperatures. b) Gate response of a ∼ 25 µm long nanotube contacted with Pd,
top-gated using PECVD SiO2 at T ∼ 300 mK with ∼ 10 µV ac excitation. For
this device, all gates strongly suppress conductance at voltages above ∼ +1V. Inset:
SEM of a lithographically similar gate pattern. The middle two gates are connected
together and serve as a single plunger gate. Scale bar = 2 µm.

Two-terminal conductance was measured in either a pumped 4He cryostat (300 K

to 1.5 K) or a 3He cryostat (300 K to 0.3 K). Current and differential conductance,

dI/dV , were measured simultaneously using a combined ac + dc voltage bias with a

current amplifier (Ithaco 1211) and lockin amplifier.

All semiconducting nanotubes coated with PECVD SiO2 showed p-type field effect

transistor behavior at room-temperature, exhibiting carrier depletion with positive

voltage applied to top or back-gates (conductance was typically suppressed by three

to four orders of magnitude at voltages of ∼ 1–3 V) [22]. In contrast, some tubes

coated with ALD showed ambipolar behavior (high conductance at both positive and

negative applied top or back-gate voltage surrounding a low-conductance region) with
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thermally activated conductance in the gap. We believe this difference may be due to

oxygen doping of the nanotubes by the highly energetic oxygen plasma in the PECVD

process. Room-temperature maximum conductances at zero dc bias, VSD = 0, ranged

from ∼ 0.5–2 e2/h. Overall, devices coated with PECVD and ALD were qualitatively

similar in behavior. Devices showing a relatively weak gate response (presumably

metallic) were not investigated further.

7.3 Operation of gate-defined dots

7.3.1 Three-gate geometry for a single dot

Single quantum dots were formed using a three-gate configuration (Fig. 7.1a),

where outer gates act as tunnel barriers defining the dot (denoted “barrier 1” and

“barrier 2”) by locally depleting carriers beneath them, and a center gate (denoted

“plunger”) shifts the chemical potential in the dot relative to the chemical potentials

of the contacts and the segments of the tube away from the gates. Gate response of

tube conductance (Fig. 7.1b) for a single-dot device using PECVD SiO2 (micrograph

of similar device shown in Fig. 7.1b, inset; the two center gates are connected

and act as one plunger gate) shows p-type field effect behavior, that is, the tube is

depleted when any top-gate bias becomes sufficiently positive. The gated region of

the nanotube is ∼ 2 µm in length, while the total tube length is ∼ 25 µm between

the Pd contacts.



Chapter 7: Gate-defined intratube quantum dots 81

Independent gate action

The independent action of the barrier gates is evident in the two-dimensional

plot of differential conductance, dI/dV , as a function of barrier gate voltages, shown

in Fig. 7.2a. The square edge of the conducting region demonstrates independent

barrier depletion with little cross-coupling. Parallel diagonal features separated by ∼

2 mV visible near the pinch-off of both barrier gates (Fig. 7.2b) are a signature of

Coulomb blockade, discussed below. Figure 7.2b demonstrates that the barrier gate

voltages can be controllably adjusted to allow a transition from open conduction to

weak tunneling through a gate-defined quantum dot resulting in the appearance of

Coulomb blockade peaks.

Coulomb blockade in a single dot

Examined as a function source-drain voltage bias, VSD, as well as plunger gate

voltage, the Coulomb blockade peaks form a series of repeated “Coulomb diamonds”

where conduction is suppressed whenever the energy to add the next hole to the device

exceeds VSD (Fig. 7.2c). The ratio, η−1 ∼ 0.85, of Coulomb diamond height (VSD) to

width (plunger voltage) gives the conversion, eη, from the distance in plunger voltage

between Coulomb blockade peaks to the dot charging energy EC = e2/C ∼ e2/κε0L

(κ ∼ 4 is the dielectric constant of SiO2), and indicates a strong coupling of the

plunger gate to the dot [25]. From this analysis, one extracts a dot length of L ∼ 2

mm, comparable to the length of the gated region of the tube, and much less than the

∼ 25 µm tube length. Several hundred consecutive Coulomb peaks are visible over

a range of plunger gate voltage > 4V. Throughout this range, peak heights remain
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Figure 7.2: a) Differential conductance, dI/dV , plotted as a function of barrier gate
voltages. Conductance can be suppressed by the application of either gate voltage,
leading to the observed corner. Both barrier gates couple capacitively to the carrier
densities in the proximal sections of the nanotube and also to the chemical potential
of the dot formed between the depletion regions. Thus, near full pinch-off with both
gates we observe the emergence of a series of diagonal lines in the 2D plot due to
the onset of single electron charging. b) dI/dV on a logarithmic scale as a function
of the plunger gate for various values of barrier gate voltages. Data measured on
a subsequent cool down from those in panels a and c, where the exact position of
the corner has shifted slightly in gate voltage. From bottom to top, data are taken
at various barrier gate values falling along a diagonal line (with slope approximately
0.8 in the Barrier 1 - Barrier 2 plane) starting from the corner at which conduc-
tance is pinched off towards lower gate voltages where conductance is larger. At the
highest barrier gate voltages, well-isolated Coulomb blockade peaks are observed; de-
creasing the barrier gate voltages yields Coulomb oscillations on a high conductance
background and eventually open transport without charging effects. 2c. Differential
conductance, dI/dV , (in units of e2/h) as a function of plunger gate voltage and
source-drain voltage, VSD, for Barrier 1 (2) = 1200 (880) mV. Coulomb diamonds
(regions of suppressed conductance) indicate where the charge on the dot is fixed.
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controllable by adjusting the barrier gates.

7.3.2 Five-gate double dot

Taking advantage of the versatility of gate-defined devices, we next investigate a

double quantum dot formed by three depletion regions along a nanotube. The double

quantum dot, shown in Fig. 7.3a, comprises left and right barrier gates, a middle

barrier gate and two independent plunger gates. Gates are approximately 150 nm

wide with 150 nm spacing; total nanotube length is ∼ 10 µm, much longer than the

double dot.

Transport in a double quantum dot

Resonant transport through double dots in series occurs only when available en-

ergy levels in each dot align with each other and with the chemical potentials in the

two leads [154]. When the mutual capacitance of the dots is weak, the alignment

condition occurs at the intersection of the Coulomb peaks leading to a rectangular

grid of resonant conduction peaks. Such a pattern is seen in Fig. 7.3b. The resulting

charge stability diagram forms approximately square cells, each corresponding to a

fixed charge number in both dots. In the regime shown in Fig. 7.3b, cross-coupling

of plunger gates, which would skew the square pattern into rhombus shapes, appears

to be quite small. We note that these measurements were conducted at T ∼ 1.5

K, higher than the typical temperature where double dots based on semiconductor

heterostructures have been measured [154].
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Control over interdot coupling

Gate voltages can also be used to control interdot coupling, allowing a transition

from two isolated dots (uncoupled) to one large dot (fully coupled). Increasing the

coupling between the two dots (by reducing the voltage on the middle gate) leads

to a splitting of the high-conductance points of degeneracy between different charge

configurations, and the emergence of a honeycomb pattern in the charge stability

diagram (Fig. 7.3c). The interdot interaction may be due to capacitive or tunnel-

coupling, but it has been shown that tunnel-coupling increases exponentially faster

with a reduction of the interdot barrier [94]. In addition, as the voltage on the middle

gate is reduced we observe an increase in vertex height by approximately an order

of magnitude. It is therefore likely that finite tunnel coupling leads to the splitting

of the vertices [163, 104] in Fig. 7.3c, which in this case is partially obscured by

thermal broadening. (Any splitting of the charge degeneracy points in Fig. 7.3b is

smaller than the thermal smearing.) In addition to the vertex splitting in Fig. 7.3c,

we observe strong conductance along the edges of the honeycomb cells, due to higher-

order processes through virtual states. Further decreasing the voltage on the middle

gate yields a series of straight diagonal lines as a function of the two plunger gates,

as expected when the two dots merge to form a single large dot. The lines arise from

Coulomb charging where both gates act additively in coupling to the single particle

states of the dot (Fig. 7.3d) [40]. An analysis of the spacing between the Coulomb

peaks along the total energy axis (a line perpendicular to the sloped lines) shows

that the peak spacing in Fig. 7.3d, 4.8 mV, is half of that required to move from one

degeneracy point to the next along a similar line in Fig. 7.3b, 9.6 mV. This factor of
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two corresponds nearly exactly to the difference in the size of a single dot between

the isolated and strongly coupled cases for this device, as peak spacing is inversely

proportional to dot length [115]. The fact that a single dot can be formed by outside

barriers, with three nominally inactive gates between them, suggests that there is

little inadvertent depletion or tube damage from the deposition of these top gates.

Calculation of interdot tunnel coupling

Conductance through the double dot for different values of middle gate voltage is

consistent with the interpretation that the interaction between the two dots is due

to tunnel coupling. If we assume that tunneling rates through the outer barriers,

ΓBL and ΓBR, are equal and remain roughly constant in the three coupling regimes

(these rates do change somewhat as indicated by a varying value of peak conductance

in Fig. 7.3d, and limiting the validity of the following analysis) we can relate the

tunneling rates to the typical peak current for the single dot case as IP ∼ 80 pA =

(4VEe/kBT )(ΓBLΓBR/ΓBL + ΓBR) to find ΓBL = ΓBR = Γ ∼ 9 GHz, where VE is

the excitation voltage used in the measurement, and T = 1.5 K the measurement

temperature (this formulation holds approximately for the conditions met in this

case, hΓ < kBT ) [16]. Using these values we solve for the middle barrier tunnel rate,

GM, from the peak current in the intermediate (IP ∼ 60 pA) and weak (IP ∼ 10 pA)

coupling cases using Γ2
M = IP Γ2/4(2eΓ−3IP ) for the case of resonant tunneling (This

expression is derived from eq. 15 of ref. [154], assuming current is allowed to flow in

either direction through the dot, and zero detuning between the dots.). We find that

for the intermediate coupling ΓM ∼ 700 MHz , and for the weak coupling case ΓM ∼
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Figure 7.3: a) Colored SEM image of a five-gate carbon nanotube device lithographi-
cally similar to that measured. Pd contacts are visible at the top and bottom, under
the SiO2 insulator. The nanotube itself is not visible. Gates used to form dots are
colored red while plunger gates which tune dot energy levels are colored yellow. Scale
bar = 2 µm. b) dI/dV (colorscale) as a function of two plunger gate voltages. Bar-
rier 1 = 389 mV, Barrier 2 = 1077 mV, Middle Gate voltage is indicated on the
figure. Temperature = 1.5 K, ac excitation = 53 µV. For weak interdot coupling,
high-conductance points appear on a regular array corresponding to resonant align-
ment of energy levels between the two dots with the Fermi levels of the leads. Note
the low overall conductance. c) At intermediate interdot coupling (for lower middle
gate voltage), cross-capacitance and tunneling between dots splits the degeneracy
points, giving the familiar hexagonal double-dot charging diagram (dashed lines).
Dotted while lines serve as guides to the eye. d) For strong coupling of the double
dot (lowest middle gate voltage) the two plunger gates together on a single effective
dot, producing single-dot charge states separated by diagonal stripes (dashed lines).
Note the factor ∼ 2 change in peak period between (b) and (d)
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200 MHz, consistent with a modest visible splitting of the vertices for intermediate

coupling. Finally, if we assume that in the weak coupling case tunneling through the

middle barrier provides the dominant component of resistance, setting ΓM = IP /e

gives ΓM ∼ 60 MHz, smaller than, but comparable to the value of 200 MHz obtained

above.

7.4 Comparison of devices using PECVD SiO2 and

ALD Al2O3

The data in Fig. 7.2c show significant off-resonance tunneling outside of the

Coulomb diamonds, obscuring any excited state features that would be expected

in low-temperature transport. We find that this washing out of excited state features

is characteristic of devices made with PECVD SiO2 but is typically not the case for

ALD Al2O3, where excited state features are generally visible outside the Coulomb

diamonds. We do not know if this difference is due to the oxide material itself or due

to damage that occurs during deposition.

7.4.1 Single dots using ALD Al2O3

Figure 7.4 shows a series of Coulomb diamonds measured on a gate-defined quan-

tum dot using ALD Al2O3 as an insulating layer. Off-resonance conductance is low,

and excited states are visible outside of the boundaries of the diamonds. The mean

level spacing extracted from the data ∼ 2–3 mV gives a measure of dot length, L ∼

0.5–0.8 µm, again roughly consistent with the lithographic dimensions of the gated
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Figure 7.4: Coulomb diamonds measured on a device using ALD Al2O3 as the gate
dielectric for T ∼ 270 mK. Excited states are visible outside of the diamonds as
off-resonance conduction is suppressed. Gates were ∼ 150 nm wide with ∼ 150 nm
spacing. Barrier 1(2) = -993 (-2337) mV, Backgate = +16 V. This device is ambipolar,
and here operated in the electron-doped regime.

region of the tube for this device.

7.4.2 Double dots using ALD Al2O3

The gate-controlled transition from open conduction to the Coulomb blockade

regime has been investigated in eight devices with various gate dimensions, config-

urations, and dot sizes. Double quantum dot devices have been investigated using

both SiO2 and ALD Al2O3. Again, off-resonant conduction is reduced in double dots

fabricated with ALD Al2O3 as a gate oxide compared to those using SiO2. In ad-

dition, structure is visible inside the honeycomb vertex triangles for Al2O3 devices

when measured at finite VSD (see Fig. 7.5). A full understanding of these features

requires further study.
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7.5 Conclusion and acknowledgements

We note that while nanotube double quantum dots have been previously investi-

gated [111], and showed behavior comparable to the present results, this work differs

from previous work in not relying upon intrinsic defects or tunnel barriers at the metal

nanotube interface, instead defining quantum dots only using electrostatic gates. Con-

trolled gating at arbitrary points along the tube greatly enhances the functionality

of nanotube devices for potential applications ranging from bucket-brigade devices

to quantum coherent logic elements. This approach may be particularly useful for

quantum logic, as recent theoretical work has shown that a one-dimensional array of

coupled quantum dots can be used for quantum computation [105, 31]. Further, the

expected long spin coherence lifetime [53] for electrons and holes in nanotubes makes
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this an attractive material for developing spin-based quantum information storage

and processing systems.
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Chapter 8

RF-reflectometry and capacitive

charge detection

In this chapter I will introduce the techniques of capacitive charge detection and

rf-reflectometry for the fast detection of single electron charging events. The first

section of this chapter provides some of the necessary background material for a full

understanding of the experimental section to follow. That section describes a set of

experiments performed at the University of New South Wales in Sydney, Australia

during a 2-month stay in the winter (in the northern hemisphere) of 2005. The results

describe the incorporation of Al rf-SETs into gate-defined carbon nanotube quantum

dot devices, representing an exciting combination of existing technologies to produce

a novel readout technique for carbon nanotube devices.

91
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8.1 Background

In the first section of this chapter I will introduce a number of techniques useful

for the electrical detection of single electron charging without the use of direct trans-

port measurements. These techniques are particularly useful from the perspective of

quantum computation, where a noninvasive readout scheme is necessary.

8.1.1 Capacitive charge detection

The nonlinearity of the gate voltage response of a transistor allows these solid-

state devices to be employed as amplifiers — a small input signal (applied to the

gate) can dramatically change the device channel conductance, hence amplifying the

input signal. Such devices have generally been employed in a digital fashion where

the input signal simply switches the device from subthreshold to high conductance

operation, forming the basis of digital switching for applications in logic gates.

A similar technique may be used in an analog fashion in order to amplify very

small electrostatic potential changes associated with the rearrangement of charge in

a nanoscale device. This is accomplished through the exploitation of nonlinearities in

the gate response of a nanoscale conductor which is coupled capacitively to the system

of interest. Past experiments have demonstrated the efficacy of charge sensing using

quantum point contacts in GaAs heterostructures coupled to gate-defined quantum

dots [46], but we will limit our discussion to the use of a single electron transistor as

the sensing device.

We may model our circuit as in Fig. 8.1a, with an SET capacitively coupled to

an environmental potential. In practice, this potential is generally derived from a
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Figure 8.1: A) Circuit diagram for an SET (detector) capacitively coupled through
CL to an environmental potential (or device) which fluctuates in time, ∆V . B) This
induces a charge ∆q � e on the SET island, which functions as an external gate
voltage. If the SET is biased to the sidewall of a Coulomb blockade peak, a small
change in induced charge produces a large measurable change in SET conductance,
∆G. Figure after [28].

device which we intend to address with the SET, such as a quantum dot. In this

case, the addition of an electron to the quantum dot produces a potential change ∆V

at the SET detector. Due to the capacitive coupling, this results in an induced charge

on the SET which functions as an effective gate voltage (Fig. 8.1b). If the SET is

biased with an external VG to sit on the side of a Coulomb blockade peak, a small

change in the effective gate voltage will produce a large change in SET conductance.

Accordingly, a small potential change resulting in an induced charge ∆q � e may

translate to a significant change in SET conductance, ∆G, which is easily measured

using standard lock-in techniques.

8.1.2 The superconducting Al-SET

The detector employed in this work is the superconducting Aluminum SET. Al-

though the physics of single electron charging is important in these devices, the fact

that both the SET island and its leads are superconducting adds significant richness

to the physics explored in a 2D plot of conductance as a function of VSD and VG. The
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device is operated in a regime such that the Josephson coupling energy, EJ , across the

tunnel barriers separating the island from source and drain [85] is much smaller than

the charging energy EC of the island, making the number of Cooper pairs [13, 14] on

the island well-defined.

Low-bias transport in the superconducting SET is dominated by the supercon-

ducting gap, ∆S, such that for biases VSD < 4∆S/e quasiparticle transport is sup-

pressed. Beyond this threshold, single electron charging effects are visible, producing

a diamond-like pattern in the 2D conductance plots. This causes the threshold of

conductance to vary between [4∆S/e, 4∆S/e + 2EC ] (Fig. 8.2). In the sub-gap region

transport may only occur through two-electron or Cooper pair transfer processes.

Among others, these include resonant cooper pair tunneling [73] and the Josephson

quasiparticle (JQP) [59, 120, 152] and double Josephson quasiparticle (DJQP) [67]

cycles . These higher order processes involving coherent, cyclical addition of cooper

pairs and quasiparticles to the SET island appear in transport measurements such as

those in Fig. 8.2. A more complete description of these processes may be found in

[28].

We exploit the nonlinearities of the Al-SET transport characteristics to perform

capacitive charge detection as described in Sec. 8.1.1. By appropriately biasing the

Al-SET (applying VSD) we may sit at the JQP point, DJQP point, or threshold of

conductance, using either cooper pair resonances or single electron Coulomb blockade

peaks to provide the necessary transconductance nonlinearity. One advantage of the

superconducting SET over the normal SET is that the device differential resistance

may be lower than the sum of tunnel junction resistances [8], providing the super-
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Figure 8.2: Conductance measured as a function of VSD and VG for a superconduct-
ing Al SET. White corresponds to device resistance ∼ 50 kΩ, dark to > 100 M Ω.
Measurements performed using rf-reflectometry (see Sec. 8.1.3). Solid lines indicate
stability diamonds for fixed cooper pair numbers on the SET island. Dashed lines
indicate energy conditions where resonant cooper tunneling may take place. The
quasiparticle current threshold is noted at 4∆/e and the JQP and DJQP energies
are indicated on the figure as 2e/CΣ and e/CΣ respectively, coinciding with measured
sub-gap features.
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conducting SET with a larger dynamic range than its normal cousin. Calculations

show that the sensitivity of a superconducting SET approaches 2µe/
√

Hz, in prin-

ciple allowing for the detection of 2µe with an integration time of 1 s under ideal

conditions.

8.1.3 RF-reflectometry

Measurements of changes in SET conductance are limited to a frequency fmax =

(2πRCLead)
−1 where R is the SET resistance and CLead ∼ 1 nF is the parasitic ca-

pacitance of the lead wires running down the cryostat. For a standard Al-SET with

R ∼ 50 kΩ, this imposes a bandwidth limit of fmax ∼ 3kHz. By comparison, the

intrinsic RC cutoff frequency for a device with total capacitance of order aF may be

greater than 10 GHz. An approach designed to overcome the effect of this parasitic

capacitance was developed by Schoelkopf et. al [141]. There, an impedance matching

network was employed to transform the device resistance to the characteristic im-

pedance (50 Ω) of a radio-frequency (rf) network. Changes in device resistance were

detected by measuring the damping of a reflected rf signal applied to the device at

the resonant frequency of the impedance matching circuit, permitting measurements

with a bandwidth of > 100 MHz, limited instead by the Q-factor of the impedance

matching network.

Impedance matching networks

Standard rf transmission lines have a characteristic impedance Z0 = 50 Ω, leading

to a large reflected voltage signal when connected to a load with a characteristic
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impedance, Zload, differing from 50 Ω. The amount of reflected signal for a given (time-

oscillating) Vin is given by the coefficient ΓR = Vout/Vin = (Zload − Z0)/(Zload + Z0),

which changes little for Zload � Z0 in the case of an SET whose resistance varyies

between 50 kΩ and ∼ GΩ. Accordingly it is customary to incorporate the device

load into an LCR resonant circuit whose characteristic impedance, ZLCR ∼ Z0 on

resonance. For the resonant or “tank” circuit shown in Fig. 8.3b (L in series with C

and R in parallel) it can be shown [28] that

ZLCR =
R

1 + ω2C2R2
+ i

ωL− ωCR2(1− ω2LC)

1 + ω2C2R2
(8.1)

On resonance the stored magnetic energy in the inductor is equal to the stored electric

energy in the capacitor, and the reactive components of ZLCR vanish, allowing calcu-

lation of ωres. At this frequency ZLCR = L/RC, and we may simplify the expression

for the resonant frequency to ωres =
√

1/LC if we wish to transform ZLCR → Z0.

Thus, by construction, on resonance we transform the impedance of the LCR circuit

to the characteristic impedance of the transmission line. Any change in R (the de-

vice) will shift ΓR from 0 → 1. It is useful to express this condition in terms of the

reflected (Pref ) and incident (Pin) rf power using [28]

Pref = Pin

(
1− 4Q2Z0

R

)
(8.2)

Q =


√

L/C

R
+

Z0√
L/C

−1

(8.3)

where Q is the loaded quality factor of the LCR circuit. From equation 8.2 it is

obvious that a change in device resistance, R, will produce a change in the reflected

rf power. In practice this is accomplished using a network analyzer or signal source
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tuned to the resonance frequency to output rf power and measuring the reflected rf

signal after cryogenic and room-temperature amplification. (For a further discussion

of experimental details please see section 8.2). A representative trace of reflected

rf power for different values of device R embedded in an LCR circuit is shown in

Fig. 8.3c.

Homodyne detection and wavelength division multiplexing

Changes in Pref may be measured in real time using homodyne detection. In this

technique, rf-power reflected from the tank circuit is mixed with a reference signal at

the same frequency. Changes in the reflected signal from the demodulation circuit

are detectable as an intermediate frequency (IF) voltage output from a standard

microwave mixer (the 2f component is filtered out). Such changes are detectable on

time scales falling within the bandwidth of the resonant tank circuit, which is often

in excess of 100 MHz.

One may extend this technique to incorporate multiple tank circuits with different

resonant frequencies connected to a single coaxial line using a technique adopted

from telecommunications called wavelength division multiplexing. In the approach

applied in the experimental section of this chapter to follow, two incident carrier wave

signals are passed through directional couplers held at room temperature. Here -16

dB is directed toward the two tank circuits at each frequency, and both signals are

combined onto a single coax entering the cryostat (Fig. 8.3b). The remaining -0.11

dB of each signal is directed to room temperature mixers. The rf power sent down

the cryostat passes through another directional coupler mounted on a cryogenic stage
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of a dilution refrigerator and is coupled to the tank circuits. Reflected power passes

through a cryogenic amplifier (+40 dB) and a room temperature amplifier (+45 dB)

before being split and mixed with the reference signals for demodulation. The output

of the demodulation circuit (after appropriate filtering) is a time varying voltage

proportional to the reflected rf-power and is measured using an oscilloscope for time

domain measurements.

8.2 Single charge detection in carbon nanotube

quantum dots on microsecond timescales

8.2.1 Introduction

Carbon nanotubes are promising systems on which to base the development of

coherent electronic devices [115, 102, 22]. Owing to a combination of their large

energy level separations and quantized phonon spectrum [158], and together with

an absence of nuclear spin moments, carbon nanotubes are likely to exhibit long-

lived coherent states commensurate with other carbon-based systems [53]. Key to

the success of this technology are both the ability to manipulate and couple coherent

electron states within a nanotube and to perform readout with an efficiency that

approaches quantum limits. In light of these sentiments, recent advances [22, 82, 81,

20] have enhanced the functionality of carbon nanotube devices towards the control

of coherent electronic states, allowing the creation of multiple quantum dots along

the length of a tube with controllable coupling solely by applying voltage biases to

electrostatic top-gates [19]. Conversely, the readout of such novel structures has been
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limited by a reliance upon dc transport measurements, which although successful

in uncovering their transport properties, are highly invasive and generally slow in

comparison to the expected relaxation times of these systems.

In this Letter we describe the integration of superconducting aluminum radio

frequency single electron transistors (rf-SET) [141] with carbon nanotube intra-tube

quantum dot devices defined by electrostatic gates [19]. The rf-SET serves as an

extremely sensitive electrometer [45] and when capacitively coupled to the nanotube

dot, provides a means of non-invasively detecting its charge state on fast time-scales

and in regimes that are not accessible with transport measurements [46, 106, 30,

157, 51]. In addition, we make use of a radio-frequency (rf) reflectometry technique

that enables fast transport measurements of the nanotube in correlation with the fast

charge sensing associated with the capacitively coupled rf-SET.

8.2.2 Methods

Nanotube device fabrication

Carbon nanotubes were grown from patterned Fe catalyst islands on a Si/SiO2

wafer via chemical vapor deposition using methane as a carbon feed-stock. Single-

walled tubes were located using atomic force microscopy and tubes with diameters

less than ∼4 nm were selectively contacted via electron beam lithography [22]. Con-

tacts were metallized with ∼15nm of Pd [81] and connected to metal pads defined

by optical lithography. The entire device was coated with ∼35nm Al2O3 using a

low-temperature atomic layer deposition (ALD) process. Three top-gates were then

aligned to each nanotube; two barrier gates to deplete the underlying nanotube, defin-
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ing a quantum dot, with a third plunger gate between these to tune the energy levels

of that dot (Fig. 8.3a) [19]. The doped Si wafer also serves as a global back-gate.

Metallic nanotubes which showed little gate response were excluded from the present

study. The capacitive coupling between the SET ‘island’ and the nanotube dot was

enhanced with the use of a 50nm Ti/AuPd (20/30) metal ‘antenna’ that crosses the

tube and sits under the SET island. Subsequently, using a bilayer resist and double-

angle evaporation technique [58] an aluminum SET was fabricated on the base of the

coupling antenna (see Sec. 8.2.2 and Fig 8.3a).

SET Fabrication

The Aluminum SET is fabricated using a bilayer resist mask with an undercut in

order to perform shadow-mask evaporation. The bottom resist layer is AR-P 619.08

Copolymer spun on at 6700 RPM for 60 s. Following a 10 min hotplate bake at 180

C, the sample undergoes a UV exposure for 30 min. 2.2 M PMMA is then spun on

at 2400 RPM for 60 s, again followed by a 20 min hotplate bake at 160 C. Aluminum

evaporation is performed in a system with an oxidation chamber and an electrically

controlled rotating/tilting stage. For the first evaporation step, a 35 nm layer of Al

forming the SET island is deposited at an evaporation angle of 12.5 degrees (from

horizontal). The Al is oxidized at 35 mTorr for 10 min to form an oxide layer ∼ 1 nm

thick, with a calibrated resistance ∼ 25 kΩ. The chamber is pumped to base pressure,

the stage rotated 180 degrees and the second deposition of 38 nm completed.
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Figure 8.3: a) False-color SEM image of a representative quantum dot device with
integrated Al-SET. The nanotube is visible under ALD Al2O3 and the Pd contact
(top). Gates (yellow) are labeled on the figure. The Al-SET (blue) is aligned to
a coupling antenna running over the nanotube. b) Schematic of the measurement
setup for the multiplexed rf-reflectometry. c) Reflected rf signal as measured with a
network analyzer for different values of nanotube and SET resistances. In this trace,
the nanotube resistance is controlled with the back-gate while that of the SET is
changed by shifting the bias voltage in or out of the superconducting gap.
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RF circuitry

Devices were mounted on a circuit board engineered with rf coplanar waveguides

and cooled in a dilution refrigerator with a base temperature of 30-50mK. Electron

temperatures as measured in similar configurations are 100-200mK. Figure 8.3b is a

schematic of our setup, showing the generation of the reflectometry ‘carrier’ signals

at frequencies f1 and f2. These two carrier signals are combined and fed to a di-

rectional coupler housed at 4K within our dilution refrigerator. Two tank circuits

transform the high resistance of the SET (∼ 50 kΩ) or nanotube (∼ 200 kΩ) towards

∼ 50Ω, at the resonance frequency f1,2 set by the parasitic capacitance Cp and chosen

series chip-inductor (L = 780 nH for the nanotube and L = 330 nH for the SET).

At resonance, changes in resistance of either the nanotube or SET are mapped to

changes in the amount of reflected rf-power. After amplification at 4 K (40 dB) and

room temperature (45 dB) the signals are demodulated using a homodyne technique

to produce an output voltage proportional to the change in device resistance. Wave-

length division multiplexing enables simultaneous monitoring of both devices, which

operate at different frequencies but utilize a common transmission line and cryogenic

amplifier [142, 29].

Tank circuit and SET calibration

Figure 8.3c shows the amount of reflected power from the tank circuits as a func-

tion of frequency measured with a network analyzer after amplification. The two reso-

nances are easily identified at f1 ∼120MHz for the nanotube and f2 ∼ = 165 MHz for

the SET. Estimating the bandwidth from these measurements suggests ∼ 1 MHz for
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the nanotube and ∼ 10 MHz for the SET. We note that the use of rf-reflectometry in

order to measure changes in resistance of a nanotube has been performed previously

[101], but only for slow measurements in field effect transistor device configurations.

Bias-tees, comprising of surface mount components on the circuit board, facilitate

standard low-frequency lock-in resistance measurements and voltage biasing of both

the SET and nanotube.

Figure. 8.4a shows a diamond charge stability plot for a representative super-

conducting SET (used for all measurements in Fig. 8.4). We plot the demodulated

voltage signal as a function of both the dc source-drain bias V SET
SD across the SET

and the voltage applied to a nearby gate electrode. We typically bias the SET using

a battery box at the threshold of quasi-particle transport, V SET
SD ∼ 4∆/e, where the

rf-SET sensitivity is maximized. Charge sensitivities for the two SETs used in this

study are better than δq = 10−5e/
√

Hz.

8.2.3 Charge detection in gate-defined nanotube quantum

dots

We form a quantum dot in the carbon nanotube by applying appropriate negative

voltages to gates B1 and B2 (Fig. 8.3a) with the back-gate set such that the device is

n-type. The section of the nanotube between depletion regions formed in the tube by

gates B1 and B2 serves as the quantum dot. In this configuration, Coulomb blockade

(CB) is observed in standard lock-in transport measurements, manifested as a series

of peaks in conductance as a function of a gate voltage (here, the P-gate) which is

capacitively coupled to the dot [19] (Fig. 8.4b). The gate induces an effective charge
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on the dot (qind), and when qind = e/2 the n and n+1 charge states on the dot become

degenerate and transport is allowed (similar physics is responsible for operation of

the SET electrometer).

In the fast reflectometry configuration, a triangle wave voltage ramp is applied

to the P-gate which moves the device through CB, and a compensating gate ramp

is applied to the S-gate to maintain the SET at a fixed conductance value. When

the P- and S-gates move together in the same direction, the SET is uncompensated

and exhibits Coulomb blockade. In the region where P- and S-gates move in opposite

directions the SET is compensated.

We exploit the large transconductance of the SET to perform sensitive electrom-

etry measurements, as charge fluctuations in the nanotube quantum dot move the

SET conductance up or down the side of a conductance peak. As we sweep the P-

gate in the compensated configuration, the SET exhibits a characteristic sawtooth

charging pattern on sub-millisecond time scales (Fig. 8.4c) [64]. The sawtooth slope

is associated with gate-induced charging of the nanotube dot (which is coupled to the

SET), followed by the tunneling of an electron onto the dot at the condition for charge

degeneracy described above. The period of the sawtooth in plunger gate voltage is

nearly identical to that measured directly from lock-in transport measurements of

Coulomb blockade in the nanotube. By contrast, if the barrier gate voltages are now

set such that there is no dot formed in the tube, we observe a nearly smooth line in

the SET response (black trace, Fig. 8.4c). This indicates that the observed sawtooth

response corresponds to charging of the gate defined nanotube quantum dot and not

spurious charge traps. We note that the magnitude of the charge induced on the SET
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with the addition of a single electron to the nanotube dot is QSET ∼ e/4, indicating

strong coupling between the nanotube and the SET electrometer.

8.2.4 Nanotube stability diagrams measured via charge sens-

ing

Similar measurements demonstrate the utility of charge sensing to map full charge

stability diagrams, and reveal information not generally observable through transport

measurements. Plotting the (compensated) SET signal as a function of time (P-

gate voltage) and VSD on the tube reveals a familiar diamond pattern associated

with Coulomb blockade (Fig. 8.5a). For these measurements the applied VSD on the

nanotube couples capacitively to the SET itself and is compensated by adding a dc

offset to the gate ramp. The nanotube quantum dot charge configuration is fixed in

the diamond regions (and current blocked), while the blockade is lifted and current

flow allowed at sufficiently high values of VSD. In appropriate configurations of gates

B1 and B2, we observe even-odd filling in the nanotube quantum dot [38], indicated

by an alternating pattern of large and small diamonds. This is consistent with a

shell-filling model in which a single electron can enter a discrete energy level in the

dot with charging energy EC = e2/C and quantum level spacing ∆E. The second

electron, with opposite spin to the first can enter the same orbital state requiring only

EC . Estimating ∆E for a dot of the size used in this experiment to be ∆E = 750µV

using ∆E = hvF /2L, where L ∼ 1µ m is the dot length, consistent with experimental

measurements. In this particular gate configuration we do not observe four-fold shell

filling [103, 140], although it has been observed in this device using standard lock-in
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Figure 8.4: a) Charge stability diamonds for a superconducting rf-SET. We plot the
demodulated voltage signal from our homodyne detection circuit. For the intensity
scale red corresponds to ∼ 50kΩ and blue ∼ 100MΩ. Dotted lines indicate conditions
for resonant cooper-pair tunneling. b) Coulomb blockade in the nanotube as mea-
sured using standard lock-in techniques with gates B1 and B2 near 2V, BG=18V,
VSD=1.5mV. c) rf-SET signal (averaged 60 times, left axis) in the time domain (arb.
offset) with the SET biased to a sensitive region. Green and blue traces indicate
triangle wave gate ramps for S- and P-gates (with -40dB of attenuation) respectively
(right axis). When no dot is formed in the nanotube (B1=B2=10V) we observe a
flat line in the rf-SET response, while forming a dot as in panel b) yields a sawtooth
charge sensing signal.
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measurements.

In addition to the low-bias diamonds visible in transport, for particular configu-

rations of gate bias, we are also able to map out Coulomb diamonds beyond the first

order and detect the Coulomb staircase in VSD. This is most likely possible because

the SET senses the time averaged charge on the nanotube dot and not the current

that flows from source to drain, which in transport measurements is affected by co-

tunneling processes at high VSD. We observe diamonds centered at VSD = e/CΣ, the

bias corresponding to the apex of the first order classical diamonds, where CΣ is the

capacitance of the dot. First, second, and the beginning of third order diamonds are

visible in Fig. 8.5b, each offset by e/CΣ from the center of the diamonds of the next

lower or higher order. We have also seen indications of Coulomb diamonds in the

charge sensing signal to the fourth order, although in some cases we do not see higher

order diamonds at all (e.g. Fig. 8.5a). These differences are presumably related to

the variations in the symmetry of the tunnel barriers as defined by the top-gates.

8.2.5 Simultaneous multiplexed reflectometry measurements

As noted above, our multiplexing demodulation circuit permits fast simultane-

ous measurements of both the nanotube and SET. As such we are able to perform

correlation measurements using the direct rf-transport signal from the tube and the

non-invasive signal from the rf-SET electrometer. Figure 8.6a shows both the de-

modulated signal from the nanotube tank circuit as well as that from the SET for S-

and P-gate ramps with the nanotube in the CB regime (different device). CB peaks

are evident in the reflected signal from the tube, and a sawtooth pattern is visible in
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Figure 8.5: a) SET signal as a function of time (P-gate) and VSD across the nanotube
showing even (E) and odd (O) filling of energy states in the nanotube quantum dot.
b) Similar measurements in a different configuration of B1 and B2 showing first,
second and third order Coulomb diamonds with increasing VSD. Red lines are guides
to the eye indicating the boundaries of diamonds in which charge number on the dot
is fixed.
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the SET signal, with sequential charge addition occurring on time scales of ∼ 300µs

(we have performed similar measurements with charge addition periods ∼ 30µs, but

systematic noise increased with gate speed). The two signals are correlated as ex-

pected, with the apex of each Coulomb blockade peak falling roughly in the middle of

the charging sawtooth. Further, the width of the transition region for each sawtooth

charging event is roughly equivalent in time to the width of the Coulomb blockade

peak.

Extending these measurements, we construct charge stability plots for the nan-

otube quantum dot by simultaneously measuring the (demodulated) SET (Fig. 8.6b)

and tube signals (Fig. 8.6a) as a function of VSD across the nanotube. We again mea-

sure charge stability diamond plots, observing nearly identical Coulomb diamonds

from both the nanotube and SET signals. The SET, however, is sensitive to charge

fluctuations in regions of VSD and P-gate voltage where direct transport measure-

ments do not yield measurable currents, and where resistance changes in the nanotube

mapped through reflected-rf are immeasurable.

8.2.6 SET backaction

We have also studied how the V SET
SD biasing point of the SET influences the

Coulomb blockade in the nanotube quantum dot. Consistent with measurements

made on Aluminium single-electron boxes [150], we observe asymmetries and changes

in the width of the CB peaks with varying V SET
SD across the SET (Inset Fig. 8.6a). This

behavior is likely due to a convolution of heating [96] and the backaction connected

with charge fluctuations of the SET island as current flows from source to drain. Of



Chapter 8: RF-reflectometry and capacitive charge detection 111

Figure 8.6: a) Fast, simultaneous measurement of the rf-SET and nanotube using
rf-reflectometry at tube VSD ∼ 250µV . Coulomb blockade peaks are evident in the
nanotube signal (red lower trace) corresponding to a sawtooth in the SET signal (CB
is evident in the SET signal at points where the gate biases change sweep direction).
For this device gate B2 was shorted to the tube source and hence held at V=0.
B1=0V, BG=7.78mV. Inset: (lower left corner) shows the backaction dependence
of a CB peak in the tube as measured using reflectometry at different V SET

SD for the
SET. SET V SET

SD biased to the gap (black trace), biased to the DJQP (blue and dashed
trace) and ∼ 3mV (red trace). b)-c) Reflected rf signal on a logarithmic color-scale
from the SET and tube respectively (gate ramps identical to those in panel a)) as a
function of VSD across the tube. Coulomb diamonds are visible in both panels, with
key features reproduced between both. Each sweep at fixed VSD has been averaged
1000 times.
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particular interest, we see a slight narrowing of the Coulomb blockade peaks in the

nanotube dot when the SET is biased near the double Josephson quasi-particle reso-

nance (DJQP) [37], relative to the CB peak-width when the SET is biased into the

superconducting gap. A full understanding of such effects requires further study in

order to clearly characterize the backaction mechanisms in play.

8.2.7 Conclusions and acknowledgements

In conclusion, we have presented fast rf-reflectometry measurements of a gate

defined quantum dot in a carbon nanotube. With the incorporation of Al rf-SETs we

are able to perform non-invasive charge sensing measurements of the quantum dot

on fast time-scales in correlation with fast reflectometry and standard dc transport

measurements. Our results demonstrate the feasibility of this technology for fast and

near quantum limited readout of nanotube based coherent electronic devices.
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Chapter 9

One-dimensional ballistic transport

In this chapter we introduce the concepts of transport in low-dimensional struc-

tures, ignoring zero-dimensional states previously discussed in Ch. 4. The first section

of this chapter presents the concepts of ballistic transport and the Landauer formal-

ism for transport in 1D systems. Experiments demonstrating these effects will also

be discussed briefly. Subsequently, in section 9.2 we will proceed to discuss transport

experiments on carbon nanotubes with local depletion regions. These measurements

reveal characteristics of 1D ballistic transport and also present a surprising finding

about conductance quantization in carbon nanotubes.

9.1 Transport in 1D

In any discussion of transport in low-dimensional structures, there are several

length scales which must be defined in order to understand the physical phenomena

in play. These are:

113
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• The electron Fermi wavelength, λF

• The mean free path or momentum relaxation length, `m

• The phase coherence length, `φ, over which quantum mechanical phase infor-

mation is retained.

In general, the dimensionality of a conductor is set by the magnitude of the Fermi

wavelength: if the size, l, of a conductor in any dimension is much larger than λF , then

the wave nature of the electron may be neglected in that dimension. In this manner

it is possible to define a one-dimensional conductor as one in which λF ∼ l in two

dimensions. (For the purpose of our discussion we will begin with a 2D electron system

which we then confine laterally). Alternatively, one may say that with confinement

in two dimensions, the density of states is comprised of 1D modes (also subbands)

due to the quantization of the momentum wavevector in the transverse dimensions.

In this manner one may write the number of 1D modes, M ≈ Int
(

W
λF /2

)
, i.e. each

mode must accommodate approximately half of a Fermi wavelength.

9.1.1 Ballistic transport in 1D

Under the conditions l � `m for a conducting channel of length l, transport

is termed ballistic, indicating that it traverses the length of the channel without

momentum relaxation. Ohmic scaling, which states G = σW/l with σ the material

system’s conductivity and W the channel width, suggests that as the channel length

is reduced, total conductance should increase to infinity. Experiments, however, show

that the conductance saturates at a fixed value. We now show that the saturating
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conductance is due to a contact resistance as electrons scatter from bulk leads into

the narrow conductor where transport occurs via quantized 1D modes.

Classically one may write the current carried by a wire as I = nev with n the

electron density and v the electron velocity. This may be generalized, assuming

periodic boundary conditions in 2D, by writing

I = 2× 1

2π

∫
dk νev (9.1)

where the first factor of 2 is for spin degeneracy and ν is the electron density of

states. One notes that the electron velocity, v = ∂E/∂k, and the density of states

ν = (1/h̄)(∂k/∂E). Thus in the above integral the energy dependence of the integral

vanishes and we are left with a total current I = 2e/h per mode, which may be

transformed to a conductance G = 2e2/h per mode.

Electrons are injected into 1D modes of the channel at the chemical potential of

their respective source electrodes. The absence of scattering inside a ballistic channel

produces no voltage drop along the channel length, and hence the chemical potentials

for left and right movers are constant across the channel. Accordingly, all of the

voltage drop associated with the quantization of conductance occurs at the leads

such that we may defined a contact resistance of 12.9 kΩ per mode, consistent with

experimental observations. With respect to a 2D conductor constricted to form a

1D channel, we see that conductance through the system increases stepwise as the

number of modes is increased (each time the channel becomes wider by λF /2). This

was observed first by van Wees and Wharam in simultaneous measurements [156, 164]

(see Fig. 9.1).

In the case of a nanotube we note that there exists an additional degeneracy arising
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Figure 9.1: Conductance quantization in units of 2e2/h from [156]

from the band structure of the nanotube. Hence, the total conductance, including

band and spin degeneracies, through a 1D subband of the graphene sheet (only one

allowed ~k⊥) should be 4e2/h. Further discussion will follow in section 9.2.

9.1.2 The influence of scattering

In the Landauer formalism we combine the conductance quantization derived

above with a transmission probability, T , to write

G =
2e2

h
MT (9.2)

with M the total number of occupied modes. This allows the inclusion of scattering

in the channel by considering a finite probability of electron reflection in the con-

ductor. Note that this formulation neglects quantum interference effects (for one

manifestation of such effects in a carbon nanotube see section 9.1.4).
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For a system with two series scatterers, one may write the total transmission

T12 = T1T2/(1 − R1R2), considering multiple reflections [41]. This has a special

additive property such that for N scatterers with fixed transmission probability T

1− T (N)

T (N)
= N

1− T

T
. (9.3)

Accordingly, the resistance of an individual scatterer is proportional to (1 − T )/T .

For a linear density of scatterers, N = νL, we may write T (L) = L0/(L + L0), with

L0 = T/ν(1−T ), a length of order the mean free path. Hence one may write the total

device resistance as the sum of the contact resistance and the scattering resistance as

R =
h

2e2M

1

T
=

h

2e2M
+

h

2e2M

1− T

T
. (9.4)

Such a formulation also leads to the recovery of Ohm’s law for a wide conductor with

many modes [41].

9.1.3 The Tomonaga-Luttinger liquid

The whole of the discussion above was derived from a Fermi liquid picture of

interacting electrons in a constriction. Although this description accurately predicts

the quantization of conductance in narrow channels, it ignores several important

qualifications. In 1D, nesting of the Fermi surface at 2kF leads to the opening of a

Peierls gap in the energy spectrum when the ±kF states are coupled adiabatically by

electron-electron interactions (or phonons). Accordingly, the states which are closest

to the Fermi energy and hence quasi-stable eigenstates (quasiparticle lifetime in Fermi

liquid theory, τ ∼ (E − EF )−2) vanish. In this sense, the quasiparticle excitations of

the Fermi liquid no longer adequately describe the dynamics of the system. Instead,
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Tomonaga and Luttinger derived the low-energy dynamics of the system, and found

the excitations could be modeled as exactly soluble collective bosonic modes [149,

107]. Their models show that the presence of electron-electron interactions in a 1D

system renormalize various energy scalings and even the conductance quantum by

a microscopically derived “Luttinger parameter.” For a more formal and thorough

treatment of the topic please see Refs. [68, 159].

We note that evidence of Luttinger liquid behavior has been observed in carbon

nanotubes [24], although such effects are largely irrelevant to the work presented

in this thesis. One exception is the presence of a power-law scaling in the density

of states which produces a “zero-bias anomaly,” dI/dV ∼ V η with η derived from

the Luttinger parameter in a carbon nanotube. This is manifested as a dip in the

conductance of a metallic nanotube (or a nanotube doped such that it behaves as a

metal) near zero VSD, which scales as a power-law in temperature. The Luttinger

parameter may be written [49, 87]

g =
(
1 + 2

EC

∆

)−1/2

(9.5)

which, using the previously derived values of the charging energy and level spacing,

suggests g ∼ 0.28 for a carbon nanotube.

9.1.4 Fabry-Perot interference

When the phase coherence length is the longest in the problem, quantum interfer-

ence effects become important in the transport characteristics of a low-dimensional

conductor. This is particularly true for carbon nanotubes, where electrons backscat-

tered from partially reflecting nanotube-metal contacts interfere with themselves to
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Figure 9.2: Fabry-Perot interference in a carbon nanotube measure at T = 4 K.
Numerically differentiated from measured dc current. VSG is a sidegate voltage applied
to a mechanically deformed section of the nanotube.

produce Fabry-Perot resonances (in analogy to the optical cavity). This was first

observed by Bockrath [102] in a metallic carbon nanotube with highly-transparent

contacts, and a capacitively coupled gate electrode. In these (and other) measure-

ments, a 2D plot of conductance as a function of VG and VSD produced an alternating

pattern of high and low-conductance as in Fig. 9.2.

The origin of this conductance pattern may be derived by examining the effect

of both dc bias and gate voltage. Shifting the bias across the tube changes the

wavelength of the electrons at the chemical potential of the source electrode. The

gate voltage, similarly, couples to the potential energy of the electrons, ΦeV (x), where

x is the position along the tube axis. The average potential, 〈ΦeV 〉, may be related to

the induced charge density on the tube and hence the gate voltage, after Bockrath,

as Q = LCLVG = −8Le
hvF

〈ΦeV 〉.

We see that the electron wavevector shifts with applied gate voltage as k(x) =
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kF ± (E −ΦeV (x))/(h̄vF ), with E the total electron energy. This wavevector may be

integrated over the tube length to give a phase shift φ = kF L±L(E−ΦeV (x))/(h̄vF ).

Using the relation above between the induced charge and the average potential we

find

φ1,2 = kF L±
(

EL

h̄vF

+
πLCLVG

4e

)
. (9.6)

Here, the subscripts (1,2) denote the two degenerate modes in the nanotube subband.

This phase shift enters into an intratube scattering matrix, which when combined

with scattering vectors at the left and right leads [102] can be used to calculate the

transmission and reflection coefficients for each mode in the nanotube. Interference

between modes with different phases leads to the observed conductance pattern. As

this relies upon phase-coherent transport, the appearance of Fabry-Perot interference

fringes indicates that `phi � L. The observed pattern becomes washed out with

increasing VSD, likely due to electron heating, and similarly fades with increasing

measurement temperature. For an extended discussion of Fabry-Perot interference in

nanotubes, see Sec. 9.2.5.

9.2 Anomalous conductance quantization in car-

bon nanotubes

9.2.1 Introduction

Carbon nanotubes free of disorder are expected to behave as ideal quantum wires

with electrical conduction occurring through one-dimensional (1D) modes [4], each

with conductance quantized in units of e2/h. In a variety of physical systems, includ-
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ing gate-defined quantum point contacts [156] and cleaved-edge wires [169], such 1D

behavior appears as conductance plateaus as a function of voltage on nearby gates,

which act to reduce density in the wire and hence depopulate 1D modes. In gated

heterostructure quantum point contacts, conductance steps of 2e2/h are observed, the

factor of 2 reflecting spin degeneracy of the subbands [155, 17]. By analogy, one would

expect nanotubes to show either a single step of 4e2/h, reflecting the four modes per

subband associated with spin and band degeneracy [3, 103], or two steps spaced by

2e2/h if band degeneracy were lifted, for instance by strain [103]. In this section

we report conductance plateaus in gated nanotube devices in various configurations,

revealing an unexpected plateau spacing of 1e2/h at zero applied magnetic field.

Conductance quantization has previously been observed in multiwalled carbon

nanotubes by immersing one end in a liquid conductor [54]. This study found quan-

tization principally in units of 2e2/h, with additional plateaus appearing near e2/h

under certain conditions. In single-walled nanotubes, multiple steps in dc current were

reported in devices with highly resistive metal contacts [5, 6] and were attributed to

populating higher 1D subbands.

9.2.2 Materials and methods

The nanotubes used in this study were grown by chemical vapor deposition (CVD)

from Fe catalyst on doped Si wafers (which serve as back gates) with 1 µm thermal

SiO2 and contacted with ∼ 15 nm of Pd [81]. All measured devices had nanotube

diameters in the range ∼ 1.5-5 nm (actual diameters noted in figure captions). While

we cannot exclude the possibility that our nanotubes are small ropes or double walled
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tubes, all devices for this study can be fully depleted with the back gate. Therefore,

it is likely that only a single semiconducting tube is participating in transport. In

addition, using TEM analysis of nanotubes grown under similar conditions we were

able to distinguish between large ropes and single tubes. Further, we were unable to

observe any internal structure in single tubes with diameters less than ∼ 4 nm.

In some cases, the nanotubes were pushed with the tip of an atomic force micro-

scope (AFM) to form a bend [131, 27, 20]. Three device configurations were investi-

gated: bent tubes with side gates (Fig. 9.3b, inset), as well as unbent and bent tubes

with local electrostatic top-gates (Fig. 9.5a, inset). It has previously been shown

that bends create gatedepletable regions [131, 20], and that local gates affect only

proximal sections of the tube [111]. The top-gated devices were made by deposit-

ing CVD-grown SiO2 on the Pd-contacted nanotubes and patterning Cr/Au gates

using electron-beam lithography [111, 166]. Two-terminal differential conductance,

G = dI/dV , was measured as a function of source-drain bias, VSD, by applying dc

+ ac voltage, V = VSD + Vac (with Vac ∼ 50-180 µV), and separately measuring dc

and ac currents. Fourteen devices in these configurations showed qualitatively similar

behavior.

9.2.3 Conductance plateaus in a side-gated device

Figure 1(a) shows characteristic plateau features in dI/dV for an intentionally

bent tube (device shown in Fig. 9.3b) as a function of source-drain voltage, VSD,

with the voltage on a local side gate near the bend, VSG, held fixed for each trace.

Plateaus appear as bunched traces where the conductance changes little as VSG is



Chapter 9: One-dimensional ballistic transport 123

changed. These plateaus are also apparent in slices taken at fixed VSD (colored

vertical lines in Fig. 9.3a) as a function of VSG, as shown in Fig. 9.3b. In this device,

high-bias dI/dV saturates at ∼ 3.3 e2/h, somewhat below the ideal value of 4e2=h,

presumably due to backscattering at the contacts or within the tube. To account

for this, a series resistance, RS, is subtracted to bring the high-field saturation to

∼ 4e2/h. Several plateaus are visible, at both low and high bias (VSD ∼ 30 mV),

spaced by roughly e2/h. Plateaus around zero bias show considerable overshoot, while

those at high bias are typically much flatter. Smooth evolution between these two sets

of plateaus with changing VSD is also evident, and revealed more clearly in Fig. 9.4.

Conductance shows a dip around zero bias that deepens as temperature is lowered.

Further, near VSD = 0 at temperatures below ∼ 15 K, single-electron charging is

evident when the conductance is below the first plateau (Fig. 9.3c), while in the high

conductance region, a Fabry- Perot-like interference pattern is observed (Fig. 9.3d)

[102]. Irregularity in the interference pattern may be due to scattering from intrinsic

defects in the nanotube, but the persistence of Fabry-Perot interference implies that

this scattering does not significantly affect ballistic transport in the device. The

Fabry-Perot structure and the zero bias dip may affect the positions of the plateaus,

especially near VSD = 0.

9.2.4 Transconductance

The transconductance, dG/dVSG, for the same device (inset Fig. 9.3(b)) is shown

in Fig. 9.4a. Transconductance highlights transitions between plateaus as bright

regions, with dark regions representing the plateaus. Figure 9.4(a) shows that as |VSD|
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Figure 9.3: (a) Differential conductance G = dI/dV as a function of source-drain
bias, VSD, and side gate voltage, VSG, for a bent nanotube device, diameter d ∼ 3.5
nm, at temperature T = 29 K. Series resistance RS is indicated. Traces are taken at
fixed VSG; bunched traces correspond to conductance plateaus. (b) Slices from (a)
at fixed VSD. The high-bias trace is offset by 2 V in VSG for clarity. Inset: AFM
image of the device, showing a tube pushed toward the side gate (top right). Total
device length is ∼ 1.5 µm. (c) G measured at 4 K for the same device with VSG

set below the first plateau where Coulomb blockade diamonds are evident. Typical
excited state level spacings, ∆E, are 2-3 meV, corresponding to a device length L ∼
500-700 nm. (d) G in the high conductance region (G > e2/h), with Fabry- Perot
interference period ∆VSG ∼ 0.3 V. For this panel, series resistance RS = 1.2 kΩ.
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is increased, each transition splits into two which at larger bias recross, restoring the

original number of plateaus. (It is near this recrossing value of bias, VSD ∼ 30 mV,

that the high-bias cut in Fig. 9.3b is taken.) The resulting pattern of transitions can be

interpreted in the context of transport through quantized modes: if one assumes that

each transition corresponds to the entering of a 1D mode into the transport window,

then the diamond pattern in dG/dVSG follows the evolution of mode energies with

VSD and VSG. This is the standard noninteracting picture of nonlinear “half plateaus”

in quantum point contacts [60, 129].

Experimental dG/dVSG (Fig. 9.4(a)) can be compared to various schemes for the

evolution of 1D modes. In the simplest picture of four conduction modes with spin

and band degeneracy [115], one expects a single transition from G = 0 to G = 4e2/h

around zero bias as VSG is increased, and a single half plateau with G = 2e2/h at high

bias (Fig. 9.4b). With one degeneracy lifted (e.g., band degeneracy lifted by strain),

the simple picture gives features as in Fig. 9.4c, with plateaus and half plateaus

spaced by 2e2/h. With all degeneracies lifted, this picture gives four plateaus and

four transitions each spaced by e2/h, and half plateaus at 1/2, 3/2, 5/2, and 7/2 times

e2/h (Fig. 9.4d). Surprisingly, the experimental data most resemble the schematic in

Fig. 9.4d.

9.2.5 Energy scales

Within an interpretation of separate 1D modes, positions of the half plateaus from

Fig. 9.4a give a value for the 1D mode energy spacing of ∆1D ∼ meV between the

first and the second plateau, with a spacing in VSG ∼ 1.8 V. Together, these give
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a coupling efficiency α ≡ δE/eδVSG ∼ 0.03, which describes the shift of the Fermi

level in the nanotube with VSG. We distinguish between this coupling constant and

the familiar lever arm (ratio of gate capacitance to total capacitance), extracted from

Coulomb blockade diamonds. The quantity α characterizes a change in Fermi energy

induced by a gate, in the present case dominated by a change in density.

The coefficient α = CL/(e2∂n/∂µ), where C−1
L =

(
CG

L

)−1
+(e2∂n/∂µ)

−1
, contains

both a geometrical capacitance per unit length, CGL , and a term reflecting the kinetic

energy (per unit length) required to increase the depth of the Fermi sea (n is the linear

density and µ is the chemical potential). Since α � 1 (kinetic capacitance dominates

geometric), we may approximate α ∼ CG
L /(e2∂n/∂µ). The kinetic component can be

calculated from a linear dispersion relation, δE = h̄vF δk and δk = πδn/M (where

M is the number of modes), giving e2∂n/∂µ = e2/πh̄vF ∼ 100 pF/m per mode,

where vF ∼ 8× 105 m/s is the typical Fermi velocity. The measured value α ∼ 0.03,

extracted when only one mode is present, can then be used to calculate CG
L ∼ 3

pF/m.

The estimate of CG
L above has assumed fully lifted degeneracies. This interpre-

tation is supported by a comparison of the length of the mechanical bend (∼ 500

nm) with the effective device length L associated with both Coulomb blockade and

Fabry-Perot oscillations, determined using CG
L . The period of Coulomb blockade

oscillations, ∆VSG = e(LCG
L )−1 ∼ 0.05 V, which corresponds to the addition of one

electron to a length L, gives L ∼ 1 µm. The period in VSG of the Fabry-Perot pattern

corresponds to a change in wave vector by δkF = π/L, hence a change in carrier

density by δn = 4δkF /π, taking all modes to be occupied near the highest plateau,
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where Fabry-Perot is measured. Relating the Fabry-Perot period ∆VSG = 0.3 V to

density, eδn = CG
L ∆VSG, gives an independent estimate of effective device length,

L = 4e(∆VSGCG
L )−1 ∼ 700 nm, using CG

L from above.

We note that interpreting the measured half-plateau positions in terms of 1D

subbands would require a nanotube diameter of ∼ 15 nm, inconsistent with AFM

measurements for all devices. If the band structure of the nanotube were modified

substantially by the presence of a mechanical defect and a nonuniform gate, the 1D

subband spacing could be reduced to the values we observe [122]. However, the

appearance of plateaus spaced by e2/h is not to our mind explained by the influence

of defects, nor by other structures such as multiple nanotube shells.

9.2.6 Device geometry dependence of plateau spacing

In all measured devices, dI/dV was everywhere less than 4e2/h. Subtracting

RS to bring the large-bias conductance to 4e2/h typically yielded plateaus and half

plateaus spaced by ∼ e2/h. In no case could we subtract an appropriate RS to give

plateaus separated by 2e2/h or 4e2/h. Series resistance is presumably dominated

by contact resistance at the Pd-nanotube interface. However, back gate-voltage-

dependent scattering within the tube away from the gated region may also contribute.

Figure 9.5 demonstrates the effect of the gates in producing spatially localized

depletion regions. Conductance of an unbent tube with two top gates shows plateau

structure as a function of either gate. The two gates evidently act independently,

each depleting different regions of the tube, leading to the square pattern seen in the

inset of Fig. 9.5a. Two gates influencing the same region of the tube would produce
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a diagonal pattern instead.

Three of the measured devices showed a nonconductive region as a function of gate

voltage with high conductance regions on either side, presumably reflecting an energy

gap in a semiconducting nanotube [109]. Data for one such device, an intentionally

bent tube without local gates, are shown in Fig. 9.5(b). Both the holelike regime (at

negative gate voltage), and the electronlike regime (at positive gate voltage) show

e2/h conductance plateaus as a function of gate voltage. Figure 9.5c shows plateau

structure with spacings of ∼ e2/h in another bent-tube device as a function of top

gate voltage over the bend and VSD.

9.2.7 Effect of temperature and magnetic field

Figure 9.6 shows the low-bias conductance plateaus of the side-gated device (Fig. 9.3b,

inset) as a function of temperature and magnetic field. No series resistance has been

subtracted from these data. The plateau near e2/h, which shows considerable over-

shoot at low temperature, rises to a value close to 1.5e2/h with increasing tempera-

ture, while the subsequent plateaus are smoothed with increasing temperature but do

not rise significantly. Plateaus measured for this device at high bias show little change

with increasing temperature. Magnetic field applied perpendicular to the tube axis

has little effect on plateau structure (Fig. 9.6b). Here, the Zeeman splitting at B =

8 T, gµBB ∼ 0.9 meV, is greater than thermal energy (kBT ∼ 0.15 meV) but less

than the voltage bias (eVSD = 2 meV). Comparable ratios of magnetic field to bias

energies induce significant change in G(VG) curves in GaAs quantum point contacts

with spin degenerate levels.
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9.2.8 Conclusions and acknowledgements

Possibly relevant to our results is the appearance of a zero-magnetic-field conduc-

tance plateau near e2/h [135], or more commonly closer to 0.7(2e2/h) [148, 39, 42], in

gate-defined semiconductor quantum point contacts and wires. A theoretical model

of this so-called 0.7 structure in quantum point contacts involving the formation of

an ordered electronic state in 1D [113] may be relevant in nanotubes as well. We note

that previous studies of Pd nanowires have observed conductance plateaus at ∼ e2/h,

which the authors suggested may indicate ferromagnetism or near-ferromagnetism

in Pd nanostructures [136] (though ∼ e2/h plateaus were also seen in similar Ti

structures). The plateau structure reported here is most evident in Pd-contacted

nanotubes; however, we believe this is primarily due to the highly transparent con-

tacts obtained with Pd rather than an effect of nearferromagnetism in the leads, as
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magnetic field sweeps at both high field and around zero field showed no hysteresis

or change in plateau structure. Finally, it is possible that the observed quantization

of conductance in units of ∼ e2/h may be due to Luttinger liquid renormalization of

1D subbands of the nanotube, as writing G = g(e2/h)M with M = 4 the number

of modes per subband and g ∼ 0.28 the Luttinger parameter produces quantization

near e2/h.
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Appendix A

A low-temperature atomic layer

deposition liftoff method for micro-

and nanoelectronic applications

One technical development which came early in my graduate career was the for-

mulation of a method to pattern of high quality dielectric layers without etching (this

being derived at least partially from my reservations about using HF as an integral

component of device processing). In this Appendix I will present a technique devel-

oped in our lab for the lift-off patterning of dielectric films deposited by atomic layer

deposition.

133
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A.1 Introduction

A variety of applications require thin film oxides as gate dielectrics, simple insula-

tors, or protective coatings. The push for dielectric layers exhibiting high conformal-

ity, uniform stoichiometry and thickness, large breakdown fields, and high dielectric

constants has motivated a search for alternatives to SiO2 and associated deposition

techniques [165, 66]. Chemical vapor deposition (CVD) provides highly uniform films

on the wafer scale but requires high growth temperatures, which can damage un-

derlying layers as well as polymer resists [132]. Sputtering and evaporation can be

performed at lower temperatures, but often produce dielectric films that suffer from

pinholes, poor conformality, and poor adhesion to the substrate [132].

An emerging deposition technique that offers relatively precise control of compo-

sition, conformality over high-aspect-ratio structures, and thickness control is atomic

layer deposition (ALD) [99]. ALD is a self-limiting deposition process where sepa-

rate precursor gases for a target material are sequentially and cyclically dosed into

a vacuum chamber under computer control. Substantial work has been invested to

develop ALD processes that yield high quality films and use precursor gases that do

not chemically damage preexisting device structures [71].

Previously, a significant shortcoming of ALD was that, like CVD, patterning of

dielectrics required a subtractive process, in which whole layers were deposited, and

patterning was done by etching. This limitation arose from the need to use deposition

temperatures exceeding 300 C, which destroyed resist layers or caused them to outgas

and disrupt film growth. In precise applications, etch steps are often unacceptable

as they can damage other device structures. Moreover, it is difficult to pattern fine
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features by etching; first, because any subtractive process requires leaving a patch of

resist on the 3 substrate the same size as the desired feature, and second, because

low energy dielectric etches (which do not damage the device) are generally isotropic,

causing feature shape change and undercutting [132]. In contrast, liftoff patterning

allows one to cut a “slit” in a resist layer and deposit material only where needed. It is

therefore desirable to develop liftoff processes for dielectrics similar to those used for

metallization. High quality dielectric films patterned by liftoff would be of great value

not only in the semiconductor industry, but also in optical applications [160, 151], as

catalysts [121, 7], and as protective coatings [77, 162]. We note that although polymer

resists have been used previously in crudely patterning ALD films for profilometry

measurements, actual liftoff lithographic patterning has not been reported to date

[50].

In this Appendix we demonstrate a process that allows ALD-grown dielectric films

to be patterned using liftoff. Examples described in detail are the highκ materials

aluminum oxide (Al2O3) and hafnium oxide (HfO2). The ALD process employed

operates at low temperature and uses non-corrosive precursor gases. The patterned

films are uniform in thickness with deviations ∼ 1 nm, and are conformal to un-

derlying device structures. ALD liftoff is demonstrated for both photolithography

and electron-beam lithography, yielding films with patterned features below 100 nm.

We have also measured the dielectric constants and breakdown fields of comparably

grown unpatterned films of Al2O3, HfO2 and ZrO2, finding κ ∼ 8.2–9 for Al2O3, κ ∼

16.3–18.5 for HfO2, and κ ∼ 20–29 for ZrO2, at various film thicknesses and mea-

surement temperatures. All films measured exhibit breakdown fields between 5.6 and
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9.5 MV/cm, varying with material, film thickness and measurement temperature (see

Table A.1).

A.2 Methods

A.2.1 Lithographic patterning

The photolithographic ALD process consisted of the following steps. First, cmscale

pieces of a polished Si wafer with 1m of thermally grown oxide were cleaved, cleaned

(5 minutes in each of tricholoroethlyene, acetone, methanol) and baked for 5 minutes

at 160 C to drive off solvent residues. Next, Shipley 1813 or 1818 photoresist was spun

onto the samples, after which they were baked for 2 minutes at 120 C and exposed

through a photomask with large features (> 10 µm). Patterns were developed using

tetramethyl ammonium hydroxide and cleaned for 30 s in 100 W oxygen plasma at

700 mtorr. Thin films were then grown on these samples via ALD, as described below.

The electron-beam ALD process, used for fabricating fine features, began with similar

Si samples, cleaved and cleaned using the same three-solvent rinse followed by a 2

minute bake at 180 C. A bilayer of 200 k PMMA and 950 k PMMA was spun onto a

sample and baked for 15 min at 180 C for each layer, yielding a total PMMA thickness

∼ 350 nm. Fine-line patterns were written and developed in a solution of isopropanol

(75%) methyl isobutyl ketone (24%), and methyl ethyl ketone (1%).
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A.2.2 Film deposition

The ALD procedure used for both the photolithographic and electron-beam liftoff

processes employed highly reactive metal amide precursors (tetrakis(dimethylamido)hafnium

(IV) and H2O for HfO2; tetrakis(dimethylamido)zirconium (IV) and H2O for ZrO2

[71, 63, 62, 61], and trimethylaluminum and H2O for Al2O3 [128, 112, 133]). Samples

were placed in a stainless steel tube furnace and heated to 100-150 C. The cycle of

precursors was then started, with nitrogen purges between each step. In order to

achieve low-temperature deposition with uniform thickness, the nitrogen purge time

needed to be lengthened (from ∼ 5 s, used for the 300 C process, to ∼ 120 s) to pre-

vent physisorption and to remove unreacted gas-phase precursors. Film thicknesses

ranged from 2.5 to 100 nm.

Despite the reduced temperature and lengthened total deposition time, the films

appear similar in composition to those grown at higher temperatures, although some

important differences exist. First, while surface roughness of these films is typically

5% of total film thickness for high temperature deposition (> 200 C) it is less than 1%

total film thickness for deposition temperatures below 150 C, except where limited

by substrate roughness [72]. Second, X-ray diffraction data indicate that 100 nm

thick films of unpatterned HfO2 grown at or below 100 C are completely amorphous

while those grown at higher temperatures show some crystallinity (<10% for growth

temperature up to 200 C) [72]. Low-temperature grown ZrO2 films characterized in

the same manner show an increase in crystallinity from 10% to 60% as the deposition

temperature increases from 100 to 150 C [72]. It is worth noting that amorphous

dielectric films are desirable for applications as gate dielectrics due to their smoothness
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and high breakdown fields compared to polycrystalline films [12, 97].

A.2.3 Liftoff

Following the growth step, the liftoff procedure was carried out by immersing

samples in acetone for times ranging from 10 m to 2 h. To allow the acetone to

penetrate the conformal dielectric layer and attack the resist below, it was necessary

to manually scratch the surface of the film. While still immersed in acetone, ∼ 1 s

pulses from an ultrasonic bath were used to dislodge remaining sections of resist.

A.3 Characterization

A.3.1 AFM

Atomic force microscope images in Fig. A.1 show that the resulting patterned

films have surface roughness comparable to that of the SiO2 substrate (∼ 1 nm),

and sharp step edges. Deviation of the edge from a straight line is limited by the

photolithography and not film deposition or liftoff. This was verified by examining

metal lines deposited in similar patterns, as shown in Fig. 4. Micrographs of pat-

terned ALD films on SiO2 (Figs. A.1(a) and A.2(a)) show edge roughness ∼ 10 nm

for electron-beam patterning and ∼ 100 nm edge roughness for photolithographic

patterning (Figs. A.1(b) and A.2(b)).
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Figure A.1: Atomic force micrographs of patterned ALD oxides on a Si/SiO2 sub-
strate. (a) A 15 nm thick narrow line of oxide patterned via electron-beam lithography
necks down from 5 µm to 1 µm (top to bottom). Note the vertical edge profile on
both sides of the line and edge smoothness. (b) AFM surface plot of a ∼ 22 nm thick
mesa of ALD oxide patterned by photolithography shows a well defined and highly
vertical step. The waviness seen in the edge is limited by the photolithography.
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Figure A.2: Scanning electron micrograph showing the smooth edge profiles of ALD
patterned via (a) electron-beam lithography, (b) photolithography. Surface roughness
was ∼ 1 nm as analyzed by AFM (Shadows result from high-angle imaging).

A.3.2 SEM

Figure A.3 shows an SEM image of a device geometry featuring lines of dielectric

patterned via electron-beam lithography, with smallest dimensions below 100 nm.

We have also fabricated complicated multilayer device geometries in which metallic

layers are partially coated with patterned ALD films, followed by patterned metallic

overlayers. SEM analysis shows (Fig. A.4) that patterned ALD films running over

metallic lines are highly conformal around the metal line edge and at the metal-

substrate interface.
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80nm

10  mµ

Figure A.3: SEM image of 15 nm thick HfO2 on Si/SiO2, patterned by electron beam
lithography. Device critical dimensions ∼ 80 nm as measured using the SEM. Inset:
region of the device showing smallest features.

Figure A.4: Multilayer structure (30 nm ALD oxide and 70 nm Ti/Au, both patterned
using photolithographic liftoff) showing high conformality of the ALD around the edge
of the Ti/Au.
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A.3.3 Electrical

The dielectric constants and breakdown voltages of unpatterned dielectic films

grown by low-temperature ALD as described above were measured as follows. Films

of Al2O3, HfO2 and ZrO2 were grown on Si-SiO2 substrates with 20 nm Ti + 50

nm Pt electrodes deposited by electron-beam evaporation. ALD films were deposited

at 150 C and showed good adhesion to the Pt underlayer. Subsequently 50 nm Pt

was evaporated through a shadow mask to form a top electrode of dimension ∼ 200

µm × 200 µm. These tri-layer structures formed parallel-plate capacitors, which

were characterized in a vacuum probe station at 20 K and room temperature. A

1 kΩ resistor was placed in series with these test devices, and digital lock-ins were

used to measure the voltage drops across both the resistor and the test device. The

circuit was voltage biased using a function generator with an excitation of ∼ 100

mV at 1 kHz. Voltages across the resistor (VR) and test device (VC) were used

to measure the capacitance of the test device, C = VR(2πfRVC)−1 and hence the

dielectric constant of the film, κ = Cd/Aε0 (A is the device area; d is the film

thickness). Dielectric constants κ ∼ 20–29 are found for ZrO2, κ ∼ 16–19 for HfO2,

and κ ∼ 8–9 for Al2O3 (see Table A.1). Breakdown fields EBD = VBD/d were found by

applying an increasing dc bias until the onset of a large leakage current was observed

at VBD. Values obtained are in the range EBD ∼ 6–9 MV/cm for all three materials,

approaching the breakdown fields for high-quality SiO2 films. Resulting values for

dielectric constants, breakdown fields, and calculated charge densities presented in

Table A.1 for varying thicknesses and measurement temperatures of the materials. It

is interesting to note that the values we obtain for breakdown fields in these devices are
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Material d (nm) TM EBD (MV/cm) κ QBD (µC/cm2)
Al2O3 10 RT 8 9 6.4
Al2O3 2.5 RT 8.3 8.8 6.5
Al2O3 25 RT 8.2 8.2 6.0
Al2O3 50 RT 7.6 8.9 6.0
ZrO2 25 RT 5.6 20 9.9
ZrO2 100 RT 6 29 15.5
ZrO2 50 20K 8.2 29 21
ZrO2 100 20K 9.5 26 22
HfO2 10 RT 6.5 17 9.7
HfO2 25 RT 7.4 18.5 12
HfO2 25 20K 8.4 16.3 12.1

Table A.1: Properties of several high-κ materials grown using the same low-
temperature ALD process as used for liftoff, measured at 20 K and room temperature
(TM): breakdown field, EBD = VBD/d (VBD is breakdown voltage, d is film thickness),
dielectric constant κ (see text), and charge density at breakdown, QBD = CVBD.

two to three times higher than those previously reported in the literature for HfO2

and ZrO2 [116, 108, 89]. We believe the difference is due to the low-temperature

growth process, which produces amorphous films.
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Appendix B

Transport measurements on

undergated nanotube devices

B.1 Transport measurements

Transport measurements were made on the devices described in section 3.2.1 at

4K using a dc voltage bias, V = 10 mV, and measuring dc current, I. Data is pre-

sented for a single device (Fig. B.1); similar behavior was observed for other devices.

Conductance, G = I/V , was measured as a function of voltages applied to various

finger gates and the backgate. Sweeping the backgate with the finger gate voltages

held fixed at 0V produces rapidly varying, reproducible fluctuations in G as a func-

tion of backgate voltage, VB (Fig. B.1b). The G(VB) data show that the SWNT

is likely metallic, as there is no significant trend in conductance peak height as we

move from positive to negative values of VB. The rapid fluctuations are presumably

due to Coulomb blockade resulting from quantum dots defined by scattering centers

144
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along the tube, although it is unclear if the scattering centers are innate or caused

by the presence of the underlying finger gates. The lack of symmetry within the

Coulomb fluctuations is consistent with the presence of multiple quantum dots in se-

ries. The backgate seems to couple to all of these dots simultaneously and is capable

of rearranging charges between the dots [145].

Sweeping the voltage on individual finger gates produces qualitatively different

behavior in the conductance. In this case, we observe smooth changes in G as a

function of all of the finger gate voltages (Fig. B.1a). One of the gates (F5) exhibits

a broad resonance feature. Setting a single finger gate to a nonzero voltage, VF , with

the other finger gates held at zero again yields rapid fluctuations in G(VB), but with

different overall amplitude, consistent with the G(VF ) from Fig. B.1a acting as an

overall smooth envelope of G(VB). Examples of G(VB) for two settings of VF on F4

are shown in Fig. B.1b; similar behavior was observed with other finger gates.

The qualitative difference between the effects of the backgate and finger gates

suggests that the finger gates act to locally tune the transparency of the aforemen-

tioned scattering centers. This picture is supported particularly by the nonmonotonic

(resonant-like) behavior of G(VF5). Local scatterers have previously been linked to the

formation of intratube quantum dots [145, 35, 115] and have been observed by scanned

gate measurements [56, 26, 145] and electrical-force microscopy [168]. Additonally,

gate F1, located under the SWNT-metal contact could be tuning the transparency

of the tunnel barrier formed at the metal-nanotube interface. If the finger gates were

instead having a global effect and coupling to the entire tube device, one would expect

Coulomb-blockade phenomena very similar to those caused by sweeping the backgate,
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though perhaps on a different overall voltage scale.

Figure B.1c shows device conductance as a function of both backgate and finger

gate voltages for the case where all finger gates are swept together. Fluctuations in

G(VB) with VF = 0 V previously described appear again but now evolve continuously

into oscillations in G(VF ) with VB = 0 V, demonstrating the approximately additive

behavior between VB and VF when all finger gates are swept. Evidently, when all

finger gates are swept, they together do produce an effective global gating effect much

like the backgate, albeit on a reduced voltage scale (as expected given the distances

and dielectric constants). Thus although the effect of the individual finger gates is

spatially localized along the nanotube, the area of influence appears to be larger

than that defined by the physical dimensions of the finger gates. When the gates are

utilized simultaneously, the collective area of influence encompasses the entire device.

As a direct comparison, Fig. B.1d shows corresponding plots when sweeping just

one of the finger gate with the other finger gates held at 0 V. In this case, there is

no additive effect evident between finger gate and back gate, even over an expanded

range of VF . Horizontal slices of the 2D plot show roughly the same behavior in

G(VF ) as observed at VB = 0 V in Fig. B.1a (ignoring switching noise) while vertical

slices show that oscillations in G(VB) persist for all values of VF .

B.2 Conclusions and acknowledgements

In summary, we have demonstrated a method for local gating using finger gates

beneath a catalyst-grown single-wall nanotube. The fabrication process takes advan-

tage of robust Mo finger gates and liftoff-patterned dielectric films deposited by low-
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Figure B.1: Transport measurements taken from the device depicted in Fig. 3.1. All
data taken at 4K. a) Conductance as a function of various finger gate voltages. Each
trace represents the effect of a single finger gate swept from +4 V to -4 V while all
others, including the backgate, are set to 0 V. Gate F2 showed significant leakage
above VF2 ∼ 2V and so was not included in these plots. b) Charging effects observed
by sweeping the Si backgate. Traces are displayed for two different voltages on fin-
ger gate F4, which changes the overall magnitude of the rapid fluctuations without
changing the qualitative structure. c) Color plot of conductance as a function of back-
gate voltage (VB) and common finger gate voltage (VF ) (i.e. all finger gates swept
together) indicating an additive effect of VB and VF . Color scale shows conductance
in units of e2/h. d) Comparable color plot showing conductance as a function of VB

and a single finger gate at VF with other finger gates set to V=0.
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temperature atomic layer deposition. Future applications of the technique reported

include fabricating multigate nanotube FETs or quantum dots with independent con-

trol.
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