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Abstract

In this dissertation, the results of the low temperature transport measurements in
200 x 200 quantum dot arrays will be presented and discussed [21]. The devices
are made of GaAs/AlGaAs two dimensional electron gas (2-DEG) structures, grown
by Molecular Beam Epitaxy (MBE). The 2-DEG is processed using electron beam
lithography and etching techniques to fabricate the arrays in which coupling between
dots and electron density are controlled by a single gate. The devices measured within
the scope of this thesis constitute the first controllable semiconducting quantum dot
arrays in which possible collective effects and their relation to the strength of dot-to-
dot interactions can be studied.
The current-voltage (I-V) characteristics of the arrays have two main features:

o At low temperatures, the current is zero below a threshold voltage, and above a
threshold voltage increases obeying a power law with an exponent ¢ ~ 1.5. This
is the first observation of a conduction threshold and metal-insulator transition

in a semiconducting quantum dot array.

¢ There are discontinuous and hysteretic jumps in the current, or “switching
events”. Multiple switching events result in a hierarchy of hysteresis loops.
This dissertation presents the first observation of such multi-stabilities in an

array of semiconductor quantum dots.

These features in the I-V curves are very similar in appearance to those observed
in a variety of other strongly interacting systems, including sliding charge density
waves (CDW's) [35] and magnetically induced Wigner solid (MIWS) systems [4]. By
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changing the gate voltage V, it is possible to move between the hysteretic and non-
hysteretic regime. This also resembles the dynamics of the CDW’s where switching
and hysteresis are known to be highly temperature dependent [37, 95]. In a control
dot fabricated on the same chip, a single hysteresis loop accompanied by a single
switching event is also observed. This is different than the behavior of most top-
gated quantum dots studied so far, an exception being the hysteresis observed by Wu
et al. [94] in double barrier lateral structures.
Three kinds of devices will be considered in this dissertation.

o 1000A deep etched arrays. These are the devices (arrays and control devices)
which showed conduction threshold, switching and hysteresis. They will be
referred to as Device 1, Device 2, Device 3, Device 4. In Chapter 2, their
fabrication will be described. In Chapters 3 and 4, the experimental data from
these devices will be presented. The weak localization in these arrays as a

function of the gate voltage will be briefly mentioned in Appendix C.

e 300A shallow etched arrays. These are the devices (arrays) which did not show
switching and hysteresis. They will be referred to as Shallow Devices. The

results of the gate current measurements in these devices will be discussed in
Sec. 5.2.

o Three lead single dot. Coulomb Blockade in this split gate (See Sec. 1.2.1) device
will be described in Sec. 5.2.2. These results represent the first measurement of

Coulomb interactions in a three lead dot.

In Chapter 5, the possible mechanisms for hysteresis, such as charge exchange
in the form of a leakage current to the gate, DX Centers and occupation of impu-
rity states, and electron heating will be discussed. The experimental resuits will be

compared to the characteristics of CDW and MIWS systems, in Sec. 5.5.
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Chapter 1

Introduction

1.1 Low Dimensional Quantum Structures

With the development of modern epitaxial growth techniques such as Molecular Beam
Epitaxy (MBE), it has become possible to grow structures with atomically smooth
interfaces and a very small number of impurities and defects. This facilitated the
design of structures in which carriers are confined in a plane perpendicular to the
growth direction (z), without experiencing significant scattering in the other two di-
rections, r and y. A particular example is the modulation doped GaAs/AlGaAs
two dimensional electron gas (2-DEG) structure in which the donors and the carriers
(electrons) are spatially separated from each other. In such a 2-DEG, the ionized im-
purity scattering is much less significant than in S¢ MOSFETs and GaAs MESFETs
[77]. Together with the low density of imperfections due to optimized MBE growth
conditions, this results in an electron scattering time, 7 = mpu/e, on the order of
50ps, and a mean free path, I, = vp7, as high as 10°nm. Here y, e and vp denote the
clectron mobility, charge and Fermi velocity, respectively. At low temperatures, the
phase coherence length, /,, can also become larger than 100nm.

As a result of the recent advances in electron beam lithography (e-beam lithogra-

phy), the modulation doped 2-DEG structure has become one of the most interesting

!such as ultra high vacuum, typically 10~'! torr, high growth temperature (640C), and high
As/Ga flux ratio.
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Figure 1.1: Typical Length Scales in a Semiconductor (From Ref. [10]).

two dimensional electron systems. By using e-beam lithography, it is possible to con-
fine the electrons in one or two of the other directions, r and y, such that the device
dimensions can become smaller than Iy and/or [, (Fig. 1.1).

For example, by depositing nanoscale split gates, quantum point contacts can
be fabricated and at 4.2K, conductance quantization can be observed [10]. Again,
by depositing gates, “quantum dots” can be fabricated to study chaotic behavior of
electrons [61]. The point contacts in a dot can be totally piched-off to form tunnel
barriers. In this regime the dot is a 0-D device and at low enough temperatures,
the blockade of tunneling due to Coulomb repulsion of electrons (Coulomb blockade
[51, 42]) can be observed.

As these examples show, the developments in MBE and e-beam lithography, and
their simultaneous use in the fabrication of low dimensional structures has resulted in

the discovery of numerous important physical effects. In the next few sections, some



CHAPTER 1. INTRODUCTION 3

examples which are relevant to this dissertation will be described in detail.

1.2 0-D Structures:Quantum Dots

1.2.1 Tunneling and Coulomb Blockade

Blockade of electron tunneling due to Coulomb repulsion was first suggested in the
1950’s and 1960’s to interpret the results of transport experiments in granular metallic
materials (33, 30). Charge quantization was studied using a tunnel capacitor by
Lambe in 1969 [53]. Nowadays, nanofabrication techniques like e-beam lithography
and MBE make it possible to fabricate well controlled small tunnel junctions [20]
and form metalic islands by cascading them. The Coulomb gap has been observed
in the I-V curve of a single tunnel junction at low temperatures [79]. By cascading
several Al tunnel junctions, frequency-locked turnstyle devices have been fabricated,
and quantized current has been measured [28].

Detailed theoretical studies for Coulomb Blockade in metal tunnel junctions were
made by Averin and Likharev [6, 8, 57, 7].

In semiconductors, the effect was first observed in Si quantum wires [80, 24].
Coulomb Blockade in these experiments resulted from the division of the quantum
wire into segments separated by tunnel barriers formed due to impurities and disorder.
Later, GaAs/AlGaAs 2-DEG quantum dots with split gates and a very small number
of impurities were designed. This approach made it possible to form one of the con-
ducting segments of the Si quantum wire artificially and controllably in single crystal
GaAs [71, 43]. Later, many more experiments were carried out to study Coulomb
blockade in GaAs/AlGaAs quantum dots [51, 49, 42, 5, 83]. Transport spectroscopy
of the Coulomb island in the quantum hall regime was studied by McEuen et al. [66).
The quantized current in the presence of oscillating tunnel barriers was measured
by Kouwenhoven et al. [50]. The same author and his co-workers also investigated
photon assited tunneling [52].

Many theoretical studies were made simultancously with the experiments. Meir

and his co-workers studied the transport through quantum dots using a microscopic
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model and a modified Landauer formula [69, 68]). The same author also calculated
the low temperature regime using a similar formalism [70]. Beenakker used a semi-
classical approach and obtained the same results for the conductance [9]. Korotkov
studied the dot in the presence of a large coupling resistance [44, 45]. Imamoglu
and his co-workers calculated the I-V charactersitics in a micro p-N junction in the
Coulomb blockade regime and predicted the generation of a regulated single-photon
stream [40, 41).

Coulomb blockade oscillatons in the conductance of a quantum dot is the man-
ifestation of single electron tunneling. The dot has to be isolated enough from
the leads, such that the fluctuation of the charge @ inside the dot is negligible.
This condition is equivalent to having tunnel junction resistances Rr > Rg where
Rq = hfe? ~ 258kQ. Only an integer number of electrons can tunnel into the dot,
and the charge inside the dot can only change by discrete amounts of e. If there are
no offset charges, Q = —Ne where N is the number of electrons which have tunneled
into the dot. The potential between the dot and the leads can, however, be changed
continuously by varying the voltage on one of the gates (Fig. 1.2).

Because of the Coulomb interaction, when an electron tunnels into the dot, the
energy increases by an amount called the “Charging Energy”, Ec. This increase can
be characterized by assigning capacitance values between the dot and the gates, and
between the dot and the semi-infinite leads. Ec = €?/C, where C is the sum of all
these capacitances [89]. When the gate voltage changes, a condition can be reached
such that the energy is degenerate for two different electron charges Q and Q — e.
This means that when this condition is satisfied, the tunneling event of an electron
into the dot is favorable (Fig. 1.3). When the gate voltage is changed further, the
device enters the Coulomb blockade regime again. There are conductance resonances
whenever the energy is the same, for Q — ne and Q — ne — e, where n denotes the
number of extra electrons which are inside the dot due to a finite gate voltage. This

means that the resonances are periodic.
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Figure 1.2: A split gate quantum dot.
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1.3 Quasi 1-D and 2-D Structures: Arrays

1.3.1 1-D Arrays

A natural question which arises after the study of single dots and metallic islands
is the transport characteristics of a one or two dimensional array. This question
becomes more interesting if there is significant interaction between the electrons in
neighboring dots.

Most of the important experimental studies on one dimensional arrays of small
tuniiel junctions were done by Delsing et al. [19]. Using a simple circuit theory, it

can be shown that, the potential, ¢;, at each node ¢ of a one dimensional array is

e C li=k|
¢ = _Cefj (C +Co + Ch) , (1)

Here k is the index of the node at which there is an excess electron,

Cess = (C§ +4CCy) (1.2)

_ Cerr+ Co
M1'=] —”———) 1.3
n(Ceff_CO (19)

Cy is the self capacitance of each electrode, C}, is the capacitance of a half infinite

given by:

and

array, and C is the capacitance between electrodes. In these calculations, the capaci-
tances between second and higher nearest neighboring islands are neglected. In most
experimental situations, Co < C so that the effective capacitance C, 55~ VACGC,,
and M ~ /CC,.

The potential falls off exponentially on both sides, as shown in Fig. 1.4. If an
clectron tunnels from electrode & to electrode k £ 1. this potential distribution will
move by one electrode preserving its shape. Therefore, it may be called a “soliton”
[2]. An excess positive charge with its corresponding potential distribution is called
“anti-soliton”. The soliton extends over approximately 2M junctions and its energy

Es is
e?

= 2C.,

Eg (1.4)
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Figure 1.4: The potential distribution created by an excess electron on an electrode
k inside an infinite 1-D array (From Ref. [18]).

The I-V charactersitics show an offset voltage, 155, which is typical to the Coulomb
blockade [18]. Vs depends linearly on the one dimensional array size. In the presence
of microwave irradiation, there are additional current steps due to phase locking
between the single electron tunneling oscillations and external microwave frequency
[58].

Large one dimensional semiconductor quantum dot arrays in the Coulomb block-
ade regime have not yet been experimentally studied in detail. However, there has

been some experimental [88] and theoretical [46] work on transport in double quantum

dots.

1.3.2 2-D Arrays

2 Dimensional arrays of metallic Coulomb islands have been investigated both ex-

perimentally and theoretically. The early experiments on 2-D arrays were done by
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Figure 1.5: A schematic equivalent circuit for a 2-D array (From Ref. [73]).

Geerligs [27], Mooij [74] and their coworkers. For a two dimensional array, the charg-

ing energy can be expressed in terms of a capacitance matrix
1
- = -1
Hch = '2' ZQ:’C.'J' Qj,
1.

where Q; is the total charge on island i. It can only be an integer multiple of unit
electronic charge, e. In a simple model, all the capacitances, except the capacitance
between the nearest neighbors, C, and the self capacitance. Cy, can be neglected. A
schematic diagram of the network is shown in Fig. 1.5.

As in one dimensional arrays, in most experiments Co < C. After writing a

discrete Poisson equation

Q(z,y) = Co®(x,y)+
Cl4®(r,y) - (r - 1,y) - ®(z + 1,y) — ¥(x,y — 1) — ®(z,y + 1)],
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where ®(z,y) is the electrostatic potential and taking the continuum limit

r=4224+y2> 1,

the equation

V23(r) — A720(r) =0
can be obtained [73]. In this equation, A is the screening length and is equal to
(C/Cq)}/?. The solution is ®(r) = AKy(r/A), where Kj is the zero-order modified
Bessel function and A is a constant. By Gauss' Law, A is found to be equal to
e/(2nC). For r « A the Bessel function is equal to —In(r/A) and the potential is

e T
@(r)——%lnx, l1€r<A.

This logarithmic interaction energy is that of a pair of opposite charges in a “Two-
Dimensional Coulomb Gas”. As the temperature is raised, more and more pairs are
created with increasing separation. As soon as there is a pair with infinite separation,
the conductance becomes finite. The corresponding temperature is T,,,, and near this

transition temperature, the density of free carriers is given by

ne(T) = I{CXP [—ﬁ] . (15)

where K and b are constants. This is called the “Kosterlitz-Thouless-Berezinskii
(KTB)” phase transition [48]. It manifests itself in the conductance as a threshold

and the current voltage relation obheys
I o VN,

where ((T') is a temperature dependent exponent.

Tighe et al. [87] made the same measurements and found a contradictory result,
in which the I-V curve data could be better described by an Arrhenius form, instead
of a KTB transition.

The early theoretical work on the transport in arrays was done by Geigenmiiller
[29] and Schon [79). For two dimensional arrays of metallic islands, they found that

the I-V curve has a threshold voltage which is proportional to the linear array size N.
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Figure 1.6: Formation of current carrying paths (From Ref. [72]).

Another study has been done by Middleton and Wingreen [72] in the presence of dis-
order. They also found the same linear dependence on N. The authors incorporated
the disorder into the model by assuming that each island, 7, has an offset charge, g;,
such that 0 < ¢; < e. They first calculated the current in a one dimensional array as
a function of the voltage. The current is zero up to a voltage Vr and when V > Vi,
I increases with exponent { = 1. Near the threshold, the current voltage relationship
is then:

I~ (V=Vp)l. (1.6)

In a two dimensional array, very near threshold, the current flows in a single
narrow channel. When the voltage is increased, multiple branching channels are
formed (Fig. 1.6). The exponent ¢ can be calculated by finding the parallel channel
separation £, ~ v~2/3, and therefore the density of channels N/§, ~ v2/3. Here v
denotes (V — V7)/Vr. Since the current for a single channel scales as the first power

of the voltage, the overal critical exponent, ¢ is 5/3 for a two dimensional array.
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The inter-dot electron-electron interactions in arrays have also been studied mi-

croscopically using a Mott-Hubbard approach [82].

1.4 Bistability in Low Dimensional Quantum Struc-
tures

One of the most important aspects of the data presented in this dissertation is the
multi-stability in the I-V curves of the devices. Previous work on similar and possibly
relevant multi-stabilities in low dimensional semi-conductors will be reviewed in this

section.

1.4.1 Bistability in Resonant Tunneling Devices

Resonant tunneling of electrons through structures consisting of a quantum well con-
fined by two penetrable barriers provided one of the first observations of two dimei-
sional electronic states in semiconductor heterostructures. A typical I-V curve of
such a Double Barrier Resonant Tunneling Structure (DBRTS) shows an “N-Type”
negative differential resistance (NDR). In 1987, Goldman and Tsui reported the I-V
characteristics of a DBRTS which exhibited intrinsic bistability [31]. An experimental
result is shown in Fig. 1.7.

The instability is due to the space-charge formed in the well. Once an electron
tunnels into the well, it occupies a resonant state with kinetic energy Ey. The lifetime
7 of this electron in the well is 7 ~ h/T,E,. Here T, denotes the transmission
coeflicient of the collector barrier. Since the flux @, of electrons passing through the
well in the steady state is J, the sheet density o of electrons in this accumulation
layer is 0 = 7J =~ hJ/T,E,. Consequently, the electric field in the collector barrier

V2/d is significantly greater than that in the emitter barrier, V; /d. From Gauss' law,
W =Va—(dn/e)do =V, — (47 /e)dhJ] [T, E,, (1.7)

where € is the static dielectric constant of GaAs. The voltage drops across the different

regions of the structure must add up to V. Therefore, both V; and A, (the depth in
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Figure 1.7: The I-V curve of a DBRTS (From Ref. [31]).

energy of the accumulation layer in the emitter), decrease (at fixed V") as J increases.
Since J explicitly depends on V), T} and A, two stable current states occur at certain
biases, causing the hysteresis [31]. The hysteresis can be enhanced by increasing the

collector barrier thickness, which gives a larger 7.

1.4.2 Negative Differential Conductance in a Semiconductor
Superlattice

Another interesting system which exhibits negative differential conductance (or resis-
tance) is the semiconductor “superlattice”. a Ga.As/AlGaAs periodic structure. In
1974, Esaki and Chang reported a device in which the differential conductance first
decreases, followed by a rapid drop to negative values, then, at high fields. exhibits
an oscillatory behavior with respect to the applied voltage {22]. The period coincides
with the energy difference between quantized states or bands. Fig. 1.8 illustrates the
differential conductance as a function of the applied field at various temperatures. At
very low voltages, the current is dominated by band conduction Fig. 1.8(a). For higher

voltages, the conductance drops rapidly which can be interpreted as the spontaneous
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Figure 1.9: The random telegraph signal in etched barriers (From Ref. [76)).

generation of a high field domain (Fig. 1.8(c)). This high field domain formation is
an inherent feature of the voltage-controlled negative-conductance medium [86], and
dominates the total transport characteristics of the whole system. Further details

about this system is described in Ref.s [23, 22].

1.4.3 Transport Through a Submicron Lateral Barrier

Pilling et al. have recently investigated the nonlinear transport through a submicron
lateral barrier [76], produced by a shallow etch in a 2-DEG structure. After illumina-
tion, the I-V curve contains a region of bistability. The current in this region exhibits
a random telegraph signal. The voltage dependence of the characteristic (mean) time
constants 7, and 7y for the respective conducting and insulating states are shown in
Fig. 1.9. together with a slow sweep of the voltage. The time constants vary expo-
nentially with the source drain voltage. The hysteresis loops are seen when the time
constants at the crossing point (7p = 7;) are much larger than the measurement time.
The same group observed hysteresis in devices etched deeper than the 2-DEG which
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clearly means that the electron wavefunction, in this case, extends into the substrate.

1.4.4 Hot Electron Bistability

The last experiment described in this section is the recently reported single dot Hot
Electron Bistability measuremets, by Wu et al.[94]. The authors measured an S-type
Negative Differential Conductance (NDC) in a split gate lateral double constriction
device. They suggested a mechanism similar to the one proposed by Hess et al. [39].
According to this mechanism, when the source-drain voltage is increased, the number
of electrons injected over the first barrier increases, and the electrons are injected
into the well with increasing amounts of kinetic energy. This excess kinetic energy
is lost through collisions with cold electrons in the well, therefore raising the average
temperature of the electrons inside the well. At a critical current density, thermionic
emission of hot electrons across the second barrier increases dramatically, giving rise
to the NDC.

To interpret the above experimental results, a theoretical study was made by
Goodnick et al. [32]. This model will be described in more detail in Sec. 5.3.



Chapter 2

Device Fabrication and

Experimental Setup

2.1 Introduction

With recent developments in Molecular Beam Epitaxy (MBE) technology, it has be-
come possible to fabricate high quality two dimensional electron systems. A particu-
larly attractive structure is the GaAs/Al,Ga, -, As Modulation Doped Heterostruc-
ture in which 4.2K electron mobilities up to 107cm?/V s were reported [77]. Because
of its high purity, this system is very suitable for the study of ballistic electron effects
[10}, quantum coherent effects [10], and electron-electron interactions as observed in
fractional quantum hall effect (FQHE) [77]. Since the observation of single electron
charging in silicon quantum wires [80], modulation doped heterostructures have also
been extensively used to study single electron effects controllably.

A well established method for fabricating quantum dots in these structures is elec-
tron beam lithography and subsequent gate metal deposition (lift-off). A particular
device is the split-gate quantum dot in which separate negative voltages are simulta-
neously applied to the gates to deplete the surrounding semiconductor regions to form
the dot and set the transparencies of the tunnel barriers [49]. Although nanoscale
gate deposition by lift-off is a very powerful method for the confinement of electrons

in single dots, it becomes vastly harder to handle and characterize the devices as

17
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the number of gates increases. This makes it impossible to use split-gates to control
individual elements in a large array. Therefore, in the 200 x 200 arrays studied in
this thesis, e-beam patterned etching is used with a single to form the dots. Since
the same gate also adjusts the coupling between the individual array elements, there
is somewhat less control than in the split gate structures.

In this chapter, the MBE growth parameters and conditions of the wafers will
first be presented in detail. Next, the electron beam lithography, etching and optical
lithography steps will be described. In the last section, the measurement setup will

be explained.

2.2 Molecular Beam Epitaxy (MBE) Growth

The details about the general principles of MBE can be found in [16, 34, 38, 55]. All
the two dimensional electron gas (2-DEG) wafers used in this work were grown in a
Varian GENII MBE system. The growth procedure is as follows: The semi-insulating
GaAs substrate is placed in the growth chamber after being baked at 400C for one
hour. Then the Al and Ge furnaces are heated up to 1350C and 1004C respectively.
These temperatures are chosen using the calibration curves such that the ratio of the
growth rate, gr for Ga and the rate for Al is close to 0.66/0.34 (z = 0.34). The 34%
Al presence in the Al,Ga,_,As layer gives a large conduction band discontinuity,
which facilitates the formation of the 2-DEG. x must be kept lower than 40% to
ensure that the minimum of the conduction band in the AlGaAs layer is in the T
valley [1]. The growth rates corresponding to these temperatures are 0.575um /hr for
Ga and 0.297um/hr for Al giving r = 0.34 as desired.

Next, the As furnace is heated up to 323C such that the environment is As rich.
The As flux was set to be at least 15 times larger than the total of Ga and Al fluxes.
This ratio is kept lower than 22 for lower defect density. The S7 temperature was set to
1318C to give a doping density Np of 4.2x 10!3/cm3 assuming a doped Al 34Gag¢6As
layer thickness of 170A. The dopant flux, ®g; is found from the relation

q’s,' = Np X gr. (2.1)
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Figure 2.1: a) The schematic diagram showing the layer thicknesses of the 2-DEG
wafers (not to scale). b) The corresponding band diagram.

When all the sources become stable at their respective growth temperatures, the
growth can be started by opening the As shutter and heating the substrate up to
700C to desorb the oxide. The substrate temperature is then set to 640C. This
value has been found to be the optimum for high mobility structures from previous
growths. Next, the Ga shutter is opened to grow a 30004 GaAs buffer layer (Fig.
2.1). Following the buffer, there is a GaAs, Alg3,GaggeAs superlattice, with a period
of 100. Each period consists of a 304 GaAs and a 1004 Alp 34Gag gsAs layer. This
superlattice is known to clean up the system by trapping impurities, especially carbon.
The buffer ends with an additional 5004 thick layer of Alg34GagesAs. The Ga shutter
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is then kept open to grow 1um GaAs. Then all the shutters, except As, are closed for
5 seconds, which is called “growth interrupt”. This is a very important interface since
after the growth of the rest of the structure, the 2-DEG will be formed here. The
growth interrupt gives the atoms enough time to redistribute themselves, making the
interface uniform and smooth. On the other hand, too long a break during the growth
results in excess contamination, hence decreases the mobility. Therefore, there is an
optimum interrupt time, 5 seconds in this case, usually found from previous growths.
The next layer is the “spacer” which separates the ionized donors from the 2-DEG
and enhances the mobility. In the wafers used for this study, the spacer is 3004 thick
and consists of undoped AlGaAs. After the spacer, the Si shutter is also opened in
addition to the Ga and Al shutters. This way, the AlGaAs layer becomes Si doped.
Finally, there is a 3004 GaAs “cap” layer, which protects the rest of the structure
against oxidation.

Several 2-DEG structures were grown with the above procedure. Depending on the
condition of the MBE machine, their electron mobilities ranged from 100, 000cm?/V s
to 700,000cm?/V's at 4.2K. The mobility of the 2-DEG used to make the arrays was
200,000cm?/Vs. The growth files for the devices mentioned in the dissertation are

given in Appendix B.

2.3 Device Processing

2.3.1 Electron Beam (e-beam) Lithography

The grown wafers were cleaved into square pieces with dimensions 1.3x1.3cm?2. Next,
4% PMMA in Chlorobenzene was spun on at 5000rpm. The resultant thickness was
about 1000A. The picces were then baked overnight inside a 90C oven. They were
exposed in a HITACHI e-beam machine, with 4501:C/cm? dose and developed in
1:2 MIBK: Isopropanol solution for 45 seconds. The exposed and developed regions
were then etched by dipping the sample in a 50:5:2 Isopropanol: Phosphoric Acid:
Hydrogen Peroxide solution held at 12C, using an iced water bath. The etch rate
was about 25A4/sec and the etch time was 40 seconds. The resulting etch depth was
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10004, deeper than the 2-DEG depth (770A). Therefore there is no 2-DEG in the

etched regions.

2.3.2 Electron Beam Pattern

The pattern that the HITACHI e-beam machine wrote was generated using DW2000
software, in the GDSII format. It consists of plus sign shaped regions repeated with
a period of 0.8um in both z and y directions. The defined line thickness of each
arm of the plus sign is 100nm, but for these feature sizes, the actual line thickness is
determined by the e-beam spot size and the number and separation of e-beam passes.
In other words, a single line of zero thickness drawn by a single pass e-beam exposure
would be the same line as a 100nm thick defined line exposed by a single pass of the
beam.

In addition to the repeated shapes, there are isolation lines which electrically
isolate one side of the array from the other and the control device from the array.
This can be seen clearly in Fig. 2.2 a). All the cross hatched regions in this figure are
etched away, therefore they don't contain any 2-DEG at any applied voltage. The
e-beam pattern also has larger alignment marks with 10um feature size, so that the
etched pattern can be easily aligned with the optical masks.

The results presented in Chapters 3 and 4 were obtained from four different de-
vices. The lithographic distance, d, shown in Fig. 2.2 is 450nm, 400nm, 350nm, and
300nm for these arrays and they will be referred to as Device I, Device 2, Device
3, and Device 4 respectively. SEM photos show that, due to etching in the lateral
direction, d', which is the separation of plus signs after processing, is about 100nm

shorter than d in the e-beam pattern.

2.3.3 Optical Lithography

After e-beam lithography and etching, three standard optical lithography steps were
performed. First, the devices were isolated by mesa etching. The etch consisted of
1:1:30 H3PO:H,0;:H,0 solution. Next, AuggGe,z(eutectic)/Ni/ Au ohmic contacts
were deposited in an e-beam evaporator and lifted off. The thicknesses of the above
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Figure 2.2: a) The symbolic diagram for the layout of the device {not to scale). b)

The cross-section along the dotted line in a).



CHAPTER 2. DEVICE FABRICATION AND EXPERIMENTAL SETUP 23

layers are 250 A, 150A, 2200A respectively. Finally, a Cr/Au 100;4/ 1000A gate metal
was deposited covering the whole mesa including the array and control device. All
the optical and e-beam processing patterns generated in the DW2000 and the SEM
photo of the corresponding device are shown in Fig. 2.4 and Fig. 2.3 respectively.
In the photo, the upper left corner is Device 1 (Fig. 2.5), and the lower left corner is
Device 4 (Fig. 2.6). A control device is shown in Fig. 2.7.

2.4 Measurement Setup

Fig. 2.8 shows the measurement setup used to characterize the electrical transport
properties of the arrays. They were measured in a dilution refrigerator at mixing
chamber tempearture from 20 to 700mK. A dc voltage bias which could be swept,
plus a 10pV, 11.4Hz ac voltage bias were applied across the array. The swept dc
signal was generated by SRS DS335 signal generator functioning in the very low
frequency (typically 0.0001Hz) triangular wave mode. The ac signal was the output
of an EG&G lock-in amplifier. The two signals were fed into the differential inputs of
a voltage sensitive preamp (SRS SR560), added with unity gain and the (5092) output
was connected to one of the ohmic contacts! (1 in Fig. 2.2).

The voltage drop across the array (V,,.,) was measured using two other ohmic
contacts (3 and 4 in Fig. 2.2). The dc part of the voltage was directly measured with
an HP34401A voltmeter whose digital output was connected to the computer. The
ac part of the voltage was connected to the input of the lock-in (EG&G), and the
output of the lock-in was measured with another HP34401A voltmeter.

The current (/4,) was measured by connecting the ohmic contact on the oppo-
site side of the array (2 in Fig. 2.2) to a current secnsitive preamplifier. In most of
the measurements, a built in PAR181 current sensitive preamplifier was used. The
dc part of the current was taken to a HP34401A voltmeter from the monitor out-
put of the current sensitive preamplifier. The ac signal was fed into the input of a

second lock-in whose output was connected to a digital voltmeter. The ac lock-in

!One of the contacts on the other side of the array is connected to a current sensitive preamplifier
creating a virtual ground.
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Figure 2.3: The schematic diagram of the device, as drawn in DW2000.The light
grey region is the mesa. The darker region is the gate. The dark grey squares are
the ohmic contacts. The black lines show the regions to be exposed by the e-beam.
Between the two horizontal lines is the array (The plus signs are too small to see in
this scale). The vertical lines isolate the array and the control devices. The latter are
located at the intersection of the central vertical lines and the horizontal lines. The
shapes at the lower right corner are the alignment marks.
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Figure 2.4: SEM photo of four finished devices. The lighter regions in the middle
with diagonal lines contain the plus signs. They look this way because of interference.
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Figure 2.5: SEM photo of Device 1. Because of wet etching, the corners become
smooth and for this device the plus sings look almost circular.
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Figure 2.6: SEM photo of Device 4.
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Figure 2.7: SEM photo of the Control Device.
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Figure 2.8: The measurement setup.
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measurement directly gives the differential conductance, dI,,/dV,,,, as a function of
Varr. In practice, however, the dc I-V measurements were quite clean and sufficiently
characterized the observed behavior.

The gate voltage (V) was applied from a battery box. It was referenced to the
midpoint of the source-drain voltage by means of two 10k resistors. During the
measurement, the voltmeter which measured V,, was turned off to minimize the noise.
For the arrays, if the gate voltage is referenced to ground, the switching and hysteresis
can only be observed on one side of the I-V curve. If it is referenced to the midpoint
of Vi, the curve is relatively symmetric. The array voltage |Varr| around which the
first loop appears, is of the same order on both negative and positive sides of the
curve (Fig. 3.11). The details of the hysteresis and switching, however, appear to be
different.

In the case of a single dot, switching and hysteresis is observed on both sides of

the curve at similar |V,,,|, even if Vj is referenced to ground.



Chapter 3

Experimental Results

3.1 Introduction

In this chapter, the main experimental results will be presented!. First, the general I-
V curves of the arrays, their temperature, gate voltage and magnetic field dependence
will be described. Next, the I-V curves of the control devices will be discussed [21, 81].

3.2 Array Characteristics

3.2.1 Gate Voltage Dependence

Fig. 3.1 shows general I-V curves of Device 2, as a function of gate voltage, VeoatT =
20mK. These curves illustrate typical multiple hysteresis loops as a function of the
inter-dot coupling adjusted by the gate. For V; = —98mV’, the I-V curve has a single
loop near 4mV bias voltage. As the gate voltage becomes more negative, the width of
this loop increases and a new hysteresis loop appears for ¥, < —106mV. These two
loops merge at a gate voltage between —114mV and —118mV. The corresponding
gate voltage dependence of the hysteresis loop widths is shown in Fig. 3.2, together

with the best fits to the data points (See 5.6).

'As noted in the Abstract, all the results in this chapter are from devices etched 10004 deep,
and referred to as Device 1, Device 2, Device 3 and Device 4.
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Figure 3.1: The I-V curves of Device 2. The curves are offset in proportion to the

gate voltage for clarity.
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Figure 3.2: Gate voltage dependence of the hysteresis width.

Fig. 3.1 also illustrates the discontinuous jumps in the current (within the reso-
lution of a single data point), which will be referred to as “switching events”. In the
curves for Vg < —118mV, multiple switching events occurring in a single loop can
be noticed very clearly. In all hysteresis loops observed, the switching-on voltage for
increasing V., is larger than the switching-off voltage when V/,, is decreased; that is,
all hysteresis loops are counter-clockwise in I versus V. We also find counter-clockwise
sub-loops on both the upper and lower parts of the curve if the sweep direction is re-
versed following a current jump. This “hierarchy of hysteresis loops” will be discussed
in more detail in the next subsection.

Fig. 3.3 shows the I-V curves of Device 3, for three different gate voltages at
T = 20mK. The general qualitative behavior is the same as that of Device 2. The
details of the hysteresis loops, however, are different. For V, = =37mV several small
loops can be noticed. These loops combine into two bigger ones when the gate voltage
is decreased to —40mV. At V; = —43m1” these two loops also merge and form the

large loop seen in Fig. 3.3.
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Figure 3.3: The I-V curves of Device 3, for various gate voltages.
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The I-V curves of Device 1 are also qualitatively similar to those of Device 2 and
Device 3. The enlarged view of the main loop for V, = —154mV and T = 70mK? is
shown in Fig. 3.4. The negative slope of each switching event results from using two
ohmic contacts other than those through which the source-drain voltage is applied, to
measure V.. As soon as a switching event occurs, there is a discrete change in the
voltage drop accros the array. This is due to the discrete jump in the current which
leads to a discrete change in the voltage dropped on the ohmic contacts through which
the voltage is applied. Therefore, the slope gives the total resistance of the ohmic
contacts 1 and 2 in Fig. 2.2.

Device 4 was different than Devices 1, 2 and 3 in that it was already pinched off
at zero gate voltage V, = 0 at the base temperature, so no data was taken from it.

The pinch-off voltages® for Device 1, 2 and 3 are —140mV,—98mV and —37mV,
respectively. This means that the pinch-off voltages depend linearly on the size of the
opening between each plus sign (350nm, 300nm and 250nm from SEM pictures).

The device characteristics in {l4s,V4rr,Vy} space can also be measured by keeping
Vis constant? and sweeping the gate voltage. Fig. 3.5 shows the data from Device 3.

As expected, various hysteresis loops move and merge as V, is changed.

3.2.2 Hierarchy of Switching Events

Fig. 3.4 shows the details of the main hysteresis loop in the I-V curve of Device 1. If
the increasing dc voltage sweep is stopped at a V,,, value very close to 14mV (but
smaller) and the sweep direction is reversed, it is possible to observe the subloop
shown in the inset. There are two additional switching events: One on the lower part
and the other on the upper part of the subloop. This means that by reversing the
sweep direction, it would be possible to see a hysteresis loop inside the subloop in
the inset. It is important to note the current scale for the subloop which is about 50

times smaller than that for the main loop.

2The switching voltages in the main loop for this device are very close to those at T = 20mk’, at
the same V,. This example is chosen since the subloops and hierarchy of switching events are more
noticeable.

3The pinch-off voltage is the gate voltage for which dl4,/dVy, = 0 at V., = 0.

*Varr cannot be kept constant when the measurement configuration in Fig. 2.8 is used.
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Figure 3.4: The detailed view of a hysteresis loop in the I-V curve of Device 1.
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The hierarchy of the switching events can also be observed on the upper part of
the I-V curve. Fig. 3.6 shows a hysteresis loop on the upper part of the I-V curve
for Device 3. The data in this figure was taken as follows: The sweep was started
at Varr = 0 and the voltage was increased in the positive direction until the main
switching event occured. Then the sweep direction was reversed and the voltage was
decreased down to 7.0mV. In this way, the I-V curve was kept in the upper state.
Next, the sweep direction was reversed again, increasing the voltage up to 8.25mV.
At this voltage, the sweep direction was reversed one more time, and the loop shown
in Fig. 3.6 was obtained. The results show that by reversing the sweep direction, it
is possible to observe a hysteresis loop for every single switching event. Although
there is a clear hierarchy in the switching events, no obvious rules were observed for
the classification of the loops and sub-loops. In other words, it was not possible to
construct a self similar hierarchical structure as in fractals. A more detailed study

could make it possible to discover such structures.

3.2.3 Temperature Dependence

Fig. 3.7 shows that switching voltages decrease for increasing temperature, and the
width of each hysteresis loop also decreases as the temperature increases. It is possible
to see in Fig. 3.7 the dissociation of big loops into smaller ones and their disappear-
ance at different temperatures below 680mK’, at which point, hysteresis is no longer
observed.

The width of one of the loops is plotted as a function of temperature in Fig. 3.8.
A power law fit to this curve gives AV,,, = constant x (To(V,) — T)®. For the main
loop in Fig. 3.7, a = 0.57 and Ty = 663.35K. This dependence is reminscent of a
second order phase transition (See 5.6), the hysteresis width AV, being an order
parameter.

There is an apparent tradeoff between the two control parameters Voand T: at
680m K, the hysteresis can be recovered if the gate voltage is made 20-30mV’ more
negative (Fig. 3.9). However, the ratio of the loop width to the switching voltage

is always smaller than that at 20mK. This suggests that switching and hysteresis
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Figure 3.6: Part of the I-V curve of Device 3 (See Fig. 3.3).
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Figure 3.7: Temperature dependence of the I-V curve at a fixed gate voltage (Device
2).
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Figure 3.8: Temperature dependence of the hysteresis width of the main loop in the
I-V curve of Device 2.

will inevitably disappear at sufficiently high temperatures regardless of gate voltage.

Indeed, at 4.2K, no hysteresis is observed in any of the samples.

3.2.4 Current Bias Measurements

By inserting a large resistor (for example 10MQ) in series with the voltage source, a
current bias measurement® was made (Fig. 3.10). There are multiple voltage peaks
in the I-V curve with various heights. This is consistent with the observation of a
hierarchy in the switching. The main hysteresis loop is still present in this curve,

because the device is voltage biased when it is in the low current state.

5When the device is in an insulating state, its resistance is much more than 10Af. Therefore,
it is current biased only when it has a large enough conductance.
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20m K with the same gate voltage.
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Figure 3.10: I-V curve measured with a current bias.
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3.2.5 ac Lock-in Measurements

Fig. 3.11 shows the ac lock-in measurement data and the corresponding dc data for
Device 3 at T = 20mK and V, = mV. Multiple hysteresis loops and switching events
are also observed in the dly,/dV,,, versus V,,, curve. However, because of noise, it is
not possible to measure all the switching voltages. Since the dc I-V curves had little
noise and sufficiently characterized the observed behavior, this will be the only ac

lock-in measurement result presented in this dissertation.

3.2.6 Magnetic Field Dependence

By studying the magnetic field dependence of the I-V curves, it is possible to make
some conclusions about the mechanism for the switching and hysteresis. A magnetic
field, B, perturbs the quantum levels and changes their energies. The single elec-
tron charging energy, and the electrostatic potential profile, on the other hand, are
independent of the field. If the I-V curve depends on B strongly, one can conclude
that the observed physics is related to quantum coherence. Otherwise, switching and
hysteresis is more likely to be due to a mechanism which is classical in origin.

Fig. 3.12 shows the I-V curves for Device 3 at various magnetic fields. The main
characteristics and the location of the hysteresis loops are independent of the magnetic
field. The details of the curves, however, are different especially at large magnetic
fields. The conductance of the array is observed to fluctuate. This is consistent with
the model in which the Fermi level crosses the localized and extended states as the

magnetic field is changed® [77].

3.3 Control Device Characteristics

The I-V properties of a single control device Fig. 3.13 located adjacent to the array
on each sample were also investigated using the same experimental measurement
configuration as for the arrays. In the case of a single dot, we observe no hysteresis

near pinch-off, V; = —375mV, however, beyond a gate voltage 20mV more negative

8Shubnikov de Haas Oscillations.
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Figure 3.11: a) The differential conductance of the device as a function of V,,,. b)
The corresponding dc I-V curve.
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Figure 3.12: The I-V curves of Device 3 as a function of the magnetic field B.
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Figure 3.13: The I-V curves of a single dot as a function of the gate voltage.
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than this pinch-off value, a single hysteresis loop appears accompanied by upward and
downward switching events Fig. 3.13. Here we again define pinch-off as the regime
where the device has negligible conductance near zero bias, i.e. the I-V curve has
zero slope at the origin.

The I-V curve for the single dot shown in Fig. 3.14 has a very weak temperature
dependence compared to that of the array, and the width and location of the hysteresis
are unchanged up to 700mK. As in the array, no hysteresis is seen at 4.2K for any
gate voltage. Unlike the arrays, no sub-loops or multiple switching events are observed
in the single dot. Although the lithographic dimensions of the single dot and array are
nominally identical, in all cases, pinch-off of the single dot occurs at a considerably
larger gate voltage than for the array. With the available data it is not possible to
state clearly whether this difference is due to the details of the device design and

fabrication, or whether it results from a significant dot-dot interaction.
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Chapter 4

Conduction Threshold:
Non-Hysteretic Regime

4.1 Introduction

In this chapter, the non-hysteretic regime will be discussed. This is the regime in
which the array is pinched-off at V,,, = 0, but there is no significant hysteresis. To
study this regime in the arrays, Device I was chosen since its I-V curve did not have
a large number of hysteresis loops. It was easier to enter the non-hysteretic regime
in the control device since the hysteresis never appears at very low bias voltages.
The most important difference in the curvatures of the I-V characteristics of the
arrays versus single dots is the fact that the I-V curves for the arrays are concave
upward above a threshold, while for the single dots they are concave downward above
a threshold. More quantitatively, both the array and single dot I-V curves can be fit

very well with a power law! dependence
I, = constant x (V — Vp)¢, (4.1)

where Vr is a threshold voltage. This power law and the exponents will be discussed

in the next two sections and in Sec. 5.6.

!For the single dot it can be very well fit with I, = constant x (V2 - VZ). For |V - V| « |V,
this equation reduces to Eqn. 4.1.
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Gate Voltage, V,(mV') | Threshold Voltage, V7(mV') | Exponent,
-146 0 1.75
-148 3.65 1.47
-150 5.04 1.42
-152 4.35 1.60
-154 5.56 1.56
-158 10.08 1.43
-162 14.98 1.1

Table 4.1: The threshold voltages and exponents obtained from the power law fits at
various gate voltages.

4.2 Conduction Threshold in the Array

The 200 x 200 array in Dewvice I is in the non-hysteretic regime for gate voltages
3 — 10mV more negative than the pinch-off voltage. In this region, { for the array
is in the range 1.4 — 1.7 (Fig. 4.1 a)). The threshold voltage increases as the gate
voltage is made more negative as presented in Table 4.1. Even when hysteresis is
present, (at slightly more negative gate voltages) the overall array I-V curve remains
concave upward. with a similar power law dependence, with small hysteresis loops and
switching events superimposed (Fig. 4.1 b)). For even more negative gate voltages,
hysteresis becomes well developed and the exponent ¢ decreases towards 1.
Theoretically, an I-V dependence with an exponent 5/3 has been predicted for 2-D
quantum dot arrays by Middleton and Wingreen [72] for small capacitive coupling
between the dots, which is the non-hysteretic regime in their model. The results
presented here are consistent with this prediction. These authors also found an in-
crease in the threshold voltage with smaller capacitive coupling between the dots.
Experimentally, as the gate voltage is made more negative. the capacitive coupling

between the dots decreases and the threshold voltage increases, also consistent with

their results.

With increasing temperature, the threshold voltage decreases as seen in Fig. 3.7.
Also, at sufficiently high temperatures, the conductance around zero bias (Differential
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Figure 4.1: The power law fit to the I-V curve of Device 1 for a) V, = —148mV and
b) Vg, = —158mV.
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Figure 4.2: The fit to the I-V curve of Device 2 at 680mK around V,,, = 0.

conductance G) becomes finite. For Device 2 at V, = —115mV in Fig. 3.7, this
small but finite differential conductance appears above 300mK. Between 300mK
and 600mK, G which is activated, continues to be accompanied by a rapid (super
exponential) increase of current around V,,, = 12mV. However, above 600m K, this

sharp turn-on is washed out and the activated form describes the I-V curve over the

full range |V,,,| < 15mV (Fig. 4.2):
I45 ~ sinh(constant x T). (4.2)

A similar metal-insulator transition behavior has been recently observed by Liitjering
et al. [60).

4.3 Conduction Threshold in the Single Dot

For the single dot, the power law,

I4, = constant x (V;‘:,, - VTZ)C, (4.3)
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Figure 4.3: The power law fit to the I-V curve of the single dot.

is observed in the range of gate voltages between pinch-off and the hysteretic regime
(Fig. 4.3). For voltages close to the threshold voltage, that is [V — Vr| < |Vr|, Eqn.

4.3 reduces to the same exact power law as in the array,
Iy, = constant x (Vg — Vr)$ (4.4)

with { = 0.5. For gate voltages corresponding to the non-hysteretic regime, the
array and single dot threshold voltages, Vr are of the same order of magnitude.
Because of the inherent disorder in the array and the exponential dependence of the
tunneling current on barrier height and shape, a large fraction of the applied voltage
will be dropped across a single or few dots, which constitute bottlenecks to the flow
of current. Therefore, the threshold voltage per dot in tI - >rray may be comparable
to that of the single dot when one considers only those dots with significant voltage
drops rather than all dots across the array. For the single dot ¢ ~ 0.5 (Fig. 4.3) near
threshold and the I-V curve becomes concave upward only at high bias voltages. The
concave downward shape near threshold (¢ ~ 0.5) is not found at higher temperatures

(T ~ 4.2K)), and at the same time the possibility for hysteresis at any Vj is also
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eliminated.

There is an intriguing similarity between these experimentally observed exponents
for the single dot (¢ ~ 0.5) and the array (¢ ~ 1.5), and those in the sinusoidal
washboard potential model used to explain the I-V characteristics of pinned Charge
Density Waves (CDW'’s) [35]. For a single degree of freedom, the CDW model gives
¢ = 1/2 [35], while the mean field model with many degrees of freedom gives ¢ = 3/2
[35] (See also Sec. 5.5).



Chapter 5

Possible Mechanisms for Hysteresis

5.1 Introduction

A very interesting and surprising aspect of the experimental results is the hysteresis
observed in the I-V curves of the arrays and control devices. In particular, the
hysteresis in control devices requires special attention since the understanding of
its mechanism will lead to understanding the hysteresis in the arrays. In this chapter,
the gate current measurements will first be described. The gate current in these
etched devices is large compared to that in conventional top gated devices. A simple
argument which explains this high leakage current will be presented in 5.2.1. Then,
a three lead split gate dot which models a single etched dot with gate leakage will be
described.

In the next section, electron heating will be considered as another possible mech-
anism for hysteresis. The results of several recent theoretical studies (47, 59, 32] and
their possible connection with the experimental results presented in this dissertation,
will be discussed.

It has recently been shown that, similar bistabilitics can be connected with impu-
rities and imperfections, in particular DX centers in AlGaAs [11]. These effects will
be considered in 5.4.

The results of the transport measurements in the arrays are qualitatively very

similar to those seen in strongly interacting systems, such as Wigner solids and charge

56
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density waves. In the last section of this chapter, these systems will be reviewed, and

their similarities to the quantum dot arrays will be discussed.

5.2 (Gate Current Measurements

All the results discussed in this dissertation up to this section were obtained from
devices which were etched about 10004 deep. However, the I-V curves of other
devices which were etched only 3004 did not show hysteresis at all at 20mX. Each of
these devices will be referred to as a Shallow Device. The SEM photos of two Shallow
Devices are shown in Fig. 5.1 a) and b). Their MBE growth files are given in B.2. The
only difference between shallow and deep etched devices is the Si doping level and
the etching depth. The fabrication process is exactly the same, except the Shallow
Device being etched only about 3004 deep. They were grown in the same MBE run.
The fact that the I-V curves of these devices did not show hysteresis resulted in the
conclusion that the mechanism for the hysteresis may be related to the etching depth,

and/or the gate current.

5.2.1 Experimental Results

This section summarizes the experimental results of the gate current measurements
which are made using hysteretic deep etched devices (Device 1, 2, 3) and non-
hysteretic shallow etched devices (Shallow Device). The gate voltage referenced to the
ground was applied to one of the ohmic contacts (e.g. “3” in Fig. 2.8). The potential
on gate contact was fixed by connecting it to a current sensitive preamplifier (virtual
ground). The gate conductance (df,/dV,) was obtained from the ratio of the small
ac voltage added to the dc voltage source and the ac current measured by a lock-in
amplifier. The setup for this measurement is shown in Fig. A.1.

Fig. 5.2 shows a) the gate current Iy and b) dI,/dV, versus the gate voltage, Vg,
for Device 1 and a shallow etched device at 4.2/". There is no hysteresis in the curve.
This is not surprising since at this temperature, and at V,,, = 0, the I4, versus V,,,

does not have hysteresis either and the current is conserved. However, two important
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Figure 5.1: SEM photos of shallow etched devices with a) d = 300nm and b) d =
450nm.
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aspects of the curves should be noted:

o The gate current in the shallow etched device is about two orders of magnitude

lower than that in the deep etched Device 1.

o The gate current in Device 1 has a kink (discrete curvature change) at about
—~0.175mV?! which is the pinch-off voltage of the array at 4.2K. This means
that the gate current which leaks from one of the sides of the array to the ohmic
contact on the opposite side is blocked when the array is pinched off. For more
negative gate voltages, the current follows only the paths reaching the ohmic
contact directly hence the curve has a smaller slope (or the gate conductance
is smaller). This is consistent with the design and layout of the array, control

devices and contacts (Fig. 2.2).

When the temperature decreases, a hysteresis loop appears in I,. Fig. 5.3 a) and
b) show the data from the simultaneous measurements of the gate current I, and the
source drain current Iy, as a function of V,,.2, at 20mK.

The measurement setup for this data is shown in Fig. A.2. Both curves show
hysteresis at the same threshold voltage, as expected from current conservation.

The gate current measurements show that the etching depth has a significant
effect on the gate current. A tunnel barrier is formed between the gate which fills in
the etched regions, and the GaAds 2-DEG layer shown in Fig. 2.2. The transparency
of this barrier is high if the etching depth is larger than the 2-DEG depth. The
dependence of the gate transparency on the gate voltage for deep etched devices can
simply be calculated using Poisson’s equation for the potential in the depletion region
show in Fig. 5.4.

Taking ¢p = 0.7eV(mid-gap value for GaAs) as the boundary condition, the
potential can be calculated as

U(z):w(zie:i): 0<r<d, (5.1)

!This can be noticed clearly from the simultaneous ac lock-in measurement result in Fig. 5.2.
2V, was chosen as the independent variable to be consistent with the data obtained before.
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Figure 5.4: A tunnell barrier formed between the dot and the gate.

and the depetion length as

d= [——26("”’ + V) ] " (5.2)
eNj,

Here, U(z) is measured from the Fermi energy of GaAs, and the coordinate r is
measured from the interface into GaAs. In this structure, the ionozed donors and
the plane of the 2-DEG are spatially separated because of the spacer. Therefore the
depletion region is wider than what it would be if the ionized donors were near the
2-DEG. In the above equations, their fringing field which causes this large depletion
length is taken into account by using an effective donor concentration, N}, which
can be found using Eqn. 5.2 and assuming d ~ 10004 for Vy = 0 (from experiments).
To get an idea about the transparency, the thickness of the barrier at the gate Fermi
level, dp, should be considered. Setting the left hand side of Eqn. 5.1 to Vj, one can

find 7
_ 26V,
dy=d N2’ (5.3)
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and therefore,

do= |5z (Ve =00 = \V5). (5.4

It is easy to see that dj is a monotonically decreasing function of V. Since the
transparency of tlie gate barrier, Iy, increases with decreasing thickness at the Fermi
energy, the gate current increases as |Vj| is increased. The dot-to-dot transparency,

T4, however, decreases as the gate voltage is made more negative. If V; =0,
'y LT

If [Vg| > |V, |, where V} is the pinch-off voltage,
g >Ta.

This means that there must be a gate voltage such that
Iy ~Tq.

The change of transparencies as a function of the gate voltage is schematically shown

in Fig. 5.5.

5.2.2 Three Lead Single Dot

The etched single dot can be thought of as a three terminal device with the gate being
the third terminal. However, in etched devices, as shown in the previous section, I'y
and I'y cannot be adjusted independently from each other. This makes it very hard
to prove that the hysteresis is due to a mechanism involving gate leakage.

These facts lead to the conception of a split gate three lead single dot, in which
all the tunnel barriers can be tuned independently. Such a dot was fabricated by
clectron beam lithography and subsequent gate lift-off. The MBE growth file for
the sample is given in B.3. The fabrication procedure is similar to that described in
Chapter 2. However, the optical lithography was done first. Then a bilayer PMMA
was spun, baked and then exposed at 575uC/cm? with a beam current of 1n4 in a
JEOL e-beam machine. Gates were evaporeted in an e-beam evaporator. The layer
thicknesses were T/ Au, 300A/1000A. After the evaporation, the sample was dipped
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Figure 5.5: The transparencies of the gate and dot barriers. The double parallel lines
denote capacitors in which tunneling is negligible. Double rectangles denote tunnel
capacitors.
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in Acetone to achieve the lift-off. The SEM photo of the device is shown in the inset
of Fig. 5.6. The numbers denote the gates and the letters S, D and G refer to Source,
Drain and Gate respectively. Here G is the 2-DEG reservoir which is equivalent to
the single gate in the arrays. The gate current in the etched devices is simulated by
allowing a small leakage from the barrier formed by gates “1” and “4"3.

Fig. 5.6 shows 400mK Coulomb blockade oscillations, obtained by sweeping the
voltage V5 on 2 and measuring the ac source-drain current using the ac lock-in
technique. V4 and V,; were set such that there is no leakage from G into the dot?.

The measurement configuration described in Fig. 2.8 was used to look at the I-V
curves. At 400mK, no hysteresis was observed in the three lead device for the range

of parameters corresponding to those of the etched single dot.

5.2.3 Orthodox Theory

Orthodox theory of Coulomb blockade can be used to calculate the I-V curves of a
quantum dot in the presence of a third lead.

Similar to Ref. [6], the master equation for the probability, #(n,t), of the charge
state with definite number, n, of excess electrons in the central electrode can be

written as follows Fig. 5.7:
ZZ o(n £ 1,)[F(n) — a(n,t) 3 [r+ )+ T (n)] . (5.5)

Here I‘f(n) is the tunneling rate through the jth junction (7 = 1,2,3) which leads
to an increase (+) or decrease (—) of the charge number n. It depends on the energy

gain, AEf(n), due to tunneling and can be calculated using (3]
= (R;) AEf(n) {1 - eapl-AEE(m)/T]} . (5.6)

In the above equation, R; denotes the tunneling resistance of junction j and depends

on the density of states near the Fermi energy [3]. The energy gains for the junctions

30ne of the other barriers could be chosen for gate leakage. It is, however, easier to see conduc-
tance oscillations with this particular choice of source and drain, because the potential in the dot is
more symmetric for a given V.

4This is necessary because it is possible to observe Coulomb blockade, if the number of electrons
in the dot is a good quantum number.
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Figure 5.6: The Coulomb blockade oscillations in a three lead dot. The inset shows
the SEM picture of the device.
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Figure 5.7: The equivalent circuit for the three lead dot.

1, 2, 3 are given by

ABf(m) = = [—g + (ne +CV, + (Co+ %)v)] . (5.7)
AEE(n) = é [—g + (ne +C,V, — (C + ‘%)v)} (5.8)
ABH(n) = &= [-5 # (ne = (€1 + CalV,) - (G- Co) 5] (5.9)

respectively. Here, Cs = C) + Cy+ C,. The current, I;, flowing through the junction

j can then be found from

I = (-1y* f; [T} (n) = T (n)] a(n), (5.10)
n=0

where a(n) is the value of g(n,t) as t = oo, for a fixed n.
Eqn.’s 5.10 and 5.6 form a complete set of equations of the orthodox theory for
the three lead dot. They can be solved numerically. The master equation (Eqn. 5.5)

can be written as

% =T*(n-1o(n—1,0) + T~ (n+ D)o(n + 1,t) ~=T(n)o(n,t)  (5.11)
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where 3
I*(n) = 3 I¥(n),
i=1
and )
I'(n) = Ei: Zl I";-t(n).

Eqn. 5.11 is very similar to a diffusion equation except the coefficients are a function
of n. There are several numerical approaches to solve these types of equations. The
approach to discretizing the time variable is very important in determining the sta-
bility of the result. Since only the steady state value of ¢ is needed, the fastest and
most efficient way is to use the "fully implicit” (or "backward time”) scheme [78]. In

this scheme, Eqn. 5.11 is written as:

o(n,tjs1) — o(n,t;) = Atx

[I""(n —1o(n—1,tjp) + T (n+1)o(n+ 1,t;41) — P(n)a(n,tj+1)] (5.12)
or

o(n,j) = -Tt(n—=1)o(n—-1,j +1)At—
I~ (n+ 1)o(n + 1, j + 1)At + (1 + T(n)At) o(n, j + 1). (5.13)

Therefore, at each time step ¢;, one has to solve the simultaneous linear equations
given by Eqn. 5.13 to obtain o(n, j). This is, on the other hand, a simple problem
since the system is tridiagonal. An algorithm is given in Ref. [78]. A convenient
choice of initial condition is o(n,t = 0) = §(n). The boundary condition for n can
simply be taken as o(n = £Nyqos,t) = 0, with Ny,.. = 100. The code was written in
the software “Igor Pro”, and is given in Appendix D.

Fig. 5.8 shows the results of the I-V curve calculation for various gate voltages.
The solid line represents the I-V curve in the absence of leakage from the third lead
(“gate leakage”) and exhibits Coulomb staircase [49] (Vz = 0). The dotted and
dashed lines are for finite gate voltages and non-zero transparencies. As the gate
voltage becomes more negative, the staircase gets washed out and the Coulomb gap

disappears. Moreover, none of the curves shows hysteresis: Since there are no actual
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Figure 5.8: The I-V curves of the three lead dot for various gate voltages and trans-
parencies.
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Figure 5.9: The RC-SET model (From Ref. [44]).

resistors in the coupling circuit, no multiple stable charge states are possible in the

single dot.

5.2.4 RC-SET Model

The orthodox theory shows that there can be no hysteresis in a single dot if the
coupling circuit consists of capacitive elements only. If the control potential (Vg in
this case) is applied through a large resistor, however, the charge distribution does
not change on each capacitor during or between tunneling events. This means that
the device has memory, and the I-V curve can exhibit hysteresis.

Transport through a single dot in which the coupling circuit consists of a large
resistor and a capacitor has recently been investigated by Korotkov [44]. If Ry >
RQCs/C,, the coupling circuit does not affect the double junction system (junctions
1 and 2) during the tunneling event. In other words, the capacitance C, + C, which
is charged during a tunneling event is different than the total capacitance Cs (F ig.
5.9). However, between the tunneling events, the effective charge Q, which is the
total charge on C) and C, may change due to the current through Ry.

In Ref. [44], the author used the orthodox theory to calculate the probability
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density, o(n, Q, ), in the limits of small coupling resistance (Ry <« min(R;, R2)Cg/Co
but still Ry > RgC,/C,) and large coupling resistance (Ry > (R + R2)Cx/Cq). The
difference of this calculation from the theory presented in the previous section is that
the energy gain, AEf, does not directly depend on n but only on the effective charge,
Q. The I-V curve in the large coupling resistance case exhibits multiple switching
and hysteresis.

The multistability calculated by the RC-SET model is very similar to experimen-
tally observed switching and hysetresis in the arrays, and single dots [44]. However,
in these devices, there is no large resistance in series with the gate voltage. Moreover,
the current in the single dot after switching is so large that, R; > Ry cannot be
satisfied. This means that, the mechanism for the hysteresis in the control device is
different that that proposed by the RC-SET model. However, the RC-SET model
can explain the hysteresis in the arrays: A dot in the array which, in isolation, would
not be hysteretic can be pushed into the hysteretic regime by the impedances of its
neighbors, which effectively raise Ry, R, and Rj for that dot. In the case of arrays

the large current scale after switching can be explained by a parallel current path.

5.3 Electron Heating

Several theoretical models have proposed a hot-electron related bistability to explain
the I-V curves of quantum dots [47, 59, 32]. In this section, two of these models
will be summarized and their possible connection with the bistable I-V curve of the

control devices will be discussed.

5.3.1 Thermionic Emission Model

The first model uses an energy balance approach to describe heating of electrons
trapped inside the dot [32] to explain the experimental results of Wu et al. [94].
The authors assume that the dimensions of the dot are sufficiently large that the
electrons inside can be treated as a finite extent two dimensional electron gas (2-DEG).

Their second assumption is that electrons injected over the input barrier 4 thermalize
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Figure 5.10: Schematic diagram showing two barriers in series (From Ref. [32]).

through electron-electron scattering with the electrons inside the dot, which are then
thermionically emitted over the second barrier, B [32] (Fig. 5.10).

Tunneling is also neglected, so that the current is carried only by thermionic
emission over the two barriers. The model calculates the barrier heights, ¢, and ¢,
and the injection energy, e¢}, shown in Fig. 5.10, as a function of the source-drain
voltage, V.4 and the number of electrons inside the dot, N. The thermionic emission

current, I;, at barrier ¢ (i = 1,2) is given by:

I; = Cie™<4/kTi, (5.14)

or, the barrier heights are given by:

kT, Ci
¢,‘ = —e— In T,

(5.15)
In equations 5.15 and 5.14, C; are constants which depend on the density of states, the
width of the barrier, the mean velocity of electrons incident on the barrier, electron
density and the lattice temperature, T; (For more details see for example Sze [85]).
The injection energy, eg}, is related to the current, electron temperature, T,, and the
number of electrons, N, through the energy balance equation:
[ R 7 ¥ 0F
Ix{dh+——g—2)=N(= (5.16)
€ 0t [ cau

€
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Here, the term on the right hand side represents the energy loss rate for NV elec-
trons, and is related to the typical times of the phonon emission processes.

Once the current I = I, = I is chosen, ¢;, ¢}, N, V4, T can all be found self
consistently. One finds that, as the current goes up, the electron temperature goes
up and the electron number goes down. This means that the high current state has
fewer electrons, than the low current state, and the electron temperature in the high
current state is higher than that at low current state.

To compare the above theoretical results with the experimental single dot results
in Chapter 3, it is necessary to estimate the number of electrons in the Control Device.
For V; = 0, assuming a sheet electron density n, = 3 x 10''cm™=2, and a circular dot

with a radius, » = 100nm, the number of electrons can be found to be
N =n,nr? ~ 100 (5.17)

Since the devices are top gated, the density decreases as the gate voltage is made
more negative. This decrease is relatively slow for V; down to —100, but for V, less
than —200mV the decrease becomes very sharp [90]. For the arrays, the density can
be assumed to be constant, since the lowest pinch-off voltage is about —150mV. The
typical pinch-off voltages for deep etched single dots, however, are on the order of
—400mV. Therefore, at the gate voltages around which the hysteresis is observed,
the electron number is about one order of magnitude smaller than that in the devices
measured by Wu et al. [94]. Moreover, the typical current after switching in deep
etched devices (=~ 0.1A), is also an order of magnitude smaller. These estimates are
consistent with the fact that, the bistability in the etched devices disappears at 4.2,
whereas, the bistability in the devices of Wu et al. persists up to temperatures much
higher than 4.2K.

Although the model of Goodnick et al. gives the correct order of magnitude
estimates for the hysteresis in the deep etched devices, it does not explain why shallow
etched devices which have very similar dimensions and electron densities don’t show

bistability.
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5.3.2 Heating in the Coulomb Blockade Regime

Several theoretical models to treat the electron heating in the Coulomb blockade
regime have recetly been proposed by Liu et al. [59] and by Korotkov et al. [47).
Since the former does not give bistability in the I-V curve, it will not be considered
here. The model by Korotkov et al. [47] is a self-consistent calculation of the electron
temperature of the central electrode (dot), T,, for given outer electrode temperatures,
T;, where j = 1,2. The authors assume that the device is in the Coulomb blockade
regime (i.e., the electrons tunnel between the electrodes), and the parts of the middle
electrode adjecent to each junction, j, have temperatures equal to T;. They use the
orthodox theory with temperature dependent tunneling rates,

T¥(n) =T [AEf(n),T;, To] -

J

The typical hysteresis width and the typical current can be estimated as 0.5mV and
20pA respectively [47).

The above estimated current value is about two orders of magnitude smaller than
those measured in the etched single dots in this dissertation. Therefore, it is unlikely
that, electron heating in the Coulomb blockade regime is the cause of the hysteresis
in etched single dots. However, switching currents as low as 400pA (see Fig. 3.4)
have been measured in the arrays. Hence, the model proposed by Korotkov et al. can

explain some of the hysteresis loops observed in the array I-V curves.

5.4 Defects and Impurities

It is well known that, defects and impurities that have two metastable states can
cause telegraph noise and related hysteresis in the electrical characteristics of devices.
In this section, DX centers, surface impurities, and their possible connection with

the experimental results will be discussed .
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54.1 DX Centers

The defect which gives rise to a deep donor level in Al,Ga,;_.As alloys for z > 0.22
is commonly known as the DX center [54, 13]. In the nondegenerate limit, the DX

center is proposed to result from the following set of reactions [14]:
d > dt+e
which involves the emission of an electron and,
d+e— DX
which involves the capture of a free electron. The two equations add up to give
2d° - d* + DX".

In the equations above, d represents a fourfold coordinated substitutional donor (like
Si in AlGaAs); DX and e denote the broken-bond configuration shown in Fig. 5.11
and a free electron in the conduction band respectively. The superscripts specify the
charge states.

The configuration coordinate diagram for the DX center is shown in Fig. 5.12
[75). In this diagram, the parabolas on the left hand side represent the total energy
when the electron is in the conduction band (i.e. DX center ionized), and the one on
the right hand side represents the total energy of the occupied DX center. The shift
along the horizontal axis represents a change in the atomic configuration around the
St atom when the charge state is changed. The DX center is characterized by four

energies (the numerical values are for Si in AlGaAs):

o E420.175 - 0.205¢V, the donor binding energy with respect to the bottom of

the conduction band.

o E, ~ 0.43eV, the activation energy for the emission of an electron from the DX

level to the conduction band.

o E, ~ 0.21eV, the capture energy measured with respect to the L minimum of

the conduction band.
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a) b) Ga

Figure 5.11: The schematic diagram which depicts the arrangement of atoms com-
monly called a DX center (From Ref. [14]).
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Figure 5.12: Configuration coordinate diagram for the DX center (From Ref. [75)).
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o E. ~ 0.22¢V, the activation energy for the capture of an electron from the
conduction band measured with respect to the bottom of the conduction band
(E. = E, — E3).

In the diagram, Ey, Er and Ej represent the minimum of the L valley, the minimum
of the I valley and the optical ionization energy respectively (Ep ~ 1.25 — 1.45¢V).
DX centers have several known effects on heterojunction device characteristics,

in particular that of modulation doped 2-DEG structures. Two of them are:

o Persistent photoconductivity which results from the ionization of the DX center
at low temperatures. When the sample is exposed to light, with energy larger
than Ey, the DX center is ionized. When the light is turned off, however, the
electrons remain in the conduction band, and depending on the alloy compo-
sition and temperature, this photoconductivity may decay in minutes to days
[12].

o Hot electron trapping. Once the source drain voltage exceeds some critical value
(about 1.0V in a device with 1um gate length), the DX center captures the
hot electrons, and the device resistance increases. The normal characteristics

can be recovered if the temperature is increased to about 150K or if the device

is exposed to light.

The possible connection between the bistability in the array I-V curves and the
DX centers can be investigated by considering a recent experiment on GaAs/AlGaAs
split gate quantum waveguide structures [11], fabricated by lift-off. In this experiment
the [-V curve exhibits random telegraph noise, switching and hysteresis, induced by
illumination. The bistability can be eliminated by annealing the sample at about
120K for 12h. This annealing temperature and the corresponding time scale are
consistent with the results of Mooney et al. [75], which provides strong evidence for
the important role DX centers play in low temperature transport in GaAs/ AlGaAs
mesoscopic systems.

The quantum dot arrays and control devices in this thesis, on the other hand,

did not exhibit any random telegraph noise, within the investigated parameter space.
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Moreover, the hysteresis was present without illumination. The source drain voltage
was swept relatively slowly (~ 0.05mV/sec in some cases) and the curves were ex-
tremely robust at 20m K, even after a waiting period of two weeks Fig. 5.13. The
stable nature of the curves did not change up to 700mK. These facts lead to the
conclusion that the time constants for the arrays and control devices are very large
at the temperatures the data in this dissertation was taken.

It is not currently possible to relate the mechanism for the hysteresis in the arrays
and control devices to the occupancy of DX centers: First, the electrons in the 2-DEG
cannot tunnel into the doped AlGaAs layer and change the occupancy, because of
the thick spacer. Second, the activation energy, E. for the emission to the conduction
band is very large, so DX centers cannot be formed or destroyed at the measurement
temperatures. In the experiment of Berven et al. [11], the sensitivity of the I-V curves
on the DX center configuration is likely to be due to a change in the potential profile.
In other words the bistability is related to a mechanism which involves the potential
profile, but not the DX centers directly.

5.4.2 Impurities

Except for the results reported in Ref.’s [94, 11], multi-stabilty has only been observed
in the I-V curves of etched devices. This suggests the possibility of surface and
interface states being the source of the hysteresis in the case of top gated arrays and
control devices. A simple model describes how an impurity site can become charged
by an electron as current flows. Once trapped, the electron can tunnel to the site
which is located at the GaAs/CrAu interface or the GaAs surface in the experiment
of Pilling et al. (See Sec. 1.4.3). This extra electron then changes the potential profile
on the current path of the electrons and cause hysteresis.

The effect of impurities on the potential profile can be scen more clearly at gate
voltages close to the unprocessed 2-DEG pinch-off value, which is —630mV for the
samples in B.1 and B.2. Some of the single barrier control devices which pinched-off
at less than —450mV/, had single hysteresis loops very similar to those of single dot
control devices. The hysteresis and switching in this case is likely to have resulted
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Figure 5.13: Two I-V curve traces, obtained twelve days apart from each other within
the same cooldown.
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from the formation of “accidental dots” by impurities and etching.

5.5 Strongly Interacting Systems

5.5.1 Charge Density Waves

Charge Density Waves (CDWs) were first discussed by Frélich in 1954 and by Peierls
in 1955. They are broken symmetry states of metals, brought about by electron-
phonon or electron-electron interactions. The charge density is not uniform, but
exhibits a periodic spatial variation.

The dynamics of the collective mode due to electron-phonon interaction can be

described in terms of a position and time dependent complex order parameter
Az, t) = Ae'®, (5.18)

such that A
p(z) = po+ —L> cos(2kr + ¢). (5.19)
N p’\,p

Here py, X', vr and kr represent the electron density in the absence of interaction, the
dimensionless electron phonon coupling constant, the Fermi velocity and the Fermi
wave vector, respectively [35]. At low temperatures, the amplitude fluctuations in
the order parameter do not play an important role and by treating the phase as a

classical field, the Lagrangian density in one dimension can be written as [26):

_Nc|m a¢ do
£= ir [mvp [Ot] {01] ] (5:20)

where n. and m~ are the density of condensed electrons along the chain direction and
effective mass of the condensate, respectively. The first term on the rigth hand side
represents the kinetic energy of a line mass, m*n,, per unit length. The second term
corresponds to the potential energy associated with the distortion of the collective
mode, with a phenomenological elastic constant x. The equation of motion for this
Lagrangian is then

3245 m_ 82¢

e T (5.21)
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The solutions of Eqn. 5.21 are of the form, exp [i(wt — gz)] (plane waves), and the
g = 0 mode corresponds to the translational motion of condensed electrons with the
ions oscillationg around their equilibrium positions. The rigid displacement of the

CDW leads to a current density given by:

e ¢

Jepw = —5r. (6.22)

The compression of the wave leads to a change in the density, and therefore

e d¢
ne=—=— (5.23)
The equations 5.22 and 5.23 lead to the continuity equation given by:
. on,
dicow | One _ (5.24)

oz ot

In the above analysis, inhomogeneities are neglected. In most experimental situa-
tions, however, there are impurities and defects which lead to the formation of pinning
centers with a finite pinning energy (and the corresponding pinning frequency, wp).
This results in a finite dc threshold for nonlinear conduction. An equation of mo-
tion for the phase in the presence of an electric field and a single pinning center was
proposed by Griiner et al.[36). In this so called “single-particle” in a “washboard
potential” model shown in Fig. 5.14,

10¢ 2kreE

299 L Reing = .
7ot + w;sing o (5.25)

In the presence of a constant electric field, the average current is obtained by

solving 5.25, and is given by

onE + (ncpwer/m*)(E? - E2)'/?2 | E>E;

(5.26)
onE , E<Er

(J(1) = {

where ogn E is the current component due to uncondensed electrons. For |E — Ep| <

E7, that is E near the conduction threshold, the current is given by

(J(t)) ~(E - Er)$,E> Er (5.27)
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Figure 5.14: Single particle in a sinusoidal washboard potential model (From Ref.
[36]).

with ( = 1/2. In the presence of multiple pinning centers, the mean field approxi-
mation can be used. In this approximation, each of a large number, N, of phases is
coupled to all the others. In this case the current has a similar dependence on the
voltage as in Eqn. 5.26 with ¢ = 3/2 [25).

Another important characteristic of charge density waves in metals is the obser-
vation of hysteresis in the I-V curve in some samples. Levy et al. point out in Ref.
[56] that, the switching and hysteresis occur in the limits of strong pinning or large
normal carrier resistance. The authors propose a model in which the CDW is coupled
to a background of uncondensed electrons. Another model which gives a hysteretic
I-V curve has been proposed by Strogatz et al. [84]. The authors calculated the time
derivative of the phase using a hamiltonian with a coupling term periodic in the phase

differences of the domains.
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5.5.2 Wigner Solid

A system in which a spatially periodic charge density is formed as a result of electron-
electron interactions is the Wigner Solid, which was predicted by Wigner in 1934
[92]. Three energy scales should be considered to understand the conditions for the

formation of a 2-D Wigner solid:

e Characteristic potential energy per particle, V,. This is the potential energy due
to Coulomb Interaction of electrons, frozen in a triangular lattice configuration
which minimizes the total energy.

2

€
V= —
€a

: (5.28)

where a = /7n is the radius of the Wigner-Seitz cell of the triangular lattice,

and ¢ is the dielectric constant.
e Thermal kinetic energy, kgT.

e Fermi energy, Er, the energy scale which represents the quantum fluctuations:

Rlrn

m= '

Ep = (5.29)
The ratio of the potential energy and the thermal energy define a single dimen-

sionless parameter, v given by
_ VT 1/2
v= mn . (5.30)
For 7 >> 1 the system is ordered. For v < 1 in is in a disordered phase. At a critical
melting temperature, T, the system undergoes a liquid-solid transition.
Another dimensionless parameter is the quantum ordering parameter, r,, which

is the ratio

V., em* a
Ty = E_p = m-— n = a (531)

Here ap is the Bohr radius. When r, is very large, the electrons again order in a solid
phase. As the density is increased, quantum fluctuations dominate and the crystal
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melts. This transition is called the “Wigner transition”. The density at which the
melting occurs is called the critical density, and is given by

nw = (ezm')2' (5.32)

reeh?

Monte Carlo calculations give r{ ~ 37.

A strong magnetic field forms degenerate Landau Levels and localizes the particles
by decreasing the overlap of thc wavefunctions between ihe lattice points. Therefore,
it can suppress quantum fluctuations and a Wigner solid may be formed, even if the
density of the electrons is larger than the critical melting density, ny,, at B = 0. This
is called a Magnetically Induced Wigner Solid (MIWS) and has been experimentally
observed in GaAs/AlGaAs heterojunctions [4]. In the solid phase, the device has
a very large resistance for small bias. As the voltage bias is increased, the current
stays low until a threshold voltage, V7, is reached. Beyond V7, the current increases
drastically. This behavior can be explained in terms of the depinning transition of
charge density waves. It has been recently reported that for some magnetic field

values, the I-V curve can exhibit multi-stability and hysteresis [93] as shown in Fig.

5.15.

5.5.3 Discussion

The comparison of Fig. 5.15 and Fig. 3.1 shows that, the I-V curves of the 200 x 200
arrays and those of the MIWS are strikingly similar. At nonzero temperatures, the
low voltage part of the I-V curves can be very well fit with a hyperbolic sine function.
Moreover, the dynamic critical exponents of CDW’s and the quantum dot arrays
have very similar values. In this section, these similarities will be investigated in
more detail.

The experimental results for the MIWS system show that threshold field, £y ~
250mVem™! [93]. The threshold voltage, Vr, in the arrays is about 5mV (non-
hysteretic regime) and the length of the array is about 160um. Therefore, the thresh-
old field is on the order of 300mVcm™!, very close to the value in the MIWS. In the
hysteretic regime, the current right after switching is on the order of 0.12.A for hoth

cases.
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Figure 5.15: The I-V curve of an MIWS (From Ref. [4]).

At finite temperatures, and small electric fields, that is E « E7, the current

through the MIWS can be very well fit by
I(E) ~ sinh(NpeEa/T)e (2NoeEra/=T) (5.33)

where Np is the number of electrons in each crystal domain. The same functional
dependence is found for the arrays as shown in Fig. 4.2 and discussed in Sec. 4.2.
The other striking similarity between the transport properties of the arrays and
CDW's is reflected in the dynamical critical exponent, {, which gives the current in
the vicinity of the conduction threshold. The theoretical values are { = 1/2 (Eqn.
§.26) and ¢ = 3/2 for single and many particles in a washboard potential, respectively.
The fits to the experimental results for the arrays and single dots give ( ~ 1.5 and
¢ ~ 0.5 (Chapter 4). The etched array can actually be thought of as a physical
realization of multiple impurity sites, and a single dot as a single impurity site. It
is then necessary to compare the potential and kinetic energies electrons in a single
dot, to see whether a Wigner solid can form. The potential inside a dot can be

approximated by a parabola with the harmonic oscillator energy, hw ~ 1meV [67].
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The 2-DEG used in the experiments has a sheet density, n, ~ 3x 10 cm=2. Assuming
a dot radius of 100nm, the number of electrons, N, in the dot can be estimated to

be 100. The energy levels of a two dimensional harmonic oscillator are given by
Ew =hw(k+141/2). (5.34)
The energy can be written alternatively as
E, =hw(n+1/2), (5.35)

each level being 2(n + 1) fold degenerate (including spin degeneracy). To find the
Fermi energy, Er = Ep=,,, it is enough to solve the equation below for np:

nr
N=23(n+1)=3np+ni. (5.36)

n=0

3 ’9 3
np—'—§+ Z+N~—§+\/N. (5.37)

Therefore, the Fermi energy is given by

Then,

Er = hw(~1+ VN) = 9hw. (5.38)

For fuw ~ 1meV [67], the Fermi energy is about 10meV, with N = 100. The potential
energy, V., on the other hand can be estimated to be close to 10meV, from Eqn. 5.28,
with € = 13.6 [1], for GaAs. The ratio, r,, of these two energies, is given by

2 [mn

e
~ (5.39)

Since n/N = 1/A, where A is the area of the dot, r, does not depend on the
electron number but depends on the shape of the dot, namely its area and fiw. Both
A and Aw are adjusted by the gate in the structures studied here.

Ts

L EVT 1 (5.40)

T, e ro/A

As the gate voltage becomes more negative, A decreases and fiw increases.
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The thermal energy at 20mK on the other hand, is less than 100V, so that the
temperature is lower than the melting temperature of a Wigner Solid characterized
by the above potential and kinetic energies.

A CDW model has been proposed by Field et al. [24] to explain the conductance
oscillations in single quantum dots. Although the energy scales and exponents are
very consistent with the formation of a Wigner Solid and therefore a CDW state,
high frequency (> 10M Hz) ac measurements should be done to see resonances cor-

responding to the vibrational modes of the electron lattice.

3.6  Order Parameters and Critical Exponents

The experimental results presented in Sec. 3.2.1, Sec. 3.2.3 and in Chapter 4 can be
interpreted in terms of a second order phase transition with control parameters 7,
Vg, Varrdor and order parameters differential conductance G, Iy, and AV,,. In this
section, they will be classified and their values will be presented. The relations which

can be obtained from the data are:

Iy = (Varr,dot - VT)C (541)
AVy = (To-T)° (5.42)
AVy = (Vor — V) (5.43)

Eqn. 5.41 is valid for the non-hysteretic regime. Eqn. 5.42 and Eqn. 5.43 on the other
hand are valid for the hysteretic regime. Table 5.1 presents the experimental and

theoretical values.

As mentioned in Chapter 4, ¢ for the array and single dot are very consistent with
the theoretical values obtained for charge density waves. ¢ for the array is also close
to the 5/3 value estimated by Middleton and Wingreen [72]. The discrepency can
be related to the range of the fit or more possibly to the size of the array. In [72]
the authors state that the array size should be larger than 400 x 400 to measure the

correct exponent.
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Dimension | Exponent | Experiment | CDW [35] | Percolation [72)]
C 1.55 3/2 5/3
2 (array) a 0.57
& >1
¢ 0.52 1/2 1 (1-D array)
0 (dot) a
3 <1

Table 5.1: Critical exponents.
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a for the single dot is significantly different from that for the array. Although

there are not many data points available for the single dot, it can be clearly seen

from Fig. 3.13 that it is larger than one (concave down). For the arrays, o < 1 from

Fig. 3.2 and other fits not presented in the dissertation. The difficulty here comes

from the merging and dissociation of the multiple loops. It is hard to trace a single

loop as a function of the gate voltage. Therefore the fits give numbers ranging from

1.3 to 2.3.

Finally, ¢ for the array is 0.57. The value for the single dot is not available since

its temperature dependence was very weak up to 700mA’.



Chapter 6

Conclusions

6.1 Summary of Contributions

This dissertation has made several contributions to the understanding of low temper-

ature electron transport in quantum dot arrays and to their fabrication.

e | have designed and fabricated 200 x 200 quantum dot arrays using MBE, e-
beam lithography and etching. These devices constitute the first large 2-D
semi-conducting arrays which can be driven into the Coulomb blockade regime
at low temperatures. This is achieved by changing the voltage on the gate

covering the device.

¢ I have measured these devices in a dilution refrigerator, typically at 20mK, and
observed, for the first time, multiple switching and hysteresis in the I-V curves.
I experimentally investigated these quantum dot array multi-stabilities for the

first time, as a function of the gate voltage, temperature and magnetic field.

¢ I investigated the dynamical critical behavior of the arrays and control devices
in the non-hysteretic regime. I showed the power law dependence of the current

on the applied voltage, and obtained the critical exponents.

¢ I designed and fabricated a top gated three lead single dot, to study the effect
of gate leakage in the etched arrays and single control devices.
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The studies in this thesis resulted in a large amount of data about the I-V curves
of arrays and the multi-stabilities they contain. All the essential parts of it are
presented in this dissertation. However, in spite of the efforts in this thesis and
those of other groups, the microscopic cause of the hysteresis and multi-stability is
currently unknown. The possible models range from transport through higher order
subbands in GaAs [76], electron heating [32], gate leakage [44] and impurities [11], to
the formation of a Charge Density Wave state [35]. Time will show us which one of

these, or another model is correct.

6.2 Future Experiments

As device sizes decrease due to developments in fabrication techniques, the quantum
confinement and single electron charging effects will become more and more signifi-
cant. The observation of these effects at room temperature has already been reported
(65).

I think, the increasing efforts for making useful single electron devices will increase
the importance of the non-linear regime. In my opinion, the very next steps in research

should be:

e Detailed study of the hysteresis, and the clarification of the underlying mecha-

nism.

e Experimental study of the three lead single dot in the Coulomb blockade regime

as a function of the transparency of the third lead.

e Fabrication of more uniform arrays by using dry etching techniques and higher

mobility 2-DEG structures.

e Detailed study of disorder and its significance in the experimental results pre-

sented in this dissertation.

¢ More detailed investigation of the critical exponents and order parameters, in
particular, their dependence on the temperature, gate voltage, array size and

array dimension.
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e Study of arrays with various sizes and dimensions. In particular, the transition

from quasi 1-D to quasi 2-D.
¢ More detailed study of the hierarchy of switching events.

o High frequency ac measurements. These measurements are very powerful and
useful in making a definitive statement about the underlying mechanism for
the hysteresis. The main difficulty is the efficient coupling of the ac signal to
the device. I think this is just a practical problem which can be overcome by

properly designed wiring and a waveguide system.

Again the time will give the answers to all the questions above. It will be exciting

to wait and see...
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Appendix A
Experimental Setups

This appendix gives the experimental setups for the measurements described in Sec.

5.2.
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Figure A.1: The experimental setup for the 4.2K gate current measurements.
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Figure A.2: The experimental setup for the 40mK gate current measurements.



Appendix B

MBE Growth Files

In this Appendix, the MBE growth files used to grow the 2-DEG strucutres are given.
In these files, subramp2.8.g is a subroutine which increases the substrate temperature
to 700C and then decreases it to 660C after waiting ten minutes. The As shutter is
opened in this subroutine before reaching 400C.

The subroutine 100per. g contains 10 subroutines 10per.g which contains 10 sub-

routines 1per.g. The last one has the lines

wait 13.90
shutter 5A1 o 30.61

In the growth file, the letters o and c give the commands “open” and “close”,
respectively. The temperatures are in degrees Celcius and all the other numbers
represent the time interval in seconds during which the command is executed. In
particular, the second line in the above subroutine means that the Al shutter is kept
open for 30.61 seconds, in other words, it was closed at the end of that time interval.
If no time is specified after o or ¢, the shutter preserves its state until it gets the

opposite command.
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B.1 Device 1, 2, 3, 4

print begin growth 2630:

# - GR[4Ga] = 0.575 um/hr,

# GR[5A1] = 0.297 um/hr, (x=0.34)

# 2-DEG SL Buffer

# 300 A spacer, 5s interrupt, 3.5e18 (170A), 300 A cap, SL
#

# 300 A Gais i

# 170 A AlGaAs x=0.34 n(S1i)=3.5e18(129.32 W)
# 300 A AlGaAs x=0.34 i

# 5 s interrupt

# 10000 A GaAs i

# 500 A AlGaAs x=0.34 i

# 13000 A SL: 100A AlGaAs i (100 periods)

# 30A GaAs i

¥ 3000 A GaAs i

# sub. Gais SI

#

settemp 8As 323.20

settemp 4Ga 1004.00

settemp S5Al 1350.00

¥#settemp 1Si 1318.31

settemp sub idle

print $ Put 2As, 4Ga, 5Al, 1Si, sub in remote.

print $§ Make sure 1Si is on high, and ready.

print § Turn off Ti-ball and ion-gauges.

print § Face sub towards sources, set rotation to 8 rpm.

pause
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include ug/subramp.2.8.g
shutter 24s ¢
settemp sub 660
wait 180

settemp sub 640
wait 600

shutter 4Ga o

wait 1878.26
include g/100per.g
shutter 5A1 o 206.42
wait 6260.87
shutter 4Ga ¢

wait 5

shutter 5A1 o
shutter 4Ga o

wait 123.85

shutter 1Si o 70.18
shutter 5A1 ¢

wait 187.83

shutter 4Ga ¢
settemp sub idle
#settemp 1Si idle
wait 300

shutter 84s ¢

print 4Ga, 1Si and 5A1 at growth temperatures

print end growth #2630
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B.2  Shallow Device

print begin growth 2631:

# GR[4Ga] = 0.575 um/hr,

# GR[5A1] = 0.297 um/hr, (x=0.34)

# 2-DEG SL Buffer

# 300 A spacer, 5s interrupt, 2.8e18 (170A), 300 A cap, SL
#

# 300 A GaAs i

# 170 A AlGaAs x=0.34 n(Si)=2.8e18(126.81 W)
# 300 A AlGaAs x=0.34 i

# 5 s interrupt

# 10000 A GaAs i

# 500 A AlGaAs x=0.34 i

# 13000 A SL: 100A AlGaAs i (100 periods)

# 30A GaAs i

# 3000 A GaAs i

# sub. GaAs SI

#

settemp 8As 323.20

settemp 4Ga 1004.00

settemp 5A1 1350.00

#settemp 1S5Si 1318.31

settemp sub idle

print $ Put 2As, 4Ga, 5Al1, 1Si, sub in remote.

print $ Make sure 1Si is on high, and ready.

print § Turn off Ti-ball and ion-gauges.

print $ Face sub towards sources, set rotation to 8 rpm.

pause
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include ug/subramp.2.8.g
shutter 2As c
settemp sub 660
wait 180

settemp sub 640
wait 600

shutter 4Ga o

wait 1878.26
include g/100per.g
shutter 541 o 206.42
wait 6260.87
shutter 4Ga ¢

wait 5

shutter 5Al1 o
shutter 4Ga o

wait 123.85

shutter 1Si o 70.18
shutter 5Al1 c

wait 187.83

shutter 4Ga c
settemp sub idle
#settemp 15i idle
wait 300

shutter 8As ¢
settemp 8As idle
settemp 4Ga idle
settemp S5Al1 idle

#print 4Ga, 1Si and 5A1 at growth temperatures

print end growth #2631
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B.3 Three Lead Dot

print begin growth #2385:

# GR[4Ga]l = 0.838 um/hr,

# GR[5A1] = 0.430 um/hr, (x=0.34)

# 2-DEG SL Buffer

# 100 A spacer, 5s interrupt, 1.0ei8 (1704), 100 A cap, SL
#

# 100 A Gais i

# 400 A AlGaAs x=0.34 n(Si)=1.0e18(129.32 W)
# 400 A AlGaAs x=0.34 i

# 5 s interrupt

# 10000 A GaAs i

# 500 A AlGaAs x=0.34 i

# 13000 A SL: 100A AlGaAs i (100 periods)

#* 30A GaAs i

# 3000 A GaAs i

# sub. GaAs SI

#

settemp 2As 306.00

settemp 4Ga 987.19

settemp 5A1 1325.06

settemp 1Si 1261.40

settemp sub idle

print $ Put 2As, 4Ga, 5Al, 1Si, sub in remote.

print $ Make sure 1Si is on high, and ready.

print § Turn off Ti-ball and ion-gauges.

print $ Face sub towards sources, set rotation to 8 rpm.

pause
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include ug/subramp.2.8.g
shutter 2As ¢
settemp sub 640
wait 300

shutter 4Ga o

wait 1288.78

include g/100per.g
shutter 5A1 o 141.96
wait 4295.94

shutter 4Ga c

wait §

shutter 5A1 o
shutter 4Ga o

wait 113.56

shutter 15i o 113.56
shutter 5Al ¢

wait 42.96

shutter 4Ga c
settemp sub idle
settemp 1Si idle
wait 300

shutter 2As ¢

print end growth #2385
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Weak Localization in the Array

Mesoscopic effects such as universal conductance fluctuations and weak localization
appear due to the interference from multiple conduction paths through the sample.
The most important condition for the observation of these effects is, therefore, an
electron phase which is preserved during transport. The characteristic time over
which the phase coherence is lost is defined as the “phase breaking time” 74, and
Yo = 1/74 is called the “phase breaking” rate. Phase breaking and conductance
fluctuations are extensively studied using single quantum dots (61, 64, 63, 17]. Both
structures whose classical scattering are regular (non-chaotic) and chaotic have been
studied [62].

Weak localization, in chaotic versus non-chaotic cavities, on the other hand, has
been experimentally studied by Chang et al. [15]. The authors studied arrays con-
taining circular and stadium shaped individual dots. They found a lorentzian and
a triangular lineshape for the chaotic and non-chaotic structures, respectively. The
same measurement can be repeated using the arrays in this thesis. A measurement
of the longitudinal resistance Ry of the array as a function of the magnetic field and
gate voltage was made at 40mJK (Fig. C.1). The individual dots in this case are
rectangular in design but because of lateral depletion, they have a circular shape. As
expected, the lineshape around B = 0 is a triangle (non-chaotic).

It is also possible to see the resistance peak around B = 0.2T which is due to the

first order electron pinball orbit [91]. The periodic array of scatterers in this case are
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Figure C.1: The longitudinal resistance of the array (Device 2) versus the magnetic
field for various gate voltages.

the etched plus sign regions. The diameter, a. of the orbit at a given magnetic field,
B, can be found from classical physics as

2mTvp

B (C.1)

where m" and vF are the effective mass and the Fermi velocity of the electron, respec-
tively. Assuming a sheet electron density n, = 3 x 10''¢m=2 and B = 0.2T.. a can be
obtained as 810nm which is very close to the period of the plus sign pattern. This is
a very good confirmation for the efficiency of the etching technique in isolating and
defining the dots.



Appendix D

Computer Code

Below is the code used to calculate the I-V curve and the differential conductance
of a triple junction system. It is a “Procedure” written in “IgorPro” software which
runs on a macintosh computer.

R T T TR TR
T

HHN GateMacro calculates the G-Vg curve of a single dot with three leads
HHI at finite temperature. Makes the initializations, and plots the graphs

i
R T AR AR

Macro GateMacro(Nem, TempItm, deltaTm, Vgm, Vdsm, VgPoints, T)
Variable/D Nem, TempItm, deltaTm, Vgm, Vdsm, VgPoints, T, CiM, C2M, C3M, RiM, R2M, R3M
Prompt Nem, "Enter the max number of electrons”
Prompt TempItm, "Enter the number of time iterations”
Prompt deltaTm, "Enter the infinitesimal time interval®
Prompt Vgm, "Enter the maximum gate voltage"
Prompt Vdsm, "Enter the source drain voltage"
Prompt VgPoints, "Enter the number of data points for the gate voltage"
Prompt T, "Enter the temperature in units of Csigma"

Redimension/N=(2¢Nem+1) Number
Redimension/N=(2¢Nem+1) sigma
Redimension/N=s(2¢Neat1) sigmaPrev
Redimension/N=(2¢Nem+1) Gip
Redimension/N=(2¢Nea+1) G2p
Redimension/N=(2¢Nem+1) G3p
Redimension/N=(2¢Nem+1) Gim
Redimension/N=(2¢Nem+1) G2n
Redimension/N=(2¢Nem+1) G3m
Redimension/N=(2¢Nem+1) dummy
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Redimension/N=(2¢Vgpoints+1) Vg
Redimension/N=(2¢Vgpoints+1) conductance
Redimension/N=(3) Ids

i

il One set of numbers is C1 = 1.5, C2 = 1.2, C3 = 10, and resistors, 100,10000,10000
i Likharev set of numbers: Ci = 0.8, €2 = 0.8, C3 = 0, 100,1000, R3 G3pm= 0
1T

CiM = 1.5 | C: in units of 10-16, e: iuo 10-19, R: iuo 1000, V: iuo mV, G: iuo 1/psec

C2N = 1.2

C34 = 10

RiM = 100

R2M = 100

R34 = 10000

GVgTrace(Nem, TempItm, deltaTm, Vgm, Vdsm, C1M, C2M, C3M, RiM, R2M, R3M, VgPoints,T)
GVgCurve(Vgm, C1M, C2M, C3M, R1M, R2M, R3M)
EndMacro

R T TR
Hilh

I GVgTrace traces the G-Vgcurve, calculates G for various values of Vg by calling Sigmalnt

HIT for every voltage value. Sigma Int calculates sigma for given voltages and calculates the current
i aftervards. Then GVgTrace takes the slope at the origin to get the conductance.

i

T e R AR
Function /D GVgTrace(Ne, TempIt, deltaT, Vgmax, Vds, C1, C2, C3, R1, R2, R3, Vpts, T)

Variable/D Ne, TempIt, deltaT, Vgmax, Vds
Variable/D R1, R2, R3, C1, C2, C3, Vpts, T
Variable /D Nmax, DeltaV, NVmax, Voltage
Variable n,m

Nmax = Ne*2 + 1

NVmax = Vptse2 ¢ 1

1]
1M Initialize sigma (The probability distribution)

ns=0
do
signa(n] = 0
Number(n] = n - Ne
ne=n+t

vhile (n < lmax)
sigma{(¥max-1)/2 ]=1

DeltaV = 0O
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it (Vpts > 0)
DeltaV = Vgmax/Vpts
endif
Voltage = ~Vgmax
n=0
do
vgin] = Voltage
1ds[0] = SigmaInt(Ne, TempIt, deltaT, Voltage, (-Vds), C1, C2, C3, R1, R2, R3, T)
1ds[2] = SigmaInt(Ne, TempIt, deltaT, Voltage, Vds, Ci, C2, C3, R1, R2, R3, T)
Ilds(1] = 0
conductance(n] = 0.00001+6.67+(Ids[2] - Ids[0])/(2+Vds*2#2.56)
nsn+1t
Voltage = Voltage + DeltaV
vhile (n < NVmax)
Return (NVmax)
End

T T T TTEEELAGEEELY
I

Wit "SigmaMacro” calculates the I-V curve of a single dot with three leads
i at finite temperature, as a function of the gate voltage
T SigmaMacro makes the initializations, and plots the graphs
I
IR TR R T O D T
Macro SigmaMacro(Nem, TempItm, deltaTm, Vgm, Vdsm, VPoints, T)
Variable/D Nem, TempItm, deltaTm, Vgm, Vdsm, VPoints, T, CIM, C2M, C3M, R1M, R2M, R3M
Prompt Nem, "Enter the max number of electrons"
Prompt TempItm, "Enter the number of time iterations"
Prompt deltaTm, "Enter the infinitesimal time interval"
Prompt Vgm, "Enter the gate voltage"
Prompt Vdsa, “Enter the maxiumum source drain voltage"
Prompt VPoints, "Enter the number of data points"
Prompt T, "Enter the temperature in units of Csigma"

Redimension/N=(2¢Nem+1) Number
Redimension/N=(2+Nem+1) sigma
Redimension/N=(2¢Nem+1) sigmaPrev
Redimension/N=(2¢Nem+1) Gip
Redimension/Ns(2¢Nem+1) G2p
Redimension/N=(2¢Nem+1) G3p
Redimension/Ne(2sNem+1) Gim
Redimension/N=(2¢Nen+1) G2m
Redimension/Ns(2¢Nem+1) G3m
Redimension/Ns(2¢Nem+1) dummy
Redimension/N=(2¢Vpoints+1) Vds
Rodimension/Ns=(2¢Vpoints+1) Ids



APPENDIX D. COMPUTER CODE 114

11

HIth One set of numbers is C1 = 1.5, C2 = 1.2, C3 = 10, and resistors, 100,10000,10000
1 Likharev set of numbers: Ci = 0.8, C2 = 0.8, C3 = 0, 100,1000, R3 G3pm= 0
]I

CiM = 0.8 | C: in units of 10~16, e: iuo 10-19, R: iuo 1000, V: iuo mV, G: iuo 1/psec

C2M = 0.8

C3M = 0

RiM = 100

R2M = 1000

R3M = 100000

IVTrace(Nem, TempItm, deltaTm, Vgm, Vdsm, CiM, C2M, C3M, RiM, R2M, R3M, Vpoints,T)

it

I The two lines below are for calculating the probability density only
| SigmaInt(Nem, TempItm, deltaTm, Vgm, Vdsm, CiM, C2M, C3M, Ri1M, R2M, R3M)
| ProbDist(Nem, C1M, C2M, C3M, RiM, R2M, R3M)
I

IVCurve(Vdsm, CiM, C2M, C3M, R1M, R2M, R3NM)
EndMacro

T TR
i

1 IVTrace traces the I-V curve, calculates I for various values of Vds by calling Sigmalnt

i for every voltage value. Sigma Int calculates sigma for given voltages and calculates the current
11l aftervards.

Him

IO T T T I T T
Function /D IVTrace(Ne, TempIt, deltaT, Vg, Vdsmax, C1, C2, €3, Ri, R2, R3, Vpts, T)

Variable/D Ne, TempIt, deltaT, Vg, Vdsmax
Variable/D R, R2, R3, C1, C2, C3, Vpts, T
Variable /D Nmax, DeltaV, NVmax, Voltage
Variable n,m

Nmax = Nee2 ¢ |

NVmax = Vptss2 + 1

I Initialize sigma (The probability distribution)

neo
do
sigma(n] = 0
Numsber(n] » n - Ne
nsn+l

vhile (n < Namax)
sigma{(nax-1)/2 ]=1

DeltaV = 0
if (Vpts > 0)
DeltaV = Vdsmax/Vpts
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endif
Voltage = -Vdsmax
n=0
do
Ids(n] = SigmaInt(Ne, TempIt, deltaT, Vg, Voltage, C1, C2, C3, R1, R2, R3, T)
Vdaln] = Voltage
nsn+1
Voltage = Voltage + DeltaV
vhile (n < NVmax)

(i

N Below is for a back sweep

| n = NVmax

| do

| Ids(n]} = SigmaInt(Ne, TempIt, deltaT, Vg, Voltage, C1, C2, C3, R1, R2, R3, T)
] Vds[n] = Voltage

| n=n+1

| Voltage = Voltage - DeltaV

| vhile (n < 2¢NVmax)
i

Return (NVmax)

End

e TR TR

i
Hilm Sigmalnt calculates the probability distribution and the

I current for the given voltage, and temperature

i

T T e TR

Function /D Sigmalnt(Ne, TempIt, deltaT, Vg, vds, €1, C2, C3, R1, R2, R3, T)
Variable/D Ne, Templt, deltaT, Vg, Vds, T
Variable/D R1, R2, R3, C1, C2, C3
Variable /D Nmax, sigmanmi, sigman, dumi, Csigma, e, Current, temperature, bet
Variable n,m
Nmax = Nes2 ¢+ 1
e= 1.6

Csigma = C1 ¢+ C2 + C3
temperature = (e¢eeT)/Caigma

dumi = (10/(e*R1¢Csigma))s(-e/2+(~(n=Ne)ee ¢ C3eVg + (C2 + C3/2)#Vds))

Gipln] = dum1/(1-exp(-((-e/2¢(~(a-Ne)ee + C3sVg + (C2 + C3/2)eVds})ee)/(CaignasT)))
dual = (10/(eeR2¢Csigma))e(-0/2¢(-(n-Ne)ee + C3eVg ~ (C1 + C3/2)sVds))

G2p(n] = dumt/(1-exp(~((-e/2¢(~(n-Ne)se + C3eVg = (C1 + C3/2)eVds))*e)/(CsigmasT)))
duml = (10/(esR3¢Csigma))s(-e/2¢(-(a-Ne)®e - (C14C2)eVg - (C2/2-C1/2)Vds))

G3p(n] = dum1/(1-exp(-((-e/2+¢(-(n-Ne)ee - (C14C2)eVg - (C2/2-C1/2)Vds))*e)/(CaigmasT)))
dumi = (10/(e*R1eCsigma))e(-e/2-(-(n~Ne)we ¢+ C3eVg + (C2 + C3/2)sVds))



APPENDIX D. COMPUTER CODE 116

Gin[n] = dumi/(1-exp(-((-e/2-(-(n-Ne)se + C3sVg + (C2 + C3/2)sVds))*e)/(CsignasT)))
dumi = (10/(e*R2¢Csigma))*(~e/2~(~(n-Ne)we + C3sVg - (C1 + C3/2)=Vds))

G2n[n] = dum1/(1-exp(-((-e/2-(-(n-Ne)=a + C3sVg - (C1 + C3/2)sVds))+e)/(CsigmasT)))
dumi = (10/(e*R3+Caigma))*(~e/2~(~(n-Ne)ve - (C14C2)sVg - (C2/2-C1/2)*Vds))

G3n[n] = dum1/{1-exp(-((-e/2-(~(n-Ne)se ~ (C1+C2)sVg - (C2/2-C1/2)#Vds))*e)/(CsigmasT)))

HIMIT Below gives the tunneling rates at zero temperature
| Gip[n) = (10/(esRisCsigma))*(~e/2+(-(n-Ne)sa + C3sVg + (C2 + C3/2)eVds))
| if (Gip[n] < ©)
| Gip{n] = 0
| endif
| G2plr] = (10/(e*R2eCsigma))e(~e/2+(~(n-Ne)se + C3sVg - (C1 + C3/2)»Vds))
] it (G2p(n]) < O)
| G2p[n] = 0
| endif
| G3plr] = (10/(esR3+Csigna))*(-e/2+(-(n-Ne)se ~ (C1+C2)sVg - (C2/2-C1/2)sVds))
| it (G3p(n] < 0)
| G3p[n] = 0
| endif
| Gim[n] = (10/(e*R1sCsigma))«(-e/2-(-(n-Ne)se + C3sVg + (C2 + C3/2)*Vds))
] iz (Gim{n] < 0)
i Gim[n] = 0
| endif
] G2m[n] = (10/(e®R2eCsigma))e(-e/2-(~(n-Ne)*e + C3eVg - (C1 + C3/2)*Vds))
[ it (G2m[n] < 0)
| G2n(n] = 0
| endif
] G3m(n] = (10/(CeeR3+Csigma})*(-e/2-(~(n-Ne)se - (C14C2)*Vg - (C2/2-C1/2)sVds))
| it (63mlad < O)
] G3m[n] = 0
| endif
Hi
G3m(n] = O |These are set to zero for standard
G3p(n] = O |(non gate leakage) single dot, and commented for gate leakage.
n ® n+l
vhile (n < Nmax)

L]

i Forvard time calculation of sigma is below. this version is unstable for large T so it is
i more useful for studying time evolution in a smal) time interval. Unnecessary iterations

HTHH] to look at steady state.

o

o

NI Outer loop for time integration for all sigma
i ne0
| do
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sigmanml = sigma{0]
sigman = sigma{1]

!
I
!
mi Inner loop for calculating all sigma[n]’s for that time iteration

| ns=1

| do

| sigma(n] = (Gip[n-1] + G2p(n-1] + G3p(n-1])ssigmanmiedeltaT

| sigma(n] = sigmaln] + (Gim[n+1] + G2m[n+1] + G3m[n+1])+sigma[n+1]*deltaT

| sigmaln] = sigma(n] - (Gip(n] + G2p(n] + G3p(n]+Gim(n] + G2m[n] + G3m[n])ssigmanedeltaT
| signa(n] = signaln] + sigman

| sigmanmi * sigman

| sigman = sigma(n+1)

i n = n+l

| vhile (n < Nmax - 1)

| m=m+1

| vhile (m < TempIt)

I backvard time version of the calculation of sigma is below
I (Numerical Recipies, by Press et Al, p 43)
i
m=0
do
sigmaPrev = sigma
bet = 1 + deltaTe(G1p[1] + G2p[1] *+ G3p[1)+G1m[1] + G2m[1] + G3m[1])
sigma(1] = sigmaPrev(1]/bet
n=2
do
dummy {n] = - deltaT+(Gim(n] + G2a[n] + G3m[n])/bet

117

bet=1+deltaT#(G1p[n]+G2p[n]+G3p[n] +Gim[n]+G2m[n]}+G3m[n] ) +deltaT+(G1p [n~-1]+G2p[n-1] +G3p [n-1])*dummy[n)

iz (bet == 0)
Print "ERROR IN THE PROCEDURE: TRIDAG FAILED"
endif
signa(n] = (sigmaPrev(n] ¢ deltaTe(Gip(n-1) + G2p(n-1) + G3p(n-1))esigmaln-1])/bet
n s o+l
vhile (n < Nmax -1)
n = Nmax -3
do
sigma(n) = sigmaln] - dummy(n+1)esigma(n+1]
n = n-i
vhile (r > 0)

nsm+1
vhile (a < Templt)

U the loop below calculates the current from the sigma values
Current = 0
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n=0
do
Current = Current + (G2p{n] - G2m[n])*sigma(n]
nen+l
vhile (o < Nmax - 1)
Current = Current*(-1.6e+5) [Current in pA (Gamma in 1/psec, -19 +12 +12 = § exponent here)
Return (Current)

End
T T T S e ETR TR
[1Hl}

mm ProbDist

i The graph below plots sigma versus the number

Hin

e e AT

Window ProbDist(Nelec, C1P, C2P, C3P, R1P, R2P, R3P) : Graph
Variable/D Nelec, CiP, C2P, C3P, R1P, R2P, R3P
PauseUpdate; Silent 1 | building window...
Display /W=(5,42,501,309) sigma vs Number
ModifyGraph ticks=2
ModifyGraph mirror=1
ModifyGraph fSize=16
Label left "sigma(n,t)"

Label bottom "n"

SetAxis bottom -Nelec,Nelec
SetAxis left 0,1

EndMacro

T T
i
HIE The graph below plots the I-V curve
il
T T T T RS TEAATLERT
Window IVCurve(Vmax, C1P, C2P, C3P, R1P, R2P, R3P) : Graph
Variable/D Vmax, CiP, C2P, C3P, R1P, R2P, R3P
PauseUpdate; Silent 1 | building window...
Display /W=(5,42,501,309) Ids vs Vds
ModifyGraph ticks=2
ModifyGraph mirrorsi
ModifyGraph f£Size=16
Label left “"IBds (pA)“
Label bottom “VBds (av)"
SetAxis bottom -Vmax,Vmax
EndMacro

L T e T e ECTTETEETATHTeqIes
A
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1] The graph below plots the G-Vg curve

il
R T
Window GVgCurve(Vmax, CiP, C2P, C3P, R1P, R2P, R3P) : Graph
Variable/D Vmax, CiP, C2P, C3P, R1P, R2P, R3P
PauseUpdate; Silent 1 | building window...
Display /W=(5,42,501,309) conductance vs Vg
ModifyGraph ticks2
ModifyGraph mirrorsi
ModifyGraph £Size=16
Label left "G (e2/h)"
Label bottom "Vg (aV)"
SetAxis bottom -Vmax,Vmax
EndMacro



