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ABSTRACT 

This thesis explores a variety of topics conceming the dynamics, stability and 

performance of analog neural networks. Techniques used to study these systems include 

global and local stabiJity analysis, statisticaI methods originaIly developed for Ising­

model spin glasses and neural networks, numerical simulation, and experiments on a 

small (S-neuron) electronic neural network. Attention is focused mostly on networks 

with symmetric connections. The analog neurons are taken to have a smooth and 

monotonic transfer function, characterized by a gain (i.e. maximum slope) f3. 

The electronic network includes time delay circuitry at each neuron. Additional 

circuitry allows measurement of the basins of attraction for fixed points and osciIIatory 

attractors. Stability criteria for analog networks with time-delayed neuron response are 

deri ved based on local analysis. These results agree well with numerics and experiments 

on the electronic network. 

A global stability analysis is presented for analog networks with parallel updating of 

neuron states. It is shown that symmetric networks satisfying the criterion: 1/f3 > -Å.min 

for all neurons, where Å.min is the minimum eigenvalue of the connection matrix, can be 

updated in parallel with guaranteed convergence to a fixed point. Based on this criterion, 

and a new analysis of storage capacity, phase diagrams for the Hebb and pseudo-inverse 

rule associative memories are derived. Analysis of parallel dynamics is then extended to 

a multistep updating rule that averages over M previous time steps. Multistep updating 

allows oscillation-free parallel dynamics for networks that have period-2 limit cycles 

under standard parallel updating. 

It is shown analyticaIly and numerically that lowering the neuron gain greatly reduces 

the number of local minima in the energy landscapes of analog neural networks and spin 
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glasses. Eliminating fixed-point attractors by using analog neurons has beneficial effects 

similar to stochastic annealing and can be easily implemented in a deterministic dynarnical 

system such as an eleco-onic circuil. 

Finally, a numerical study of the diso-ibution of bas in sizes in the Sherringwn­

Kirkpatrick spin glas s is presented. It is found that basin sizes are distributed roughly as 

a power law and that using analog state variables selectively eliminates small basins. 
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Chapter 1 

INTRODUCTlON 

Our world is filled with complex phenomena which emerge, as if by magic, out of 

interactions among many simple elements. Sometimes (rarely) an intellectually satisfying 

picture can be painted, allowing us to claim that we understand how the magic comes 

about. For certain static phenomena, statistical mechanics provides such a picture, and 

makes clear how the interaction of microscopic elements can give a large system a "life of 

its own," with well-defined properties that are not obviously present when the system is 

observed element by element. Statisticai mechanics also provides a justification for the 

empirical faet that large systems can be characterized by a few well-chosen quantities; one 

does not need to keep track of all 1023 variables. This feature is essential for rendering 

large systems understandable. 

Extending the principles and techniques of statisticaI mechanics to include complex, 

dynamic phenomena on a macroscopic scale remains an outstanding challenge and a 

problem of great current interest in many areas of physics. Ultimately, one would like to 

understand the complexity of the real world within a framework linking statisticaI 

mechanics and dynamical systems theory. The hope for such a synthesis, however, 

rests on the hypothesis that microscopic proces ses ean be described by simple models. lf 

the complexity of nature must be accounted for at all size scales, we certainly have no 

hope of understanding big systems. 

Neural networks research certainly represents the most extreme test of the hypothesis 

that complexity can emerge directly out of the interaction of a large number of simple 

elements. It asks the question, "Can the operation of the most complicated object known 
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be described as an emergent propeny of maximally simple elements interacting according 

to simple rules?" This line of inquiry does not presuppose that the answer is yes, but 

rather seeks to discover just how far such a princip le can go. Judging from our current 

levelof knowledge about even the simplest biological systems, we may not leam whether 

the approach is justified for some time, let alone reap (and market) the fruits of the 

endeavor. 

In addition to the role of neural networks as a paradigm for understanding biology, 

there is a purely technological motivation for developing highly parallel dynamical 

systems that can solve difficult problems. Simply put, the standard computer architecture 

is coming to the end of its rope. Many problems of great technological interest cannot be 

sol ved with acceptable speed using the fastest conventional computers, and even allowing 

factors of 100 or 1000 in speed, the present technology remains ill-suited to cenain 

applieations. It is interesting to note that many tasks whieh are routinely performed by 

humans with almost trivial ease seem to be the most ehallenging for computers. Our 

ability to quickly recognize a face, or to infer the shapes and distances of objects from 

visual information illustrates the aSlronomieal superiority of biological computation over 

current computer technology. What makes this superiority more remarkable still is the 

faet that the fundamental time scale in biology is around a millisecond, some four orders 

of magnitude slower than standard computer cycle times. 

The efficieney of biological computation suggests that perhaps by simply emulating 

biology's basie design - without necessarily duplieating it - we may realize revolutionary 

technological advances. Which qualities constitute biology's "basic design" is currently 

anybody's guess, though massive parallelism and fault tolerance seem to be two such 

basic principles, at least in the conex. (Neither feature is part of the basic design of 

current computers.) If not hin g else, biological neural networks serve as working 

demonstrations that a vastly superior technology is pos si ble in principle . 
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We will not review the long and interesting history of neural networks here. Instead, 

we refer the reader to several good reviews which have appeared recently [Lippmann, 

1987; Grossberg, 1988; Amit, 1989; Hirsch, 1989; Abbott, 1990; reprints ofmany ofthe 

cJassic articJes can be found in Shaw and Palm, 1988]. The various accounts of neural 

networks are remarkably disparate, especiaIly in their historicai perspective, so it is 

necessary to read several versions in order to appreciate the breadth of the subject. 

A common feature of nearly all neural network models, dating back to their modem 

origin in the work of McCulloch and Pius [19431, is the sum-and-threshold device 

known as a formal neuron or simply a neuron for short 1. The basic neuron we consider 

is shown in Fig. 1.1 (many variations will appear later). The output of the formal neuron 

ean be binary ( (O,I) ar (-l,!) ) or continuous, but the sigmoidal (s-shaped) 

nonlinearity of the input-output transfer function is standard. Much more will be said 

later regarding the shape of the neuron transfer function. A neura! network is typically a 

collection of these formal neurons arranged in some architecture, with neuron inputs 

connected to extemal signals and to the outputs of other neurons. Connections between 

neuron s are characterized by a set of connection weights, which may be negative, 

positive, or zero. In addition, one must specify a dyn arni c rule defining how the states of 

the neuron s change in time. 

The hard part of the problem, of course, is figuring out how to connect the neurons to 

each other so that the resulting dynamical system will do something imeresting ar useful. 

The idea, however, is not to set the connections "by hand," but rather to develop leaming 

algorithms so that the network can respond to extemal stimuli by modifying its own 

connections in an effective way. Loosely speaking, we would like the network lo leam 

from its own experience. Considerable progress in this area has been made, particularly 

for the lask of associative memory, beginning with the work of Hebb [1949), and 

l Henceforlh, lhe word "neuron" will be taken to mean a formal neuron; any references to real 
(biological) neurons will be explicitJy stated as such. 
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continuing through to the recent work of the PDP Oroup fRumelhart et al., 1986], E. 

Oardner [1988], and others. Hebb's primary contribution was to postulate aremarkably 

simple, yet effective mechanism for modifying conneclions which will store a particular 

neural slate as a memorized pattern. The rule is Ihe folIowing: Tmpose a pallem of 

stimulus onto the network, and incrementally inerease the connection weight between 

neurons with eoincident aClivity. This modification will eventually cause the imposed 

pallem of neuron al aClivily to become a stable configuration of the system af ter the 

stimulus is removed. There is evidence that Hebb's mechanism is realized in biological 

systems, though at present this is an is sue of considerable debate [Lynch, 1986]. 

An important milestone in the understanding of neural network models was the recent 

work of Hopfield [1982; 1984; Hopfield and Tank, 1985; 1986]. Hopfield (and later, 

Hopfield and Tank) emphasized four ideas, all of which have proven extremely fertile. 

Those ideas were: (I) there is a close analogy between neural network models with 

extensive feedback and random magnetic systems known as spin glasses; (2) the 

dynamical aspects of networks can be anaTyzed in terms of an energy function; (3) simple 

neuraT networks ean be mapped onto traditionally difficult computational problems, 

yielding good, fast resulls; and (4) neural network models can be naturally realized in 

analog electronics. It could be argued thai, in fael, none of these ideas was new. The 

conneclion between neural networks and magnelism, for example, dales back to the 

19505 [Cragg and Temperley, 1954], and the energy function idea had also been used by 

Cohen and Orossberg [1983; Carpenter et al., 1987]. The com bi nation of ideas, 

however, along with tangibie results and a clear exposition in a style familiar to 

physicists, managed to generate an excitement within the physics community which has 

proven to be both contagious and self-sustaining. 

Many of the topics addressed in this thesis spring directly from the four ideas of 

Hopfield mentioned above. Most of Ihe Ihesis will focus on various dynamical 
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properties of analog neural networks of the type described by Hopfield (see Fig. l.l), 

with an emphasis on the practical, rather than the biological. The goal throughout will be 

to discover useful - and whenever possible, simple - results which ean serve as 

guidelines for Ihe design offasl, parallel compuling devices. Oceasionally, the relevance 

of a resull to biology will be menlioned, but we stress al the outset that sue h insights are 

of seeondary importance in thi s work. 

The main eonclusion of the thesis is that the input/output transfer funclion of Ihe 

individual neurons greatly influences the eolleetive dynamies of the whole network. 

Furthermore, for the restricled class of models eonsidered, Ihe nature of this influence 

can be analyzed and described quantitatively. From a practieal point of view, this thesis 

demonstrates that analog neural nerworks have important computational advantages over 

eorresponding models eonstructed from binary neurons. Thus, in emulating biology to 

make fast parallel computing machines, one is likely to find that the analog character of 

the neuron is an important aspect of Ihe computalional power of the syslem as a whole. 

Chapler 2 gives a more detailed overview of the topies presented in this thesis, 

chapter by chapter. 
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FORMAL NEURON 

\ 
SUMMING 
POINT 

Fi(h;) 

HOPFIELD-TYPE (FEEDBACK) NEURAL NETWORK 

CONNE 
WEIGH 

T;} 

CTION 
T 

~ 

INPUT LI NE 

\ 

~ I 

-f'>--

.,.;: 

BINARY NEURON 
TRANSFER 
FUNCTION 

Sgn(f4) f---

---+---h; 

ANALOG NEURON 
TRANSFER 
FUNCTION 

Fi(h; ) 

---!---h; 

Fig. I . I. The basic elements of the neural network model discussed in this thesis. Many 
variations will appear later. The formal neuron (or just "neuron") has an input h; which 
is a weighted sum of the outputs from other neurons. The connection weight from 
neuron j to neuron j is given by the matrix element Ti}' The neuron output is a 
non linear function F/h;) of the input. This function is typically either binary or a 
continuous sigmoid (s-shaped) function. The network architecture we consider has 
extensive feedback, and we will frequently impose the symmetry condition (T;) = T}). 
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Chapter 2 

OVERVIEW OF THESIS1 

This thesis addresses a variety of IOpics, mostly involving the dynarnics, stability, 

and performance of analog neural networks. There are, however, many sections and 

even whole chapters (Ch. 8 and Ch. IO, for example) which depart from this subjecl. A 

consistent theme throughout the work concerns the dynamical behavior of nonlinear 

systems with many degrees of freedom. A variety of techniques will be used to explore 

these systems, inc1uding experiments, numerical investigations, and mathematical 

analysis. 

In chapter 3, we describe an electronic analog neural network consisting of eight 

neurons bui It using operation al amplifiers with nonlinear feedback , and accompanying 

circuitry to allow fast measurements of the basins af attraction for fixed points and 

oscillatory modes. Af ter providing construetion details , we present several 

measurements of the shapes of the basins af attraction in an analog associative memory. 

A notable feature af the network is the inc1usion of charge-coupled device delay lines in 

each neuron. Delays are adjustable over nearly two orders of magni tude, allowing 

delay-induced instabilities to be studied experimentally, and eriticaI values of delay to be 

measured in a variety of network configurations, and as other network parameters are 

varied. 

In chapter 4, we con sider the effect of time delay an the stability of symmetrically-

connected analog neural networks from a more mathematicaI point of view. We present 

l References have been strippcd from this chapter to keep it short and easy to read. See subsequent 
chapters for references. 
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two stability criteria, based on local stability analysis, that give <.-TItica! values of delay 

above which sustained collective oscillation appears. The surprising resuh is that the 

critical delay depends on only a few network parameters: the characteristic time of the 

network, the neuron gain, and the exrremal eigenvalues of the connection matrix. Resuhs 

are applied to several network configurations, including symmetrically connected rings, 

two-dimensional lattices of neurons, randomly connected networks, and associative 

memory networks. Results are found to be in good agreement with numerics and 

experiments performed on the elecrronic network. Finally we discuss chaotic dynarnics 

in time-delay networks, and give an example of a three-neuron circuit with delay-induced 

chaos. 

In chapter 5 we study the stability and associative-memory capabilities of a discrete­

time, analog neural network with parallel updating of neuron states. Parallel operation is 

crucial to the design of fast neural networks. The usual practice for discrete-time systems 

with binary neurons, however, is to update sequentially in order to prevent unwanted 

oscillation. We show that all oscillatory modes can be eliminated from a parallel-update 

analog neural network with symmetric connections by lowering the neuron gain belowa 

certain critical value. The result is stated as a simple, global stabil it y criterion relating the 

maximum neuron gain and the minimum eigenvalue of the connection matrix. This 

criterion allows "safe" parallel dynarnics, with guaranteed convergence to a fixed point. 

Following this, we apply the analog nerwork to the problem of associative memory, and 

present novel phase diagrams (in terms of neuron gain and the ratio of stored patterns to 

. neuron s) for the Hebb and pseudo-inverse learning mies. To our knowledge, these are 

the flTst reported analytical results of storage capacity for analog neural nerworks. Within 

the "recall" regions of the phase diagrams, where memory pattems are stable and have 

large basins, we find numerically that the performance of the associative memory 

improves as the neuron gain is lowered. This important observation, also noted by 

Hopfield and Tank and others, suggests the possibility of deterministic analog annealing. 
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In chapter 6 we generalize the stability analysis af chapter 5 to include analog 

networks with an update mIe based an an average over M previous time steps, for 

arbitrary M. Standard parallel updating eorresponds to M = 1. The important result is 

that the eritical value of neuron gain is increased for the multiple-time-step update rule by 

a factor of M, compared to standard parallel updating. Some applieations to associative 

memories are then given. We also present a simple analysis of the eonvergenee rate of 

the multiple-time-step network as a funetion of M. 

In chapter 7 we study the number of loeal minima in the dynamieal (energy) 

landseape of the analog spin glas s and the analog associative memory. We show that the 

expected number of local minima (NIp) for both systems increases exponentially with the 

size of the system N, as (N fp) ~ exp(aN). The sealing exponent a depends on the 

neuron gain for the case of the analog spin glass, and depends on both the neuron gain 

and the ratio ofpattems to neuron s for the analog associative memory. Analytieal values 

for a are given for both systems. As neuron gain deereases, the value of a (for both 

systems) also deereases, which has the effect of dramatically reducing the number of 

loeal minima. These results provide an analytieal framework for understanding how 

lowering the neuron gain ean lead to improved performance in analog associative 

memories. Numerical observations of this effect are also presented in Ch. 5. Theoretieal 

values for the scaling exponent a agree reasonably well with numerical values found by 

directly counting the fixed points in a large sample of eomputer-generated realizations. 

In chapter 8 we explore the basin structure of the detenninistie (zero-temperature) 

SK spin glass. This model has been studied extensively and is known to possess an 

extremely rieh energy landscape. The main result of this chapter is that the numerieally 

measured distribution of basin sizes, averaged over realizations, obeys a power law with 

exponent near -3/2 over a wide range of basin sizes. The exponent of the power law 

appears to be independent of N . Some consequences of this power law are then 
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considered. The distribution of basin sizes in the detenninistic SK model is qualitatively 

different from other c10sely related distributions which, among themselves, show certain 

universal features. Apparently, and perhaps surprisingly, the universality seen in these 

other distributions is not shared by the distribution observed here. We end this chapter 

by showing (again, numerically) that the distribution of basin sizes is strongly affected by 

the use of analog state variables. We find that redueing the gain in an analog spin glass 

selectively eliminates fixed points with smal l basins of attraetion. 

In chapter 9, we give some brief conclusions and remarks eoneerning unsolved 

problems and interesting fUTUre directions. 

Chapter IO is an appendix containing two papers on the dynamics of charge-density 

waves (CDWs). This work is essentiaIly unrelated to neural networks, though it shares 

with the previous chaplers a general Iheme of collective dynamics in nonlinear, many­

body systems. The main idea in these papers is that a simple modification to allow phase 

slip in a previously-studied mean-field modelof CDW dynamics eau ses the smooth 

depinning transition to become discontinuous and hysteretic. The behavior of the phase­

slip model is very suggestive of switching, which is observed experimentally in eertain 

CDW systems. The way that phase slip is introduced in Ihis model has the added virrue 

of making the system analytically tractable. 
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Chapter 3 

THE ELECTRONIC ANALOG NEURAL NETWORK 

3.1. INTRODUCTION: WHY BUlLD ELECTRONIC HARDWARE? 

Soldering gives a person lots of time IO think. One partieularly deep question to think 

about while soldering together an e1eetronic neural network is what distinguishes an 

experiment from a simulation, or, in other words, why build (his circui(? Among neural 

networks researchers, (here is a large camp of non·apologists who view the mathematical 

system as the neural network, rather th an considering the equations to be a simplified 

description of some physical reality [see the discussion of Maddox, 1987]. From thi s 

perspective, an e1ectronic neural network serves as a fast analog computer for simulating 

the "real" (mathematica!) system. A more engineering-minded line of thought emphasizes 

the potential for building powerful computational devices. Because microelectronics, and 

particularly VLSI, is the likely medium for implementing these devices [Mead, 1989], it 

is important (the argument goes) to learn as much as pos si ble about real circuits and the 

behavior of large, interconneeted e1ectronic networks. By this reasoning, building an 

e1ectronic network from discrete componenls is progress loward the ultimale goal of 

building a "real" neural network (i.e. a large, fast and truly useful piece of e!ectronic 

hardware). 

Apart from these bigger questions of motivation is the simple faet that many imponant 

problems in neural networks (especially analog neural nelworks) are difficult to treat 

analYlically or by conventional numerical simulation. Occasionally, such problems ean 
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be studied easily and directly in a small electronic network. Af ter presenting the details of 

our circuit in §3.2, we will con sider two problems of this son. Theyare: 

(l) What are the shapes - not just the volumes - of the basins of attraction for tlle 

recalt states of an associative memory? In a well-designed associative memory, the 

basins of attraction for recall states should be large, but that is not sufficient: the basins 

must also be roughly spherical (by some appropriate measure) and centered about the 

recalJ states. If the basins of attraction are diffuse or disconnected in stale space, the 

memory will not be usefuL In § 3.4 we show that the shapes of the basins for recall 

states are in faet somewhat irregular when the network is overloaded with memories. 

(2) How does time delay affect the transients, attractors and basins of attracrion in a 

neural nelWork? This problem is of paniclllar interest to the engineering-minded camp, 

as the operating speed of VLSI circuitry willlikely be limited by switching-delay-indllced 

instabilities (for a discussion of delays in VLSI, see [Mukherjee, 1985, Ch. 6]). MllCh 

of the mathematical analysis of networks with time delay that appears in chapter 4 was 

suggested by or confumed using the electronic network. 

Electronic circllits have also been used to find and characterize chaOlic behavior in 

analog neural networks [Marcus and Westervelt, 1989b; Kepier et al., 19891. This 

application will be discllssed in § 4.6. 

3.2_ CIRCUITRY 

In this section we provide a detailed description of the electronic nellral network 

circuit. First, thOllgh, we give a quick overview of the circllit's main features: 

The electronic network consists of eight analog neuron S (nonlinear amplifiers) 

connected via 128 manual switches and resistors. Connections between pairs of neuron s 

ean be noninverting, inverting, or open, depending on the positions of these 128 
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switches. Each neuron has an independently adjustable gain and saturation level, and has 

a time delay section based on a charge coupled device (CCD) analog delay line. (The 

reader may wish to glance ahead at Fig. 3.4 at this point.) 

The dynamicaI equations for the voltages ui(r) on the input capacitors of the neurons 

(nonlinear amplifiers) are 

N 

+ L 7;; tAuj(r' - Tj)) i = 1 '0'0' N, (3.1) 
j = l 

where ei is the neuron input capacitance and Ri = (:EjITi})-! is the resistance to the 

rest of the circuit at the input of neuron j , and f; is a smooth sigmoid function describing 

the transfer function of the jlh neuron. Equation (3.1) is identical to the analog system 

described by Hopfield [1984], with the inclusion of time delay. It is not equivalent, 

however, to some other hardware implementations which have the input capacitor across, 

rather than in front of, the nonlinear amplifier [Denker, 1986c; Amit, 1989; KepIer er al., 

1989]. 

Digital timing circuioy and voltage-controIled analog switches are used to periodicaIly 

op en the feedback path from the resistor matrix to the neuron input and load initial 

conditions onto the neuron s' input capacitors. The initial conditions are determined by 

eight independent voltages, any two of which can be raster-scanned using independent 

function generators. At the same time, the two function generators are used to position 

. the beam of a storage oscilloscope (Conographic 611). When the state of the network 

matches some reference state (which has been set with manual switches), the beam of the 

storage oscilloscope is tumed on, and the resulting pattern on the storage oscilloscope 

shows an image of the basin of attraction for the reference state in a two-dimensional slice 

of initial condition space. Alternately, the oscilloscope beam ean be set to go on only 

when the circuit enters an oscillatory state, thus iIImninating a slice of a basin of attraction 
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for oscillation. Neuron outputs can also be displayed directly (as X vs. Y, for any pair of 

neurons) using a second storage oscilloscope (Tektronix 611). The time scale for a 

complete load/run cyc\e is adjustable, and is typically -10-40 ms. 

The folIowing three subsections provide the detaiIs of the various pans of the circuit. 

3.2.1. Neurons 

The schematic for an individual analog neuron is shown in Fig. 3.1. Each neuron 

uses four JFET operational amplifiers (op-amps), all on a single 14-pin integrated circuit 

(National Semiconductor LF374N). Staning at the input side of the neuron, the first op­

amp serves as a unit y gain buffer, giving the neuron a high input irnpedance. The second 

op-amp, with diodes in the feedback , is the nonlinear pan of the circuit, giving the 

neuron its sigmoidal or saturating transfer function, as discussed below. The third op­

amp serves as a variable gain amplifier and sets the overall amplitude of the output. Next 

in the signal path is the CCD delay (see: § 3.2.2 below), which can be switched in or out 

independently for each neuron. Finally, the fourth op-amp inverts the output lO allow 

inhibitory as well as excitatory connections. 

The neuron transfer function J (dropping the subscript i) is defined by the relation 

J(input) = output, where output refers to the neuron's noninverting output. The 

function J is made interesting by the diodes in the feedback path of the second op-amp. 

To derive an expression for J, we stan with a simple form for the cUlTent-voltage (I-V) 

characteristic of a diode [see: Sze, 1981, § 2.4) 

(3.2) 

The parameters Is = 2.9 X 10-5 mA and VT = 5.9 X 10-2 V were determined by a least-

- 14 -



---"1+ 
INPUT 

'14 LF347 

Al 
(.oK TRIM) 

+ 
1/4 LF347 

INPUT 

Fie:. 3.1. Schematic diagram of analog neuron. 

- 15 -

,--_________ INVERTING 

OUTPUT 

"'>*"-___ INVERT1NG 

.... OUTPUT 
+ 

114lF347 

> __ INVERT ..... G 

OUTPUT 

'---- tNVERTING 
OUTPUT 



square fit to data in the manufacturer's data sheet for the diode used, which was the 

1N914. Equation (3.2) and standard op-amp circuit ana1ysis (Le., the principle ofvirtual 

nu II) give the folIowing implicit expression for f, 

(3.3a) 

v = ([2~~]) output, (3.3b) 

where the resistance values from Fig. 3.1 are shown in square brackets. Figure 3.2 

shows the neuron output as a function of its input as given by Eq. (3.3) for different 

values of RI, with R2 held fixed at 2 kil and numerical values for Is and Vr 

inserted. For large and small signals, Eq. (3.3) can be expanded to leading order to give 

( 
RlR2]. oUlput = 2 tnpll! 

10 (W) 
(for smal! signals, linear regime), (3.4a) 

OUlpll! = [ R2]11l([ inp~t ) (for large signals, Safuratedregime). 
2kil Skil Is 

(3.4b) 

The crossover from the linear to the saturated regime occurs when 

input - ([S~~])Vr. (3.5) 

The maximum slope of the neuron transfer function, defined as the neuron gain {3, will 

be very imponant for all som of analysis in later chapters. From (3.4a), we can 
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Fig. 3.2. The nonlinear neuron transfer function. (a) Theoretical transfer functions based 

on Eq. (3.4) for different values of RI, with R2 = 2kfl (see Fig. 3.1). (b) Transfer 
function measured in the electronic neuron for different vaJues of RI. 
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irnmediately identify the neuron gain, 

( 
RI R2 J 

f3 = 1O(W)2 . (3.6) 

Notice from Eq. (3Ab) that for latge signals, the neuron output saturates to a logarithmic 

function of the input. This behavior is different than the tanh function - the canonical 

sigmoid - which saturates to a hatd limit at large atgument. In practice this difference 

does not appeat to be significant. 

3.2.2. Analog delay 

The schematic for the analog delay circuit is shown in Fig. 3.3. Each neuron has its 

own independent delay circuit, which can be switched in or out manually. The heart of 

the circuit is a charge-coupled device (CCD) analog delay line, RD51 06A, manufactured 

by EG&G-Reticon. The RD5106A chip is a so-called "bucket-brigade" device. The 

device operates by charging an input capacitor to the instantaneous (analog) input voltage, 

and then passing that chatge along a brigade of 256 subsequent capacitors, with each 

transfer of charge !riggered by a pair of pulses from an extemal clock. At the end of the 

brigade of capacitors, the chatge is converted back to an analog voltage which constitutes 

the output signal. The time -( taken to traverse the entire brigade (i.e. the delay time) is 

related to the clock frequency f c/ock by: 

, [ l __ 0_.5_12_ 
T ms = 

fclock[ MHz l 
(3.7) 

The shortest delay available from this chip is nominally 300ps (fe/ock = 1.7 MHz), 
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Fie:. 3.3. Schematic for analog delay circuit. The entire circuit (excluding the voltage 
regulator section) is duplicated for each neuron. The heart of the circuit is the EG&G 
Reticon RD5106A charge coupled device analog delay line. 
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although the appearanee of de offsets limits the usable range to r' > -450 Jls 

lfc/ock < 1.2 MHz). On the long-delay end, the chip itself is good up to delays 

exeeeding one second, but in practice the delay is limited by a "bucket discretization 

noise" at a frequency fnoise[kHz] = 256/(r'[ms]). The nelwork itself will filter out 

this noise as lang asfnoi.<e is well above rhe network's bandwidth, which is in the range 

l - 8kHz depending an the connection matrix (see next subsection). This gives a range 

of delay covering nearly two orders of magnitude: 

450ps < r' < - 30ms . (3.8) 

Because all delay eircuits are clocked using the same function generator, all delays (when 

switched in) are identical. It would be very simple to construet individual on-board 

trigger circuits using LMS5S's to allow independent delays. 

The rest af the delay circuitry is mostly used to get around ane unfortunate aspect af 

the CCD delay line, which is that input voltages must be positive. The first op-amp is 

used to add an adjustable de offset to the input signal, and the seeond op-amp is used to 

remove that offset. The second op-amp also has adjustable gain to eompensate for the 

RD5106A not being exactly unit y gain . All offsets and gains are independently 

adjustable via three trim-pots per delay circuit. There is also a 10 kHz low pass filter 

section between the delay line and the second op-amp, to remove bucket discretization 

noise. Finally, a single voltage regulator (National Semiconductor LM317L) is used to 

supply the required 12.3 V to all eight RDS i06A's. 
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3.2.3. Network, measurement and timing circuitry 

A. The nerwork 

Figure 3.4 shows the layout of the entire network. A single circuit element in a box 

represent multiple idemical components: 8 delay-neurons, 8 initial condition loaders, 8 

output buffers (LM74 l 's), and 64 resistor-switch interconnect crrcuits. The characteristic 

relaxation time of the network (without delay) is determined by the interconnect 

resistances and neuron input capacitance. For interconnect resistances (T'ij)-l = 

IOOk.!2 and input capacitances C i = lOnF, the network relaxation time is l/n [ms], 

where n is the number of neurons connected to the input of any given neuron. The 

characteristic relaxation time for the eIectronic network can easily be varied over a few 

orders of magni tude by replacing the input capacitors, which are installed using plug-in 

connectors. Indeed, the entire circuit could be sped up considerably, with characteristic 

times in the tens of microseconds, without pushing the bandwidth of any of the integrated 

circuits; the limiting factor is the delay, which cannot be less than 450 Jls. The 

characteristic time to load initial conditions is (lO kQ)(lO nF) = 100 JlS. 
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Fig. 3.4. Schematic diagram of the entire network. Single devices in boxes represent 
multiple devices: 8 each of the neurons. run/load sections. and LM741 buffer; 64 of the 
resistor-switch pairs. Storage oscilloscope #1 is used to plot slices of basins of attraction; 
storage oscilloscope #2 is used to plot the outputs of any pair of neurons as X vs. Y. 
The source of the various timing signals is shown in Fig. 3.6. 

- 22-



B. Attractor ldentifier 

The box marked "attractor identifier" in Fig. 3.4 is shown in detail in Fig. 3.5. This 

circuit is used to test if the network has settled onto a specified fixed point attractor or, 

alternately, to determine if the network is in an oscillatory mode. 

The part of the attractor identifier circuit marked "fixed-point attractor identifier" (the 

larger dashed box in Fig. 3.5) works as follows: First, eight comparators (LM311 's) are 

used to convert the analog state of the network into eight thresholded digital (TIL) 

signals. This eight-bit digital state is then compared bit by bit to a reference state, which 

has been selected by positioning eight manual switches. The reference state might be, for 

example, a programrned memory pattem. If all eight bits of the network state match the 

reference state, then the line leaving the fixed-point section is set high, otherwise, it is set 

low. 

The part of the attractor identifier marked "oscillation detector" (the smaller dashed 

box in Fig. 3.5) uses a retriggerable l-shot (96LS02) with a high-time that is set to be 

longer than the period of oscillation under investigation. If the comparator undergoes a 

state transition within the high-time of the l-shot, the output of the l-shot remains in a 

high state. If the output of the comparator remains fixed - because the neuron being 

observed has stopped oscillating - the l-shot goes low at tlle end of its current high-time. 

The high-time of the l-shot ean be continuously varied from 4.3 ms to 8.6 ms via an 

extemal potentiometer. Note that an oscillating neuron must cross zero output in its 

excursion to trigger the oscillation detector. 

Where the fixed-point and oscillation detectors come together there is a bit more 

digitallogic, and another manual switch. Depending on the position of this switch , the 

TIL output which goes to a sample/hold (AD583KD) indicates one of the two folIowing 

conditions: 
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Fig. 3.5. Schematic for anractor identifier circuit 
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Swirch up: [selecled neuron is osciJlating] 

Switch down : ([network state matches reference state] 

AND 

r selected neuron is not oscillatingll. 

The combined logic for the Swirch down position insures that all matches to the 

reference state are acrual fixed points, not oscillatory modes or transients. 

C. Timing 

The timing signals appearing in Figs. 3.4 and 3.5 are supplied by the digital (TIL) 

circuit shown in Fig. 3.6. Also shown in Fig. 3.6 are TIL logic stales 

(low = av, high = 5 V) as a [unclion of time at several points in the timing circuit, 

labeled (A) - (E). Trace (B) is the run/load signal sent to the voltage-controlled analog 

switches; trace (E) is the "sample now" signal sent to the sample/hold in the attrdctor 

identifier circuil. The time between when (B) goes low (ne twork feedback path 

reconnected) and when (E) goes low (state of the system sampled by sample/hold) 

defines the allowed settling time of the network. This value is adjusted to be -5-10 times 

the nerwork relaxation time, so that nearly all transients have died out by the time a new 

"sample now" signal is sent. When delays are used, the allowed settling time must be 

quite long, as indicated in the table of Fig. 3.6. 

Examples of network dynamics are shown in Figs. 3.7 and 3.8. Figure 3.8 shows 

that in addition to creating sustained oscillatory modes, delay can induce extremely long 

and complicated transients when the circuit converges to a fixed point. Long, delay-

induced transients were also investigated by Babcock and Westervelt [1986b]. 
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and typical timing values (insen). 

- 26-



-r 2 .J[~~~ 
::.'2 O.OJU SR:. r " 

( 3 H S ~~ i~ E 
,---, ,.--

" -----' ' 

~ 

\ 
~ l...-

r-----: r-, 
~ 

'ej 

ru HUEf!H'~E 5"'5 

Fig, 3.7. The output yoltages of 4 of the 8 neurons as a function of time for the network 

with randornly selected symrnetric connections and delay. The (wo pictures are for the 

same network, the only difference is a slight change in initial conditions. (a) Initial 

conditions lead to a fixed point af ter - 5 ms. The end of the trace shows a return to the 

initial condition as the run/load cycle is repeated. (b) A slight change in initial conditions 

for the same circuit leads to a sustained in-phase oscillatory mode. 
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Fig. 3.8. A delayed neuron response function can induce long, complicated transients, 
as illustrated here, in addition IO inducing sustained oscillation. 
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3.3. BASINS aF ATTRACTION IN 2-D SLICES 

A neural network consists of more than a just set of attractors embedded into the state 

space of a dynamical system. To design a well-behaved network, one must also con sider 

the structure of the basins of attraction. Indeed, one standard figure of merit for an 

associative memory network is the average size of the basins of attraction for the 

embedded memories [Forrest, 1988]. Size, in this context, means the volume of state 

space which flows to a panicular attractor. ane also speak s of a basin's radius , which is 

the distance from an attractor (in some appropriate metric, for example the number of 

differing bits in a binary network) at which the probability of flowing to that attractor 

drops off quickly. It has been demonstrated that the radius of a basin of attraction is 

intimately related to the strength with which a pattern is embedded by a learning rule 

[KepIer and Abbott, 1988]. 

Figure 3.9 shows a highly schematic view of different basins of attraction to illustrate 

how radius alone does not fully characterize the quality of a basin of attraction for 

producing good associative recal!. Aside from having a large radius, a good basin should 

also be compact, spherical (roughly equal radii in all directions), centered on the attractor, 

and smooth. 

The shapes of basins of attraction for Hebb-rule associative memories have been 

investigated by Keeler [1986] for large (N = 200) networks of binary neuron s with 

sequential dynamics. Keeler used a elever scheme to reduce the high-dimensional state 

space to only two dimensions by projecting distances from a reference state (e.g. the 

locus of an attractor) onto a random direction and its complement. This projection 

scheme preserves topology such that neighboring points in the full N-dimensional space 

are also neighbors in this projection. Keeler found that as the number of stored patterns 

approaches the storage capacity of the network, the basins of attraction for the recall 
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Fjg 39. A highly schematic representation of two basins of attraction having roughly 
the same volume, but different shapes. Designing a network to have large basins is not 
sufficient: basins must also be smooth, regular in shape, and centered on the attractor in 
order to yield reliable performance. The basin on the right fails to meet these criteria. 
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states - as seen in this representation - become highly irregular, disconnected and filled 

with "large crevices and holes ," in his words. It is unclear whether Keeler's findings are 

an artifact of his algorithm for compressing a 200-dimensional space into a 2-dimensional 

slice, or if they indicate an important and previously unsuspected shortcoming of Hebb­

rule associative memories. 

In analog networks, where the state space is cominuous, one faces the addition al 

complication of having to consider dynamics on the interior of the hypercubic state space. 

What is the basin structure for analog networks within the hypercube? Is the space 

cleanly cleaved and parcelled evenly among the memories, or is the inside of the 

hypercube a tangled knot of intersecting hypersurfaces? 

A final question concems the effect of delay on the basin structure. Cenain nonlinear 

de1ay-differential systems are known to possess frac tal basins of attraction 

[Aguirregabiria and Etxebarria, 1987]; one might suspectthat neural networks wi th delay 

could show similar behavior. A fractal basin structure would be highly undesirable in an 

associative memory. 

To address these questions, we have measured the basins of attraction in two 

dimensional slices of state space for both fixed-point and oscillatory attractors using the 

electronic network and basin identification circuitry. The present method of slicing up 

state space is simpIer than the one used by Keeler - slices are viewed directJy on the 

storage oscilloscope - and is designed to probe the basin structure on the interior of the 

hypercube. Each slice is generated by holding fixed all buttwo of the initial voltages sent 

to the neurons, while initial voltages sent to the remaining two neurons are raster-scanned 

using a pair of function generators with triangle-wave output. The raster periods (-I s) 

are chosen to be much longer than the run/load cycle time (see Fig 3.6), so that roughly 

100 data points (beam on or off) are generated each time the beam crosses the screen. 

Changing one of the non-rastered initial voltages moves the location of the slice in the 
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direction in state space associated with the neuron receiving that initiaJ condition. There 

are (N - 2) direetions perpendicular to the plane of the slice - one for eaeh of the 

neurons reeeiving non-rastered initial voltages. From a series of slices, one can infer the 

basin structure in higher dimensions. This is illustrated in Fig. 3.\ O for the simple case 

of three neuron s with symmetric positive (ferromagnetic) coupling. Notice that the 

basins of attraction for the two ferromagnetic states - all neuron s sanrrated positive or all 

saturated negative - divide state space in a smooth, symmetric way. 

3.4. MEASUREMENTS WITHOUT DELA y 

We have investigated the basin strocture for an eight-neuron associative memory 

using a clipped form of the Hebb role [Den ker, 19861, 

(3.9) 

Figure 3.11 shows a series of stices through the 8-0 state space for an associative 

memory storing three pattems (thus six program med attractors, including the inverses of 

the memories) . The slices shown are in the plane defined by rastering on neuron s l and 

2. In each of the four pictures, the initial eondition on neuron 5 was set to a different de 

value, while the initial conditions of the other neuron S (3,4,6,7,8) were fixed at O V. 

Different basins in a single pieture were distinguished by a using a different raster 

pattern, as determined by the relative frequencies of the !WO function generators. Several 

basins were imaged in the same picture by manually disconnecting the attractor identifier 

(Fig. 3.5) from the oscilloscope af ter generating the firs t basin image, then resetting the 

switches on the attractor identifier to the next memory state, ehanging one of the function 
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Fig. 3.10. Basin structure for three neUTOns with symmeoic positive (ferromagnetic) 
coupling. Slices were produced by rastering the initial voltages for neurons l and 2 
between ± 1 V, while the initial voltage on neuron 3 was held fixed in each slice. The 
value of the initial voltage on neuron 3 differs in each slice, as indicated. The hatehed 
region marks initial conditions leading to the attractor with all neurons saturated positive 
(i i i), the black region marks initial conditions leading to the attractor with all neurons 
saturated negative (.(. .(. .(.). Neuron gains were all f3 - 10. 
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generator frequencies to make a new raster pattern, and then reconnecting the attractor 

identifier to the oscilloscope to generate the next basin image. By repeating this process, 

many basins could be shown in a single picture, although usually no more than four 

basins were present in any one slice (six was the most observed for any network 

configuration). 

Figure 3.11 suggests that the electronic network works extremely well as an 

associative memory, despite the fact that with three memoTies and eight neurons , it is 

loaded well above the nominal storage capacity for the clipped Hebb rule, p/N;: 0.1 

[Sompolinsky, 1986). When initial conditions lie outside the hypercube (defined by the 

saturation voltages of the neurons), the basin shapes become more distorted. This is 

illustrated in Fig. 3.12 for the same connection matrix as in Fig. 3.11, only now the slice 

is in the place defined by rastering on neurons 2 and 4. To the extent that this distortion 

is a problem, it can easily be avoided by limiting initial conditions to lie within the range 

of the neuron outputs. 

The take-home message of this subsection is that the electronic associative memory 

works extremely well, despite c1ipping and overloading. So well, in fact, that the results 

are somewhat uninteresting: the network did just what one might guess (ar hope) that it 

would do. Grossly distorted basins or attraction were not observed, even when the 

connection matrix was deliberately corrupted by randomly altering several matrix 

elements. In all cases, basin boundaries appear smooth, and, within the hypercube, lhey 

are also quite straight. Far outside the bounds of the hypercube, basin shapes become 

somewhat irregular, but not very much so; cerlainly they do not appear IO be 

disconnected or fraclal. 

We emphasize the difference between our measuremenlS and those of Keeler [1986]. 

In Kee1er's 2-D slices, each poinr in the slices represents a corner of the hypercube, and 

the inteTior of the hypercube is not part of the state space. Therefore, our results do not 
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Fig. 3.11. Basin structure for eight-neuron circuit storing three memory patterns with a 
clipped Hebb rule, Eq. (3.9). Different rastering patterns mark initial conditions leading 
to the various memory pattems and their inverses. The attractors associated with each 
region are indicated: + means saturated positive, - means saturated negative. Despite 
overloading, no spurious attractors are observed and basin shapes appear regular. 
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Fig. 3. 12. Basin sbUcture becomes more convoluted when some of the initial conditions 
lie outside the range of the neuron outputs. The network configuration here is identicaI to 
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contradict those of Keeler, as the spaces represented in the two studies are emirely 

different. Funhennore, it may be that the complicated basin structure is only seen for 

systems considerably larger than N = 8. 

3.5. MEASUREMENTS WlTH DELA y 

The basin structure becomes more interesting when delay is introduced into the 

response of the neurons. We concentrate here on symmetricaIly connected networks, 

which possess only fixed points and simple periodic attractors. Chaotic behavior is 

observed when connections are nonsymmetric, as discussed in §4.6. We have not 

studied the basins of attraction in chaotic networks; this would cenainly be an interesting 

area to investigate. 

The simplest symmetric network that shows delay-induced sustained oscillation (in 

the absence of self-coupling) is the all-inhibitory triangle: three delayed neurons all 

connected to each other via invening, or inhibitory, connections: 

~!; -l O -l . 1 [O -1 -1] 
, 100k.Q -1 -1 O 

(3.10) 

The network defined by (3.1) and (3.10) is analyzed in detail in Ch. 4, and a phase 

diagram is given in Fig. 4.8. The analysis shows that for sufficient delay, 

-r '" -r'/RiCi > In(2); 0.693 .. , the all-inhibitory triangle has an oscillalOry attractor along 

the (1,1,1) direction - that is, with all neurons oscillating in phase. For sufficient gain 

(see Fig. 4.8) the oscillatory mode is not the only attractor; there are also several fixed-

point attraclOrs, each with its own basin of attraction. 

Figure 3.13 shows two slices of the basin of attraction for the oscillatory nwde of 
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r'= 0.48ms 

-1.SV av 1.5V 

Uc(O) 
r '= O.61ms 

av 

-1.2SV 

-1.SV av l.SV 

Fig 3.13. Basin of am-action for coherent oscillatory mode (hatched region) for Ihree 

delayed-output neuron s with symmetric inhibitory (Le. negative or antiferromagnetic) 

coupling. Black region indicales initial conditions leading to a fixed point. As the delay 

is increased, the basin for the oscillatory mode expands IO fill more of the stale space. 

The delay T should be compared 10 the network characteristic time R;C; = 0.5 ms. 
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the all-inhibitory triangle in the regime where both fixed-point attractors and the in-phase 

oscillatory attractor exist. The two slices shown are for different values of normalized 

delay 'l" '" 'l"'/RjCj = r/[O.Sms]. The slices are in the plane defined by the initial 

condition u3(0) = av, with initial conditions on neuron s 1 and 2 raster scanned as 

described above. 1 The first thing to notice in Fig. 3.13 is that a larger delay yields a 

larger basin of attraction for the oscillatory mode. As the normalized delay is reduced 

towards 0.693, tlle basin shrinks and finally disappears. At that point, the oscillatory 

mode itself goes unstable, in accordance with the analysis of Ch. 4. The second thing to 

notice in Fig. 3.13 is the two-Iobed shape of the basin as seen in these slices. The basin 

structure leading to this interesting shape is revealed by shifting the position of the slice, 

which is done by changing the dc initial condition on u3 ' as shown in Fig. 3.14. 

From the three images in Fig. 3.14, and the symmetry of the state space, we can deduce 

that the bas in of attraction for the oscillatory mode forms a cylinder centered about the 

(1,1,1) direction that pinches together at the origin (ui = O for all i) . This struclUre is 

shown schematically in Fig. 3.1S. This figure explains the two-lobed pattem seen in 

Figs. 3.13 and 3.14: the pattem marks the intersection of the pinched-cylindrical basin 

with the planes of the slices u3 = constant. From these pictures, we ean deduce the 

curvature of the basins near the origin basin from the shape of the lobes. We in fer that 

near the origin, the basin looks like two paraboloids back to back, aligned along the 

(1,1,1) direction, as illustrated in Fig. 3.15. 

An analysis of the all-inhibitory network, which will be presented in § 4.3, explains 

the basin srructure described above. We briefly mention some relevant features here. 

I In delay systems, thc initial state of each neuron must be spccificd over the entire interval of time 
[-T,O]. We took care that the initial condition load time (see Fig. 3.6) was much longer than the neuron 
delay, SO that initial functions were nearly constant over this time interval. af course, this panicular 
choice is arbitrary, and is itself only a "slice" of an infinite-dimensional space of possible initial 
conditions. ane might wonder if ether choices - say, for example, wildJy oscillating initial functions over 
the interval [-T,O] - would not lead IO undiscevered dynamics. It appcars, based on tests ef just this 
son, that nothing interesting happens when non-constant initial functions are used. 
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U2(0) 

... .,O-----'Ul (O ) ----o::>;.. 

1 

... .,O-----Ul (O) ----;;;-;;.-

U2(0) 

l 
u/O)= -0.05 

... "'o-----,u l (O) ----0;;-;" 

Fig. 3.14. The overall shape of the basin for sustained oscillation (hatched region) in the 
al1-inhibitory triangle (same circuit as in Fig. 3.13) is revealed by shifting the slice in the 
direction of neuron 3. 

- 40-



coherent (1,1,1) direction 

(l, I ,1) direction 

Fig. 3.15. The characteristic two-Iobed basin shape seen in Figs. 3.13 and 3.14 is 
explained by a cylindricaI basin oriented along the (1,1,1) direction, and pinched at the 

intersection with the plane Li ui = O (see text). 
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(These features apply for any N. not only N = 3.) In the regime where multiple fixed 

points and a coherent oscillatory mode coexist. dynamics in the vicinity of the origin is 

characterized by N-l eigenvectors spanning the hyperplalle Lj Uj = O. The eigellvalues 

associated with these eigenveclors are degenerate and greater than one. so the entire 

hyperplane Lj Uj = O is a degenerate outset of the origin. The remaining eigenveelOr is 

in the 0.1 •...• 1) direclion and has a large negarive eigenvalue. This negative eigenvalue 

makes the (l.l •...• l) direetion an outset of the origin as well. but in this direction the 

instability is oseillatory. Initial eonditiolls near the (1.1 ... .• 1) direction will be pulled 

onto the oscillatory attractor. giving rise IO a cylindricai basin of attraction about the 

(1.1 •... • 1) direction. Initial conditions near Ihe hyperplane Li Uj = O are pulled away 

from the origin and onto this plane towards fixed points. As aresult of the centrifugal 

dynamics within the hyperplane. the cylindricaI basin for oscillation is pinched as the 

(l.1 ....• 1) vector crosses the hyperplane at the origin. As delay is redueed. the relative 

strength of the centrifugal dynamics in the hyperplane become sufficient to even rip apart 

the oscillatory attractor. Analyzing this event yields a value for the eritical delay for 

sustained oscillation (see § 4.4). 

To further check the inferred basin structure for the general all-inhibilory network. we 

have constructed a special eircuit which allows the basin of attraetion for the osciliatory 

mode to be sliced along the 0.1 •...• 1) direction. This cireuit. shown in Fig. 3.16. 

supplies the initial conditions IO the analog switches. It replaces the independent 

(Cartesian) initial condition rastering scheme shown in Fig. 3.4. In the present scheme 

the Y coordinate gives the component of the initial condition vector along the (1.1 •...• 1) 

direction; the X eoordinate gi ves the component of the initial eondition vector 

perpendicular to this direction - into the Lj Uj = O hyperplane. This excursion into the 

hyperplane is chosen to be in a direction in which only two of the possibIe N 

components deviate from (l.1 •...• 1). The slice generated ean be thought of as an axial 
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cut down the cylindricaI basin, as shown in Fig. 3.17(a). Images generated using this 

initial condition circuit are shown in Fig. 3.17(b). The network configuration used to 

produce these images was the N = 5 all-inhibitory network; the two images are for 

different values of delay. These image s confirm the inferred shape of the basin of 

attraction for oscillation, and reveal the pinched cylinder in its natural coordinate system. 
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GENERATORS 
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zf-- - IOENTIFIER 
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Fig. 3.16. Schematic of circuit to provide rastering in the coherent direction (measured by 
Y) and perpendicular to the coherent direclion (measured by X). All initial conditions 
contain an equal amount of Y, and two others have added voItages X and -X, 
respectively. Note that the direction ui(O) = X and Uj(O) = -X for any i and j 
constitutes a particularly simple excursion into the plane ri U i = O, which is 
perpendicular to the coherent direction (1,1, ".,1). 
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(a) 

(b) 

Fig. 3.17. (a) The plane swept out by the rastering circuit of Fig. 3.16 is shown in 
relation to the proposed basin structure for the coherent oscillatory mode. (b) For the 
five-neuron all-inhibitory (antiferromagnetic) network, the observed basin of attraction 
for sustained oscillation (hatched region) confinns the general shape inferred from the 
standard rastering scheme. Left: -( = 0.73 ms, Right: -( = 0.51 ms. Characteristic 
time: RjCj = 0.5 ms. 
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Chapter 4 

ANALOG NEURAL NETWORKS WITH TIME DELA Y 

4.1 INTRODUCTION 

It is well known that symrnetrically connected networks of analog neurons operating 

in continuous time will always settle onto a fixed-point attractor (Cohen and Grossberg, 

1983; Hopfield 1984). This important result assumes, however, that neurons 

communicate and respond instantaneously. As demonstrated in the previous chapter, all 

bets are off regarding network stability once time delay is introduced into the response of 

the neurons. Designing an electronic neurdl network to operate as quickly as pos si ble 

will increase the relative size of the intrinsic delay and can eventuaIly lead to oscillation or 

chaos. In the world of microelectronics, delays due to the finite switching speed of 

amplifiers are well characterized, and constitute an important aspect of analog and digital 

VLSI circuit design [Mukherjee, 1985). In biological neural networks, it is known that 

time delay can cause an otherwise stable system to oscilIate (Coleman and Renninger, 

1975; Coleman and Renninger, 1976; Hadeler and Tomiuk, 1977; an der Heiden, 1979; 

an der Heiden,1980; Glass and Mackey, 1988]. Instabilities introduced by delays have 

also been analyzed in the context of control theory and electrical engineering 

[Kolmanovskii and Nosov, 1986]. 

The goal of this chapter is to develop an understanding of how a delay in the 

response of the neurons in a network can induce sustained oscillation and chaos. For the 

case of symmetricaIly connected networks, we find that for some connection topologies, 
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delays much less than the network relaxation time ean lead to sustained oscillation, while 

for other topologies even very long delays will not induce oscillation. Furthennore, for 

those nerwork configurations which ean oscillate at small delay, there is a eritical value of 

delay below which the network will not suppon sustained oscillation. 

The results reported in this chapter show that the existence of oscillatory modes in 

symmetric networks with delay has a surprisingly simple dependence on the neuron gain 

and delay, and on the size and connection IOpology of the network. These results are 

stated as stability criteria whlch extend the famous result: "symmetric connections implies 

no oscillation" to the case of time delay networks. Results derived in this chapter are 

based on local rather than global stability analysis and therefore do not provide a rigorous 

guarantee that all initial states will converge to fixed points. Rather, we support our 

results with extensive numerical and experimental evidence suggesting that the stability 

criteria presented here are valid under the conditions investigated. In addition IO using 

standard numerical integration to test the theoreticai results, we have measured critical 

delays for sustained oscillation in the electronic network described in Ch. 3. 

In the chapter folIowing thi s one, Ch. 5, we consider a network with discrete-time 

parallel dynamics. This network is equivalent to the long-delay limit of the continuous­

time network considered here. In the discrete-time limit, we are able to analyze the 

dynamics globally and thus provide a rigorous stability criterion guaranteeing that all 

attraClOrs are fixed points. It is reassuring that the local results presented here limit 

properly at long delay to the global results derived in Ch. 5. 

The rest of the chapter is organized as follows: In § 4.2, we write down a general 

system of delay-differential equations starting from the circuit equations for an electronic 

network and describe the simplifying assumptions of our model. In § 4.3 we present a 

linear stability analysis about the point where all neurons have zero input and steepest 

transfer function. This point is defined as the origin of an N dimensional space where 
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each direction represents the input voltage of a neuron. For sufficiently large neuron 

gain, the origin loses stability in either a pitchfork bifurcation, which creates fixed points 

away from the origin, or in a Hopfbifurcation [Chaffee, 1971], which creates an attractor 

for sus tai ned oscillation. Which sort of bifurcation occurs first depends on the largest 

and smallest eigenvalues of the connection matrix and on the normalized delay. 

Experimentally, we find that the Hopf bifurcation marks the appearance of sustained 

oscillation in symmetric networks. The analysis in § 4.3 is formulated as a design 

criterion that will yield fixed-point dynamics in a delay network as long as the ratio of 

delay to relaxation time is kept belowa critical value. 

In § 4.4, we con sider networks opera ting in a large-gain regime where fixed point 

attractors away from the origin and oscillatory attractors coexist, each with large basins of 

attraction. We restrict our attention in this regime to networks which oscilIate coheremly 

(defined below), and present a novel nonlinear stability analysis of the coherent 

oscillatory attractor which yields a critical delay for sustained oscillation in these 

networks. The results of the linear and nonlinear stability analyses presemed in § 4.3 and 

§ 4.4 are compared with numerical integration of the delay-differential equations and 

experiments in the electronic delay network; good agreement is found between theory, 

experirnent and numerics. 

In § 4.5, we discuss stability for several specific network topologies: symmetric rings 

of neurons, two-dimensional lateral inhibition networks, random symmetric networks, 

and associative memory networks based on the Hebb rule [Hebb, 1949; Hopfieid, 1982]. 

A particularly important result is that Hebb rule networks are stable for long delays, but 

that clipping algorithms which limit the connection strengths to a few values can yield an 

connection matrix with large negative eigenvalues which can lead to sustained oscillation. 
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In § 4.6, we discuss chaotic dynamics in asymmetric neural networks, and give an 

example of a small (three neuron) network which shows delay-induced chaos. Finally, a 

summary of useful results is given in § 4.7. 

4.2. DYNAMICAL EQUATIONS FOR ANALOG NETWORKS WITH 

DELAY 

In this section we derive a general system of delay-differential equations, Eq. (4.3), 

starting from the circuit equations for the electronic network discussed in Ch. 3. The 

network consists of N saturating voltage amplifiers with delayed output coupled via a 

resistive interconnection matrix, and is identical with the analog network described by 

Hopfield [1984], with the addition of a delay r/ 

N 

+ L T;;fAUj(t'-l'j)) (4.1) 
j ; l 

The variable Uj(t') in (4.1) represents the voltage on the input of the jth neuron. Each 

neuron is characterized by an input capacitance Ci , a delay ri, and a non linear transfer 

function f;. The transfer function!;, is taken Io be sigmoidal, saturating at ±l with 

maximum slope at u = O. The connection matrix element T'ij has avalue + I/R ij when 

the noninverting output of j is connected to the input of j through aresistance Rij' and a 

value -l/RU when the inverting output of j is connected to the input of i through a 

resistance R ij" The parallel resistance at the input of each neuron is defined as 

R i = (1)T'ijl)-I. We con sider the case of identical neurons, C j = C.ti = f, 

ri = r, and also assume each neuron is connected to the same total input resistance, 

defining R '" Ri for all i. With these assumptions, the equations of motion become 
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N 

RC UY) = - Uj(t') + R L Ii; [h(t' - r')) 
j~l 

(4.2) 

Rescaling time, delay and T'jj gives the folIowing new variables: t = t'/RC; 

r = r' /RC; T jj = RT'jj' This definition of T jj has a normalization kj ITijl = l. In 

terms of these scaled variables the delay system takes on the simple form 

N 

Uj(t) = -Uj(t) + L Iij [(u/t-r)). (4.3) 
j~l 

All times in Eq. (4.3) are in units of the characteristic network relaxation time Re. 

As mentioned in Ch. 3, the initial conditions for a delay-differential system must be 

specified as a function on the time interval [-r,Oj. All experimental and numerical 

results presented take all initial functions to be constant on this interval, though not 

necessarily the same for different i. A cursory numerical investigation suggests that the 

stability results presented below do not depend on the paniculars of the initial function. 

4.3. LINEAR STABILITY ANALYSIS 

We consider the stability of Eq.(4.3) near the origin (Uj = O for all il. Linearizing 

fi(u) about the origin gives 

N 

Uj(t) = - Uj(t) + L/3 Iij Uj(t - r), 
j~l 

(4.4) 

where the gain /3 is defined as slope of Ji(u) at u = O. It is convenient to represent the 

linearized system of N delay equations as amplitudes f{Ji (i = l, ... , N) along the N 
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eigenvectors of the connection matrix T;j. 

(4.5) 

where Åi (i = 1 •.. , N) are the eigenvalues of the connection matrix T;j. The Å.; will 

be referred to as the connecrion eigenvalues to avoid confusion with the roOlS of the 

characteristic equation that will be derived from Eq. (4.5). In general, these connection 

eigenvalues are complex; when Tij is a symmetric matrix, the Å; are real. Assuming 

exponential time evolution of the Cf);, we introduce the complex characteristic exponents 

s; and define Cf);(r) = Cf);(O)es;I. Substituting this form of Cf)i(t) into Eq. (4.5) gives 

the characteristic equation 

(4.6) 

The origin is asymptotically stable when Re(sj) < O for all i [Bellman and Cooke, 

1963]. When Re(sk) > O for some k, the origin is unstable to perturbation s in the 

direction of the eigenvector associated with sko 

4.3.1 Linear stability analysis with T = O 

When the neuron s have zero delay (T = O), Eq. (4.6) reduces to (s; + 1) = f3Å.j. In 

this case, the origin is the unique attractor as long as all connection eigenvalues Åj have 

real part less than 1/13 as shown in Fig. 4.1. For asymmetric connection matrix, the 

Å.; are real and the bifurcation is of the pitchfork type: For 13 > I/Åk the origin becomes 

a saddle and a pair of stable fixed points appears on opposite sides of the origin in the 

direction of the kW eigenvector of Tjj- In neural networks language, this new pair of 
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1m (A.) 

!UNSTABLE! 

:: 1/13 
:./ Re(A.) 

Fig 4 ! . The stability of the origin for zero delay is determined by the condition Re(Åj) 
< 1/f3 for all i, where Ai are the eigenvalues of the connection matrix T ij which 
appears in Eq. (4.3). The border of the stability region is shown as a verticalline in the 
complex Å plane. 
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fixed points away from the origin is a memory. 

As an example of linear stability analysis with -r = O, consider the N x N al/­

excitatory - or ferromagnetic - interaction matrix (Ti) = + l/R; T ii = O) 

I 
T = --'l N-l 

O 

I 

1 

1 

O 

1 

1 

1 

O 

The connection eigenvalues for this matrix are 

Aj = 1- ~~l 
[once] 

[(N -1) - fold degenerate] . 

(4.7) 

(4.8) 

Notice that because T ij is symmetric the li are real. When f3 < I/lrnax' where Arnax 

is the maximum connection eigenvalue, the origin is the only attractor. When 

f3 > l/Arna.>: the origin is unstable, and two fixed points appear on either side of the 

origin along the eigenvector associated with Arnax. In the present example, lmax = 1 

from Eq. (4.8) and the eigenvector associated with Arnax is thejerromagnelic direction 

(Ui = I for all i) . 

A second example is the N x N al/-inhibitory or antiferromagnetic connection 

matrix 

o -1 -1 

-l O -1 
T = (4.9) 

'1 N-l 

-1 -I O 

- 53-



This network configuration is imponant in neural networks as a model of lateral 

inhibition (see § 4.5.2) and as a so-called winner-take-all circuil. The eigenvalues for the 

all-inhibitory network are 

I 
N-l 
-l 

[(N -1) - fold degenerate) 

[once] . 
(4.10) 

For this network configuration, the origin does not become unstable and fixed points 

away from the origin do not appear until f3 > IlAmax = N-l. Thus the origin for a 

large all-inhibitory network is very stable for zero delay. The eigenvector associated the 

minimum eigenvector Amin is in the in-phase, or ferromagnetic, direction (ui = I for all 

i). The N-l eigenvectors associated with the degenerate Amax all satisfy the condition 

Li ui = O which defines a hyperplane perpendicular to the ferromagnetic direction. 

4.3.2. Frustration and equivalent networks 

A symmetric matrix with connection strengths limited to three values - positive, 

negative and zero - can be represented as an undirected signed graph with a neuron at 

each venex. An imponant propeny of the all-inhibitory network discussed above is that 

every loop formed from three neurons in the connection graph has an odd number of 

negative (inhibitory) ed ges. A connection graph containing loops with an odd number of 

negative edges is said to be frustrated. Frustration is important in systems with 

competing interactions [Toulouse, 1977], and is considered essential in the formation of 

a spin-glass state in magnetic systems [Binder and Young, 1986; Mezard el al., 1987]. 

We suspect, though have not proven, that frustration is also essential for delay-induced 

oscillation when there is no self connection, i.e. Tii = O. Because every triangular loop 
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in the all-inhibitory network has an odd number of negative edges, this configuration is 

said to be fully frustrated. There are 2N-1 other networks that are also fully frustrated; 

these other configurations are related by the Mattis transformation [Mattis, 1976]: For 

any i let Uj ~ -Uj and TU ~ -TU for all j. All 2N-1 fully frustrated networks have 

identieal dynamies, up to changes of sign. Similarly, there are 2N-1 networks equivalent 

to the ferromagnetie network, Eq. (4.7), all of whieh are nonfrustrated. 

4.3.3. Linear stability analysis with delay 

In this seetion, we show that for r> ° the stability region, defined by the condition 

Re(sj) < 0, is no longer a simple vertical line at 1/f3 in the eomplex A-plane as in 

Fig. 4.1, but forms a closed teardrop-shaped region that becomes smaller and more 

eircular as the delay is increased as shown in Fig. 4.2. This idea is also discussed by 

May [1974]. As r ~ 0, the region of stability expands to fiH the half plane 

Re(A) < 1/f3, recovering Fig. 4.1 ; as r ~ ~ the stability region becomes a eircle 

centered at .:t = ° with radius I/f3. A eircular stability region is characteristie of iterated­

map dynamics just as a hal f-plane stability region is charaeteristic of differential equation 

dynamics; thus as delay is increased from r« l to r» l the local stability condition 

of the delay-differential system goes from that of eontinuous-time, differential equation 

dynamics to iterated-map or parallel-update dynamics [May, 1974]. The dynamics of the 

iterated-map analog network: Uj(t+l) = I.jTijf(ujCt», where t is the index of 

discrete time, corresponds to the long delay limit of Eq. (3.1). A global stability 

criterion for the iterated-map network will be given in Ch. 5. The iterated-map stability 

eriterion agrees with the local analysis presented here in the long-delay limit 't' ~ "". 

The exact shape of the stability region at any value of delay ean be found by 

substituting Sj = aj + iWj (i =..,J-l) into Eq. (4.6) and finding the condition aj = O. 

The loci of points on the border of the stabil it Y region can be wrinen in polar coordinates 

- 55 -



as 

il! Aborder = A(O) e , (4.11) 

where A( O) > O is the radial distance from the point A = O IO the border of the stability 

region al an angle O from the positive Re(A) axis. Putting Eq. (4.11) and the condition 

q = O inlo Eq. (3.3) gives 

(4.12) 

Solving for A(O) gives Ihe border of Ihe slability region as an implicit funelion of 

delay: 

A(O) = ~~ro; + l (4.13a) 

-ro} = lan (ro)"! - O) , (4.13b) 

where ro} is in the range (O - !r/2) ~ ro}"! ~ 9 modulo 2!r. We are interested in 

the smal/eS! root ro} of Eq. (4.13b) for a given value of 9 and"!. Large roots of 

Eq. (4.13b) produce large values of A(9) by Eq. (4.13a), which lie oUlside of the 

stabilily region defined by the smaller roOlS. Only the part of the A-plane inside Ihe 

smallesl stability region is actually stable. The stability region for the ongin is plotted 

for several values of delay in Fig. 4.2. 

Because the stability region closes in the negative half-plane for"! > O. it is possibie 

for the origin to lose stabil it y due to large negative connection eigenvalues - even purely 

real ones. The intersection of the stability region border and the Re(A) axis in the 

negative half-plane is given by the solution toEq. (4.l3a) at 9= 1r. Wedefine this 
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1: = 0.1 

STABLE 
1: = 1.0 

STABLE 
1: = 00 

STABLE 
1:=0 

1m (A) 

UNSTABLE 

Re O.) 

Fil:. 4.2. The stability of Lhe origin in the delay network lies wiLhin a cJosed region in the 
complex plane of eigenvalues of the connection matrix Ti)" Regions of stability are 
plotted for different values of delay: For 'r: = 0, the border is a verticalline at Re (A) = 
1/ f3 as in Fig. 4.1 ; For 'r: = 00, the stability region is a eirele of radius 1/ f3 centered at 
the origin of the A plane. At finite delay, the stability region is teardrop shaped, 
crossing Lhe real axis in the positive half-plane at 1//3 and erossing the real axis in the 
negative half-plane at a delay-dependent value A The tiek marks along beth axes are in 

units of 1/f3. 
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Fit:. 4.3. The border of the stability region crosses the Re(,l.,) axis in the negative half 
plane at J\. for 't" > O. The product 11./3, where /3 is the neuron gain, is plotted as a 
function of normalized delay 't". The value of J\. is particularly imponant for symmetric 
networks where the eigenvalues are confined to the Re(,l.,) axis. 
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solution as A, dropping the argument for the special case /1 = 1C. The value of A is 

inversely proportional to the gain of the neurons and is a transcendental function of delay 

defined implicitly by Eq. (4.13). A plot of the product 11./3, which depends only on 

delay, is shown in Fig. 4.3. For large and small delay, A ean be approximated as an 

explicit function of delay and gain: 

~ (21C

T J T« I, (4.14a) 

A -

1 1+(~J T» l. (4.14b) -
/3 T+l 

For a symmetri c connection matrix (Åi real) the origin will be unstable when 

Åmax > 1//3 or Åmin < -A. The bifurcation at Åmax = 1//3 is a pitchfork (as it is 

for T = O) corresponding to a single real root si of Eq. (4.6) passing inlo the half plane 

Re(sj) > O. The bifurcation at Åmjn = -A corresponds to a Hopf bifurcation [Chaffee, 

1971] of the origin, with a compIex pair of TOOtS si pas sin g inlo the half-plane 

Re(si) > O at ±COi. The imaginary component COj = (/311. - 1)1/2 at the bifurcation 

gives the approximate frequency of the oscillatory mode that resuIts from this bifurcation. 

4.3.4. Symmetric networks with delay 

Figure 4.4 shows the evolution of the stability region of the origin for a delay 

network at three different values of gain. Each frame also shows schematically a 

distribution of eigenvalues for one of two types of symmetric networks: The eigenvalues 

on the left side of Fig. 4.4 are skewed negative, that is IÅmax/Åminl < I, while the 

eigenvalues on the right side are skewed positive, with IÅmaxfÅminl > I. At low gain 
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Fig. 4.4. The stabil it y region of the origin and two different types of eigenvalue 
distributions (filled circles) are shown schematically. On the left (a,c,e), the eigenvalues 
satisfy IÅma .. /Åminl < l; on the right (b,d,f), the eigenvalues satisfy IÅma,,/Åminl > I. 
As the gain is increased, the stability region decreases in size and the origin loses 
stability. The bifurcations for each type of distribution are explained in the texl 
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(Figs. 4.4(a) and (b» all eigenvalues lie within the large stability region and the origin is 

the unique fixed point and is stable. As the gain is increased, the size of the stability 

region decreases as 1//3. The fust eigenvalue to leave the stability region will either be 

the most negative, Amin, as in Fig. 4.4(c), or the most positive, Amax' as in Fig. 

4.4(d). For the case in Fig. 4.4(d), a pair of attracting fixed points appear on either side 

of the origin along the eigenvector associated with Amax and the origin becomes a 

saddIe. For the case in Fig. 4.4(c), an oscillatory attractor exists along the eigenvector 

associated with the eigenvalue Amin' The value of gain at which Amin leaves the 

stability region in Fig. 4.4(c) is given by 

/3 = (4. ISa) 

where 

w = - tan(w .. ) , (4.1Sb) 

In the limit af small delay, this value of gain is 

/3 = ( .. «l), (4.16) 

and the period of oscillation is approximately 21r/w ( = 4rfor r« I). 

For an eigenvalue distribution which satisfies IAmaxfAmin' < l, the first bifurcation 

IO occur as the gain is increased can be either a pitchfork bifurcation, as Åmax leaves the 

stability region, or a Hopf bifurcation as Åmln lea ves the stability region, depending on 

the value of delay. For an eigenvalue distribution which satisfies lAmdAmin' > l , 
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Åmat will always leave the stability region before Åmin regardless of delay. 

A stability criterion for symmetric networks based on linear stability analysis can be 

formulated by requiring that A.,nin' the minimum eigenvalue of Tij' remain inside of the 

negative border of the stability region of the origin. In terms of the notation we have 

defined, this eriterion requires -A < Amin' The condition can be simplified by noting 

that A is always larger than its small-delay limit of 7r/(21:fJJ. The stability criterion for 

symmetric networks with delay can thus be stated: 

1: < 
2 f3 Amin 

::::) no sustained oscillation. (4.17) 

This criterion lacks the rigor of a global stability condition, which exists for 1: = O 

l Cohen and Grossberg, 1983; Hopfieid, 1984] and 1: 4 .., [Marcus and Westervelt, 

1989c] but is supponed by considerable numerical and experimental evidence. 

Figs. 4.4(e) and 4.4(f) show the situation when the gain is sufficiently large that 

eigenvalues have left the stability region through both negative and positive borders, 

indicating that Eq. (4.17) is violated and that fixed points exist away from the origin. In 

thi s regime the system possesses multiple basins of attraction for coexisting fixed-point 

and oscillatory attractors. 

We find experimentally and numerically that delay networks in the large-gain regime 

may or may not show sustained oscillation, depending on the value of delay and the 

eigenvalue distribution. The observed behavior at large gain ean be c1assified aceording 

to the ratio IAma.,/Aminl: Networks with IAmax/Aminl > l, as in Fig. 4.4(f), either do 

not oscilIate at all or will oscilIate only when the delay is mueh larger than the relaxation 

time. We have never observed sustained oscillation at 1: < l in any network satisfying 

IAmax/Aminl > l experimentally or numerically. This result remains empirical, but is 

consistent with the analysis in § 4.4 for delay networks that oscilIate coherently. 
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In contrast, all networks investigated that sarisfy lA",axlÅminl < l will oscillate for 

sufficient delay. At large gain, as in Fig. 4.4(e), these networks show coexisring fixed-

point and oscilIatory attractors. The basins of attracrion for the oscillatory attraclOrs are 

large for large delay but shrink as the delay is decreased, as seen in Ch. 3. For delay les s 

than a crirical value -reri!, the oscillatory attractors disappear and only fixed-point 

dynamics are observed. A value for -rerit canno! be found by the linear stability analysis 

described in thi s section because of the importance of the nonlinearity in the large-gain 

regime. An expression for -rerit for networks that oscilIate coherently is deri ved in 

§ 4.4. The critical delay -rerit found in this case diverges as IÅmaxlÅminl -t l, in 

agreement with the empirical results mentioned above. 

4.3.5. SeIr connection in delay networks 

Including a delayed seJf connection affects the dynamies by shifting the distribution 

of connection eigenvalues and by decreasing the relaxation time of the network. As an 

example, con sider the effect of adding a delayed self-connection term r to the all­

inhibitory network.1 With the self-connection, the properJy normalized connection 

matrix and eigenvalues are 

r -l -l 

l -I 

N-l+lrl 
r -1 

-1 -I r 

(4.18) 

1 A different nonnalization for the scl f eonnection is introdueed in Ch. 5. Notiec that in the present 
usage r is the re/ali ve strength of the self eonnection compared to the strength of int.emeuron 
connections. 
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l+r [(N -I) - fold degenerate] 
N-l+lrI 

Aj = (4.19) 

l-N+r 
[once] . 

N-l+lrI 

The connection eigenvalues Amax and A",in for the all-inhibitory network are shown as 

functions of the self-connection r in Fig. 4.5. Notice that adding a negative self 

connection (r< O) does not change A"un' thus the value of delay where the Hopf 

bifurcation occurs in the all-inhibitory network is not changed by a negative self­

connection. Adding a positive self-connection (r> O) will bring Amin closer to zero 

and will increase the delay necessary for the Hopf bifurcation to occur. The condition 

IAmdAminl> l is satisfied in (4.19) when r exceeds (N/2 - l). 

4.4. CRITICAL DELA y IN THE LARGE-GAIN LIMIT 

In this section, we find a critical delay for sustained oscillation in the large-gain 

regime, where fixed point attractors away from the origin coexist with a single coherent 

oscillatory attractor. The main result, Eq. (4.23), applies to networks in which the 

oscillatory attractor is along a coherent direction. Coherence is defined by the condition 

that all IUil are equal. Equivalently, a coherent oscillatory attractor lies along avector 

extending from the origin to any corner of an N dimensional hypercube centered at the 

origin. When the eigenvector associated with Amin is in a coherent direction, then the 

most robust oscillatory mode - that is, the one that will exist at the sma11est delay - will be 

coherent. In this case, the network will not oscillate when the delay is smaller than the 

critical delay derived below. Connection topologies which have a coherent direction 

associated with Amin include all fully frustrated networks: the all-to-all, one- and two-
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-------------------f-1 

Fi~. 4.5. The largest and smallest eigenvalues for the all·inhibitory network, Eq. (4.18), 
plotted as a function of the diagonal element y. The values indicated at the axis 
crossings are for a general N, but the scale of the drawing is correct for the case N = 3. 
The asymptotic value for all eigenvalues as y-+ ± 00 is ±l. 
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dimensional inhibitory networks treated in § 4.5, as well as all Mattis transformations 

[Manis, 1976] of these networks. For other networks discussed in § 4.5, including the 

diluted inhibitory network and the negative-only c1ipped Hebb rule, the eigenvector 

associated with Å"un appears numerically to approach coherence at large N, though this 

has not been proven rigorously. 

The stability criterion of § 4.3.4, stated as Eq. (4.17), applies at all values of gain but 

becomes useless in the large-gain limit. In particular, Eq. (4.17) requires that the delay 

go to zero as the gain diverges in order to prevent oscillation. Experimental and 

numerical investigation suggest that this requirement is too severe, and that there is a 

gain-independent critical delay "crit such that for .. < "crit sustained oscillation 

disappears. Apparently, this critical delay resuIts from an instability of the oscillatory 

attractor itself. Below, we derive a value for the critical delay "crit for coherent 

oscillation in the large-gain limit by considering the stability of the oscillatory attractor. 

This novel stability criterion agrees very well with experimental and numerical data. 

4.4.1. Effective gain along the cuherent oscillatory attractur 

The basic idea of the derivation is that neurons with saturating output can be regarded 

as having an effective gain fJef! which is not constant as the state moves along the 

oscillatory attractor, and ean be finite even when f(u) is infinitely steep at u = O. The 

effective gain is defined as fJef! = f(u(t))/u(t). Note that fJeff is defined as the ratio 

of the neuron output !(u(t» divided by the input u(t) which gave rise to that 

particular output; this is a significant distinction for delay network, since the output 

f(u(t» due to the input u(t) does not appear at the output until a delay time .. has 

elapsed. This defmition of fJef! reduces to the usual gain fJ whenf(u) is linear (with 

or without delay). We assume that the oscillatory attractor loses stability when the 
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effective gain is sufficiently large at all points on along the attractor that perpenrucular 

perturbations will always lead the system off of the attractor. This instability occurs 

when the minimum value of f3ejf along the attractor exceeds a critical value related to 

flow perpenrucular to the oscillation direction. 

When the large-gain network is oscillating coherently. neuron outputs swing between 

±l in Ihe form of a square wave. while the inputs altemately charge and discharge 

exponentially with a time constant equal to the relaxation time of the network as shown in 

Fig. 4.6(a). The smallest value of f3ett occurs when the input amplitude is at an 

extremum of its charge-ruscharge oscillation and the corresponding output is saturated at 

± 1. At this point. f3ett is the reciprocal of this input amplitude. The maximum 

amplitude Ai al the l"lh input depends on the delay and is given by 

(4.20) 

For coherent oscillation along the direction associated with Åmin all of the Ai in Eq. 

(4.20) will be the same (defined as A. with no subscript) and the term in the absolute 

value of (4.20) will equal -Åmin (> O). In this case f3ejf will be bounded below by l/A. 

as shown in Fig. 4.6(c): 

l 

A 

l 
(4.21) 

Flow perpendicular to the oscillatory attractor is described by Eq. (4.5) with the Åi 

(i = J •. ..• (N-l)) equal to the N-J eigenvalues of T ij excluding Åmin and with 

f3 = f3ett· The leas t stable of the N -l directions perpendicular to the oscillatory 

attractor is along the eigenvector associated with Åmar. Thus the oscillatory attractor will 
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Fjg. 4.6. (a) The input u(r) (triangular wave) and output !(u(r-'t')) (square wave) for 
a sarurating infinite-gain neuron with delay in an oscillatory state. The value A. given by 
Eq. (4.20). is the maximum amplitude of the input. (b) The same input and output 
waveforms as above with the offset between input and output due to delay suppressed. 
(c) The effective gain 13e!!. defined as the ratio of !(u(r»/u(r), takes on finite values 
even when f(u) is infinitely steep at u = O. The minimum value of 13effis where the 
input is an exttemum; at this point 13eff= l/A. (d) The input and output of a delayed 
neuron from the electtonic circuit (Ch. 3) in a state of sustained coherent oscillation. 
Compare this to the idealized form in used in (a). 
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lose stability when Amaxf3eff> l at all points along the trajectory. From Eq. (4.21), this 

condition is satisfied when Åmax/A > 1. The critical delay "erit, defined by the 

condition Åmax/A = l, is thus given by 

(4.22) 

Solving (4.22) for "erit gives the main result of § 4.4: 

= -In (1 + Å~ ) ; 
A.m", 

(4.23) 

To illustrate this result we again con sider the N x N all-inhibitory network (4.9) in 

the large-gain limit. This network has connection eigenvalues Åmax = l/eN -1), 

Amin = -1, giving a large-gain critical delay 

't'crit = ln(~) 
N-2 

[-ljN for large N]. (4.24) 

Fig. 4.7 shows "erit for the all-inhibitory networks as a function of the size of the 

network N. The solid line is from Eq. (4.24), the circles are data from numerical 

integration with f3 = 40 indicating the smallest delay that would support sustained 

oscillation. The rapid decrease in "erit as the size of the network increases indicates that 

the alJ-inhibitory network is very prone to oscillation for large N. 
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Fig. 4.7. Large-gain eriticai delay -rerit for the all-inhibitory network plotted against N, 

the size of the network. Solid curve is the theory from Eq. (4.23), the filled circles are 
from numerical integration of the delay equations at f3 = 40. Numerical integration data 
were ob tai ned by starting the system with initial functions Ød --r,0] along the 
eigenvector associated with Amin and constant over the time interval r --r,0]. The delay­
differential equations were integrated using a modified Euler method: A stack of IO - 40 
previous states was maintained for each neuron. Upon each Euler step, the elements in 
the stack were moved down one position and a new state was added to the top of the 
stack. The step size and size of the stack were chosen so that a state reached the bottom 
of the stack at precisely the specified delay, and could then be used as the neuron's 
delayed output. The system was checked for oscillation af ter many (up to I(4) time 
constants. The critical delay was found by repeating the integration using a IO-split 
binary search in the value of delay. 
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4.4.2. Crossover from low gain to high gain regime 

We have now found two critical values af delay: For small gain (13 < Åmax) the 

network does not oscillate for, < TH, where T:H is the value af delay where the Hopf 

bifurcation occurs. For small delay, 

(4.25) 

At large gain, the delay network does not oscilIate for T: < Terit, where Terit is given 

by Eq. (4.23). We now ean sider the erossover from the small-gain regime to the large­

gain regime for the speeifie example af an all-inhibitory triangle af neurons. For this 

network, 

-I] -1 ; 

O 

, _ 1 
I\..max -2 Åmin = -1. (4.26) 

Fig. 4.8(a) shows the two theoretical eurves for eaeh of the two regimes. The data 

points are the values af delay where the oscillatory attraetor disappears as measured in the 

analog circuit (op en eirc1es) and by numerically integrating the delay equations (filled 

eirc1es). Fig. 4.8(b) shows four regions af the 13 - T plane, each with distinct 

dynamical properties. For 13 < 2 and T < TH, where 'H is found by setting Åmin = -1 

in Eq. (4.15), there is a single fixed point attractor atthe origin. For 13 < 2, T> 'H, 

the fixed point at the origin is unstable and there is a single oscillatory attractor. At 13 = 

2 fixed points away from the origin appear. At this crossover point, T:j{ ;: 1.209. For 

13 > 2, the Hopf bifurcation line no longer marks the critical delay for sustained 
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Fig. 4.8. Phase diagram for the all-inhibitory (or frustrated) triangle of delay neurons. 
(a) Two theoretical curves are shown. The curve labelled TH indicates the value of delay 
and gain where the origin undergoes a Hopf bifurcation, from Eq. (4.17); the line 
labelled Terit indicates the large-gain critical delay where the oscillalOry mode 10ses 
stability. For T < Terit only fixed-point attractors are stable. The data points are critical 
delays measured in the electronic network (open circles) and by numerical integration 
(fIlled circles) with f3 = 40. Numerical integration data were obtained as described in the 
caption of Fig. 4.7. (b) The four regions in the f3 - T plane with qualitatively different 
dynamics are: S l: Single fixed point attractor at the origin; Ol: Single coherent oscillatory 
attractor; SM: Multiple fixed point attractors away from the origin, all fixed points; OM: 
Multiple attractors away from the origin, including ftxed points and a coherent oscillatory 
attractor. 
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oscillation. As f3 becomes large, the erirical delay for sustained oscillation approaehes 

the gain-independent theoreticaI value of 'l"crit. From Eq. (4.24), 'l"crit(N=3) = ln(2) 

== 0.693. 

4.5. STABILITY OF PARTICULAR NETWORK CONFIGURATIONS 

In [his section we consider sustained oscillation in fOUT symmetrie delay networks: 

(1) symmetrically connected inhibitory rings; (2) large two-dimensional arrays of nearest­

neighbor lateral inhibition networks on square and hexagonallattices; (3) spin-glass-like 

random symmetric networks; and (4) Hebb rule and c1ipped Hebb rule associative 

memories. 

4.5.1. Symmetrically connected rings 

A ring of neurons with symmetric connections, all of equal strength but of either 

sign, inhibitory or excitatory, has a spectrum of connection eigenvalues given by 

Ak = cos(2; (k+rp)) k=O,I, ... ,(N-l). (4.27) 

where II' = 1/2 for a frustrated ring, i.e. Sgn(llring Tij) = -1, and II' = O for a 

nonfrustrated ring [Reger and Binder, 1985]. (The normalized matrix has elements 

T ij = Tji = ±1/2.) The ratio of maximum to minimum eigenvalues can be found 

directly from Eq. (4.27): 
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cos(n/N) [< l] N odd; frustrated, 

~ Åmin 
sec( n/N) [> I] N odd; nonfrustrated, (4.28) 

I N even; frustrated or nonfrustrated. 

Notice that only frustrated rings with odd N satisfy the condition I).",aJAminl < l, 

suggesting that only these configurations will show sustained oscillation. This 

conclusion is confIrmed experimentally and numerically. The large-gain critical delay for 

the frustrated ring with odd N is found from Eq. (4.23), 

(N odd, frustrated). (4.29) 

Notice also that Tcril increases with increasing N for the symmetric ring, while for the 

all-inhibitory network Teril decreases with increasing N. Inhibitory rings are thus much 

less prone to oscillation than fully-connected inhibitory networks. The eritical delays 

from numerical integration are compared to Eq. (4.29) in Fig. 4.9. 
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Fil:. 4.9. Large-gain critical delay Terit for symmetrically connected frustrated rings with 
N = 3,5,7,9 from Eq. (4.23) (open squares) is plotted along with crirical delay from 
numerical integration (filled circles) with f3 = 40. Numerical integration data were 
obtained as described in the caprion ofFig. 4.7. Frustrated symmetric rings with even 
N do not satisfy I ÅmaxlÅmin I < 1 and therefore are not expected to oscilIate for any 
delay within the large-gain theory. Numerically, frustrated rings with even N showed 
sustained oscillation only for very large delay (T> 10), though this is possibly a 
numerical artifact 
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4.5.2 Two-dimensional lateral-inhibition networks 

An important network configuration, especially IO the study of real and artificial 

visual systems, is one in which each neuron inhibits the activity of its neighbors. This 

configuration, called lateral inhibition, is ubiquitous in vertebrate and invertebrate vision 

systems [Dowling, 1987], and is widely used in artificial vision systems for edge and 

feature detection. Lateral inhibition has also been incorporated into an e!ectronic VLSI 

modelof the retina [Mead, 1989]. The function of lateral inhibition is to enhance the 

contrast of edges in a visual scene [RatIiff, 1965; Dowling, 1987] and to broaden the 

dynamic range of a visual system by setting a local rather than global reference point for 

measuring relative intensity variations [Mead, 1989]. 

A case of lateral inhibition in which time delay is significant is in the compound eye 

ofthe horseshoe crab, Limulus [for a collection ofpapers see: Radiff, 1974]. It is found 

experimentally that the individual eyelets (ommatidia) that form the compound eye of 

Limulus are mutually inhibitory, and that there is a significant time delay (- 0.1 sec.) 

before lateral inhibition is activated between any pair of ommatidia. It is also found that 

under certain experimental conditions, a spatially uniform illumination over the entire eye 

will induce sustained coherent oscillation, with all ommatidia showing an in-phase 

periodic modulation in their output firing rate, with aperiod of - 0.3 sec. [Barlow and 

Fraioli, 1978]. 

Such experiments have stimulated several mathematical analyses addressing 

oscillation in delayed lateral inhibition systems [Coleman and Renninger, 1974, 1975, 

1978; Hadeler and Tomiuk, 1977, an der Heiden, 1980]. These analyses have assumed 

uniform, all-to-all coupling between ommatidia, and further have assumed a coherent 

form for the oscillatory solution, which allows the problem to be reduced to a one­

dimensional de1ay-differential equation for motion along the in-phase (1,1, ... ,1) 
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direction. This second assumption dees not allow an instability of the oscillatory mode to 

broken-symmetry states, and thus previous treatments have not predicted the instability of 

the coherent oscillatory solution which lead to our large-gain critical delay "l"crit in § 4.4. 

Already in Ch. 4 we have considered two extremes of lateral inhibition networks: the 

all-to-all inhibitory network (Eq. (4.9) and (4.24)) and the one-dimensional laterally 

inhibiting ring, which is covered by the analysis in § 4.5.1. These two networks are 

seen to behave quite differentlyas the number of neurons becomes large. Specifically, as 

N ~ ~ the eritical delay "l"crit from (4.23) tends to zero for the all-to-all inhibitory 

network and tends to infinit y for the one-dimensional ring with nearest-neighbor 

inhibition (for now, we set the self-eonnection y= O): 

"l"cri' ~ O as N ~ ~ (all-to-all), 

rcrit ~ ~ as N ~ ~ (l -D ring). 

(4.30) 

(4.31) 

Of course, the case of most direct application to vision is neither of these extremes, but 

rather a large 2-D network. In this subsection, we show that the stabil it y of large 2-0 

networks with delayed nearest-neighbor lateral inhibition depends crucially on the form 

of the lattice. With the neurons on a square lattice (Fig.4.1O(a», we find 

"l"crit ~ ~ as N ~ ~ (2-D square lattice). (4.31) 

That is, this configuration will not show sustained oscillation in the large-N limit. In 

contrast, when the neurons are placed on a triangular lattice (Fig. 4.1O(b» the critical 

delay for sustained oscillation isfinite in the large-N limit, approaching the limit 

rcril ~ In(2) = 0.693. .. as N ~ ~ (2-D triangular lattice). (4.32) 
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Fig. 4.10. Two-dimensional lattices with lateral inhibition. (a) Square lattice, (b) 
triangular lattice. 
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For generality, we introduce a diagonal element y in the connection matrix (before 

normalization), corresponding to a delayed self-inhibition (r< O) or self-excitation 

(r> O). The value of r indicates relative strength of the delayed self-connection 

compared to the strength of the delayed lateral inhibition (as used in Eq. (4.18)). With 

the delayed self-connection r. the crirical delay for the 2-D triangular lalrice becomes 

( r-
6 ) 'l" crit -t In as N -t "". 

2r- 3 
(4.33) 

We restrict the r to the range -3 < r< 6 to insure O < Åmax < - Åmin' which was 

assumed in the analysis of § 4.4. Equation (4.33) indieates that the triangular lanice ean 

oscilIate even when there is an overall self-exeitation, as Ion g as y< 1.5. 

It rnay seem surprising at first that the type of latrice ean so greatly affect the network 

dynamies. The key to understanding the difference is realizing that on the triangular 

lattice, lateral inhibition (or, equivalently, antiferromagnetism) isjrusrrared, but on the 

square lattice it is nol. On the square latrice, in faet, lateral inhibition is exaetly equivalent 

to lateral excitation via a Mattis transformation [Mattis, 1976). This difference is also 

seen in 2-D magnetic models: While ferrornagnets on square and triangular lanices behave 

nearly identically (both are nonfrustrated), the corresponding 2-D antiferromagnets are 

quite different, due to the presence of frustration in the triangular lattice, but not the 

square lattice [Wannier, 1950). As diseussed in § 4.3.2, the presence of frusITation 

seerns to be essential for a delay network to support sustained oscillation. 

To derive the above results, Eqs. (4.31)-(4.33), we need the eXITemal eigenvalues of 

the connection matrix for nearest-neighbor inhibition on these 2-D lattices. The value of 

'l"crit ean then be found immediately from Eq. (4.23). This sort of eigenvalue problem 

is frequently encountered in eondensed matter physics, for example to describe the 
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vibrational modes of a 2-D lanice2. Therefore, the eigenvalue spectra will be presented 

without derivation (see, for example [Ashcroft and Mermin, 1976, Ch. 22]). We assume 

periodic boundary conditions and take NI and N 2 as the number of neurons along each 

of the two lattice veClors. (The total numbeT of neurons is the product N IN2') As 

usual, Ihe connection matrix obeys the normalization "Ej ITi} = 1. The eigenvalues 

Åk""" of Tij, for the 2-D square lanice are given by 

y- 2[ cos(2nkJ! Nd + cos(27rk2/N2) J 
IYl+ 4 

(4.34) 

where the indices range over the values kI,2 = 0,1, ... , (NI,2-1). From (4.34), we find 

that for the square lanice, the ratio appearing in (4.23) limits to 

y+4 
= y-4 

(4.35) 

To apply the analysis of § 4.4.1, which assumed ° < Åma;c < - Åmin' we require 

-4 < y< 4. From (4.35) and (4.23) we conclude thai for y ~ 0, ~cril .-,00 for large 

2-D square lanices, as NJ,N2 '-'00. 

The eigenval ues for the triangular lattice are given by 

Åkk(r)= l , 2 IJ 

y - 2[ coS(27rkdNJ) + cos(27rI0./N2) + cos(2tr(kJ/NJ - k2/N2 l)] 
IYl+ 6 

where, again k1,2 = 0,1, ... , (NI ,2-I). In this case, the ratio in (4.23) limits to 

2A very heIpful discussion wi!h R. D. Mcadc regarding !his point is gralefulIy acknowledged. 
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and we require -3 < Y < 6 to insure O < Amax < - Amin' Notice that for the triangular 

lattice, 

(4.38) 

for y < 1.5. Equations (4.38) and (4.23) indicate that a nearest-neighbor lateral 

inhibition network on a large triangular lattice has a finite value for -rerit as long as the 

(delayed) self-excitation strength remains les s than 1.5 times the lateral-inhibition 

strength. From (4.37) and (4.23), we ean find the value of -rerit given above in Eqs. 

(4.32) and (4.33). 

The eigenmode associated with the most negative eigenvalue of (4.36) is k l = O, 

k2 = O. This O-wavevector mode is the in-ph ase (coherent) direction in state space, as 

shown in Fig. 4.11(a), which justifies the application of the large gain analysis and Eq. 

(4.23). Further consideration reveals that the mode associated with the most positive 

eigenvalue - the mode which first goes unstable IO break the symmetry of the coherent 

oscillation - is the -v'3 x-v'3 mode shown in Fig. 4.11(b). 
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Fig. 4.11 . Eigenmodes associated with the extremal eigenvalues of Tij for the triangular 
lateral inhibition network, from Eq. (4.36). (a) The mode associated with Åmin is the 
coherent, in-phase mode, k l = k2= O. This is the oscillatory mode which appears for 

the smallest value of delay. (b) The mode associated with Åmar is a .f3 x.f3 structure. 
The wave vectors for this mode are at the vertices of the hexagonal Brillouin zone. This 
is the fIrst mode to break the symmetry of the coherent oscilIatory mode, giving the value 

for "eri!" 
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4.5.3. Random nelworks 

Sustained osciJlations in randOInly connected neural networks have been considered 

previously for symmetric networks with parallel dynamics [Cabasino et al.,1988] , 

which show at most period-2 oscillation s [Peretto, 1984; Goles-Chacc et al., 1985; 

Goles and Vichniac, 1986; Grinstein et al., 1985; Frumkin and Moses, 1986; Marcus 

and Westervelt, 1989c] and for asymmetric networks with parallel dynamics [Amari, 

1971; Shinomoto, 1986; Gutfreund et al., 1988; Klinen, 1988], sequential dynamics 

[Shinomoto, 1986; Gutfreund et al., 1988] , and continuous-time dynamics [Amari, 

1972; KUrten and Clark, 1986]. Periodic as well as chaotic dynamics in a mean field 

spin-glass model with delayed interaction have also been described [Choi and Huberman, 

1983b]. 

We will only con sider the effect of delay in symmetric random networks, and we 

find only simple (non-chaotic) oscillation above a critical delay. The absence of chaos in 

the symmetric cominuous-time delay network (with monotonic nonlinearity) is not 

surprising, as the two limits of short and long delay are known to possess only fixed 

points and period-2 oscillations: A rigorous proof of this conjecture for the general delay­

differential system has not been presented to our knowledge. 

We consider a delay network with symmetric connection matrices whose elements 

Tij (= Tji ) are independently fixed at one of three values (+,-,0). Any two neurons are 

connected by a positive connection with probability p+ and by a negative connection 

with probability PO' The connectance p is defined as p = (p+ + p.); the bias q is 

defined as q = (p+ - p.). The normalized matrix T iJ' has elements 

j±_l 
T;j = Tji = pN 

° 
with probability P± 

(4.39) 

with probability 1- p. 
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The eigenvalue specuum of a random symmetric matrix is described by the famous 

Wigner semicircular Jaw [Wigner, 1958; Edwards and Jones, 1976] (For a generaJization 

of the semicircuJar law to random asymmetric matrices, see [Sommers et al.,1988]). 

The notation used here follows Edwards and Jones [19761. For an N x N random 

symmetric matrix whose elements have a mean M O/N and a variance a2/N, the 

spectrum of eigenvalues p(Å) converges for large N to a continuous semicircular 

distribution. For MO = O, 

and for M o ~ O, 

For the (+,-,0) matrix, Eq. (4.39), we identify 

q 
Mo H 

p 

IÅI<2a 

IÅI> 2a 

(4.40a) 

(4.40b) 

(4.4la) 

(4.4 Ib) 

From Eq. (4.40) and Eq. (4.41), we can find the maximum and minimum eigenvalues of 
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Tij- Setting Ti; = O adds a tenn of O(l/N) IO all of the eigenvalues; we will neglect 

this and all tenns O(l/N). These resulls are therefore valid only for large N, where 

NI/2 «N. 

2 ~p-l O(~) forq<~ - + 
P N 

Å = (4.42a) max 

q 
+ O(~ ) forq>~ 

p 

_3..~Jl-l + O(~) for -q<~ 
Åmm = Jl N 

(4.42b) 

2.. + O(~) for -q>~ p 

The condition lA.max/Åminl < l is only satisfied when -q > (P/N) 1/2, suggesting that a 

symmetric random network must be biased sufficiently negative before it will oscilIate for 

small delay ( "' < - 1). 

4.5.4. Random symmetric dilution of the all-inhibitory network 

An example of a random symmetric network that will oscilIate for small delay is the 

randomly diluted inhibitory network. For this network Jl+ = O and p = -q = p_. To 

O(I/N), the maximum and minimum eigenvalues are 

Å = max 
~ (..!.. _1)V2 
'li ' "V IV p_ 

(4.43a) 

Åmm = -I. (4.43b) 
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Fig. 4.12. The range of connection eigenvalues for asymmetricaIly diluted inhibitory 
network with N=100 from Eqs. (4.40) and (4.41) is plotted as a function of the 
connectance p_ (solid curves). The line at Å = -1 indicates a single eigenvalue Åmin 

Iying outside of the quasi-continuous distribution. The smaIl crosses are eigenvalues 

computed for randomly generated symmetric 100 x 100 matrices with p. = 0.4, 0.7, and 
0.9. 

- 86-



Fig. 4.12 shows the Iheoreticai range of eigenvalues for a 100 x 100 randomly diluted 

inhibitory matrix as a function of connectance p_o The small crosses are the eigenvalues 

of computer-generated random (-,O) matrices with p. = 0.4, 0.7 and 0.9. 

For the randomly dilUled inhibitory network, with or without delay, the neuron gain 

at which the origin becomes unstable via a pitchfork bifurcation, creating fixed points 

away from Ihe origin, is given by 

{3= -fN(~_IJ-1/2 
2 p_ 

(pitchfork). (4.44) 

Because il."un is independent of connectance, Ihe delay at which the origin loses stability 

by a Hopf bifurcation is also independent of connectance. Inserting Amin = -1 into 

Eq. (4.25) gives 1:H == ;r/2{3, the small-delay limit being appropriate for large N and 

therefore large {3. 

The large-gain analysis of § 4.4 can be applied to the diluted inhibitory network when 

N is large. At large N the eigenvector associated with Amin is nearly coherent, that is, 

the differences in lUi' along the eigenvector associated with il."un are small compared to 

IUil and appear numerically to vanish as N -t "". Applying Eq. (4.23) gives a gain­

independent critical delay which depends on the connectance. From Eq. (4.23) and Eq. 

(4.43), the randomly diluted inhibitory network will not oscillate in the large-gain limit 

for 1: < "eri! ' where 

(4.45) 

Fig. 4.13 shows 1:cri! as a function of connectance p_ for N = 1000. (At p_= l, the 
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result from Eq. (4.24) is used instead ofEq. (4.45) which neglects telTIls ofG(I/N) and 

is therefore not valid precisely atp_= 1.) Figure 4.13 shows that for a very mild dilution 

of connections, 1:cril is greatly increased, but addition al dilution does little to increase 

1:cril funher. When the dilution d'" (1- p_l is mild (d « l), the right hand side of 

Eq. (4.45) ean be expanded to yield 

(N-1 « d « l). (4.46) 

Eq. (4.46) can be compared to the erirical delay for the undiluted a11-inhibitory network, 

Eq. (4.24), to give a simple expression for the increase in critical delay due to random 

symmetric dilurion: 

1:(diluted) 
cnt 

'r(~di1utcd) -
ent 

(4.47) 

This result demonstrates how small random dilution of a large inhibitory network ean be 

used to stabilize a network by increasing the crirical delay for sustained oscillation. 
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Fi~. 4.13. Plot of the large-gain critical delay "crit as a function of connectance p_ for 
the diluted inhibitory network with N = 1000. Note that very mild dilution greatly 
increases "crit. At the point p_ = l the result of Eq. (4.24) is used instead of Eq. (4.45) 
which neglects tenns of OO/N), and is not correct at p_ = l. 
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4.5.5. Associative memory networks 

Associative memory networks are designed to converge to one of a set of specified 

fixed points away from the origin. Which memory pattem is retrieved depends on the 

initial state of the network. The existence of marry attractors with large basins of 

attraction is essentialto the dynamics of an associative memory. 

A variety of algorithms for adjusling the interconnections IO efficiently store 

memories have been developed [see, for example, Denker, 1986a; Amit, 19891 The 

simplest and most well studied scheme for storing a set of memory states ~,Jl 

(i = l, ... , N; J.l = l, .. . , p) is the Hebb rule [Hebb, 1949; Hopfieid, 1982], 

Iii = 0, (4.48) 

where p is the number of stored memory pattems. The storage capacity and dynamie 

properties of an analog Hebb-rule network are discussed extensively in § 5.4; we only 

mention a few relevant facts here. For random uncorrelated patterns, the maximum 

number of pattems that the Hebb rule ean store is - 0.14 N in the limit of p, N » 1. 

This capacity is for large neuron gain; at lower gain the capacity is les s [Marcus et al., 

1990). For all pIN < l, the Hebb rule matrix always satisfies IAmaxlAminl > l, 

suggesting that the Hebb network with delay will not oscilIate for any finite delay. 

(However, we will show in Ch. 5 that sustained oscillation is present in the infinite-delay 

limit - that is, in the analog iterated-rnap network with Hebb-rule connections.) 

A variation of the Hebb rule that is important for hardware implementation is the 

clipped Hebb rule [Denker, 1986a; Sompolinsky, 1986; van Hemmen, 1987], which 

restricts the interconnection matrix to a few values. The distribution of eigenvalues for a 
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clipped Hebb matrix Ti/ is greatly affected by the detail s of the clipping algorithm as 

seen in the numerical data of Fig. 4.14. Fig. 4.14(a) shows the distinct eigenvalues 

Å(Tij") for the clipping algorithm Tij" = (I/Z)Sgn(T ij ). where Z is the 

normalization Z = LiISgn(Tij)l. This clipping algorithm introduces large negative 

eigenvalues but still satisfies IÅmax/Åminl > l for all values observed of p. We 

conclude that networks built with this c1ipping algorithm will not oscilIate as long as the 

delay is not mueh longer than the relaxation time - to be safe. when 1: < - 1. 

Experimentally (in the electronic circuit) and numerically. we find that this c1ipping 

algorithm does not produee sustained oscillation until the delay is much longer than the 

relaxation time (1:» 1). Fig. 4.14(b) shows the distinct eigenvalues for the negative­

only clipping algorilhm: -Ti/* = (l/Z)(J(-Tij)' where 8 is the Heaviside function and 

Z = Li 8(-Tij)' This clipping algorithm. whieh sets all positive elements of the 

unclipped matrix T ij to O and all negative elements IO -l/Z. has the hardware advantage 

af only requiring a single inverting output from each neuron. as pointed out by Denker 

[1986b]. As seen in Fig. 4.14(b). Ihis algorithm unfortunately introduces a large 

negative eigenvalue whieh ean lead to sustained oscillation for a neuron delay of the order 

ofthe relaxation time (1:<-1). 

4.6. CHAOS IN TIME-DELA Y NEURAL NETWORKS 

4.6.1. Chaos in neural network models 

Relaxing the constraint of symmetric connections greatly enriches the repertoire of 

neura! nelwork dynamics and provides powerful computational properties that are not 

available in symrnetric networks. The most important novel feature of asymmetric 

networks (with or without delay) is that attractors need not be fixed points. Depending 

on the details of the connection matrix and the network dynamics. the attractors in 
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Fig, 4.14. Connection eigenvalues ).. for clipped Hebb matrices plotted as a function of 
the number of stored random memories p, using two clipping algorithms discussed in 
the tex!. (a) Hebb matrix Tij clipped according to Ti/ = (l/Z)sgn(Tij), with 
normalization Z = LjISgn(Tij)l, gives an unbiased matrix and an eigenvalue 
distribution which satisfies I)..ma.r')..minl > 1 for all observed values of p. (b) Clipping 
algorithm which sets all positive Tij to zero and all negative T jj to -liZ, with 
normalization Z = Lj O(-Tj}, has the advantage of only requiring a single output from 
each neuron, but produces a large negative eigenvalue that can lead to sustained 

oscillation. The data were obtained numericaIly for a 100 x 100 Hebb matrix T ij with 
random memories as in Eq. (4.48). 
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asymmetric networks may be periodic or chaotic. 

Chaos is usually taken to mean quasi-random behavior in a deterministic dynamical 

system [Guckenheimer and Holmes, 1983; Berge er al., 1984]. TypicalIy, though not 

always, the dynamicaI system of interest is 10w dimensional. This is, of course, not the 

case for de1ay systems [see, for examp1e: Farmer, 1982] or for neural networks with 

large N. The term "chaotic" is used both to describe a dynamical system (perhaps with a 

panicu1ar set of parameter values) or to describe an artractor of a dynarnical system. The 

distinction is a erucial one, however, sinee a chaotic attractor may occupy only a smaII 

volume of the system's state space. Chaotie and non-chaotic attraetors often eoexist in 

state space, each attractor having its own basin of attraction. This can make the presence 

of ehaos in a high-dimensional system (such as a neural network) difficuIt to detect, sinee 

a panicular set of inilial conditions may, for example, lead to a fixed point, while a 

nearby chaotic attraclor remains undetected. 

A definitive signalure of a ehaotie attractor is sensitivity IO initial eondilions, whieh 

means that c!ose-lying points on the attraetor move away from each olher as time evolves 

(for short times). In large random dynamieal systems the corresponding signature of 

chaos is the vanishing of an average autocorrelation function [Sompolinsky et al., 

1988). 

A. Chaos in large asymmerric networks 

Chaos in large delenninistic neural networks with random asymmetric conneetions 

has been studied extensively in several network models [Kiirten and Clark, 1986; 

Shinomoto, 1986; Derrida, 1988a; Kiirten, 1988; Sompolinsky, et al., 1988; GUlfreund, 

et al. , 1988; Bauer and Martienssen, 1989; Spitzner and Kinze1, 1989; Renals and 

Rohwer, 1990). Unfortunalely, a consislent pieture of when and how ehaos arises from 

random connections has nOl yet emerged. 
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Sompolinsky er al. [1988] considered the large-N behavior of a network of analog 

neuron s with continuous-time dynamics. They found that when the connection matrix 

elements are independent random variables with zero mean, and with zero correlations 

between Tij and Tji , the only attractors (in the large-N limit) are: (l) the fixed point at 

the origin for low neuron gain; and (2) a chaotic state above a critical value of gain. 

Numerical evidence in support of this claim is given by Bauer and Martienssen [1989], 

who also describe a transition to chaos via quasi-periodicity (see also [Renals and 

Rohwer, 1990]). However, Gutfreund et al.[l988], in an investigation of small random 

networks of binary neurons with discrete-time dynamics , found that long-period 

attractors exist only when the connection matrix is completely asymmetric, but that 

whenever there is a correlation between Tij and ~'i ' short -period attractors predominate. 

This result suggests that the presence of chaos in large random networks is not so 

common, being present only in fuIly asymmetri c networks. Spitzner and Kinzel [1989] 

present numerical evidence to the contrary: They find that random networks of binary 

neurons with parallel updating show a sharp transition from a so-called frozen state to a 

chaotic state as a function of the correlation between Tij and Tji , and that the transition 

to the chaotic state occurs at a non-zero value of the correlation. At the opposite extreme, 

analyticai and numerical work of Crisanti and Sompolinsky [1987] for the asymmetric 

spherical model (an approximation to analog neurons) suggests that as N ~ 00 all frozen 

states disappear, leaving only chaos, as soon as an infinitesimal amount of asymmetry is 

introduced into the connections . 

Shinomoto [1986], extending early work by Amari (1971), considered the effect of 

random connections for distributions of connection strengths with non-zero mean. Re 

presents a numerically derived phase diagram showing that randomly connected binary 

neurons with parallel updating are chaotic only when the mean of the distribution is 

within a narrow range. For a large negative mean, only period-2 attractors are observed; 
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for a positive mean, only fixed point attractors are observed. 

An alternative approach to identifying chaos in large random asymmetric networks is 

based on the sensitivity to initial conditions described above [Derrida, 1988a]. The idea 

here is to follow the evolution of a statistically averaged distance between two initial 

states and observe whether this distance converges or diverges under the dynamics of the 

network. Derrida [1988a] treated a highly dilute asymmetric spin glass model in thi s 

manner and idemified a transition to a chaotic phase, where pairs of initial conditions 

always diverge, as the connectivity of the network is decreased. Klirten [1988] showed 

that for dilute networks of binary neurons, Derrida's transition also marks a transition to 

a phase in which the mean length of Jimit cycles grows exponemially with the size of the 

system. 

B. Chaos in small networks 

Large system size is not necessary for the existence of chaos in neural networks. 

This faet has been demonstrated for continuous-time analog networks by Kepier et 

al .[1989] who used a 6-neuron elecrronic network with computer-controlled 

interconnections to rapidly test many random matrices for chaotic dynamics. They found 

that chaos was rare but present. They also identified some general characteristics of the 

connection matrices that result in chaotic networks. Matrices leading to chaos tend to have 

average loop correlations that obey the folIowing trends: (TijTji ) < O; (TijTjkT/d) - O; 

(TijTjkT/<mTmi»O. Babcock and Westervelt [1986a ;1986b] have shown that a simple 

analog network of two neurons with an inductive component in the coupling ean become 

chaotic when driven by an oscillating external current. 

C. Chaos in time delay networks 

Neural networks with nonsymrnetric connections and time delay can be configured as 
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associative memories for the storage and recaU of sequences of patterns. These networks 

have been described and studied by a number of researchers [Grossberg, 1970; 

Kleinfeld, 1986; Somplinsky and Kanter 1986; Gutfreund and Mezard, 1988; Riedel, 

et al., 1988; Herz, et al., 1988; Kiihn, et al., 1989]. It has been show n that for cenain 

parameter values, these large sequence-generating networks can also be chaos-generating 

[Riedel, 1988]. Chaos in scalar delay-differential systems will be discussed in § 4.6.3. 

4.6.2. Chaos in a small network with a single time delay 

The electronic analog network described in Ch. 3 shows endogenous chaos for 

particular connection configurations and network parameters. We now describe one such 

example using three neuron s, one with delay. The dynamical equations for the chaotic 

network are 

Cj Uj(c') = - ~ . Uj(t') + 
I 

N 

L Ii; f j (uk - rj)) , 
j=1 

j = 1,2,3. (4.49a) 

where 

T .,=_I_ l 

[

O 

l} 105 .Q 1 
(4.49b) 

Ri = (l:J'T'iJ')·I, and C 1= C2 = C3 = 10nF. The characteristic relaxation times for 

the three neuron s (in the absence of any delay) are RICI = O. Sms , R2C2 = l. Oms , 

R3C3 = 1. Oms. The neuron transfer functions are well-approximated by tanh functions 

with the folIowing gains and amplitudes: 
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Only neuron l is delayed, 

li (u) = 3.8tanh(8.0u), 

!z(u) = 2.0tanh(6.1u), 

h (u) = 3.5tanh(2.5u), 

",' = ro "1 - 1 

(4.49c) 

(4.49d) 

The outputs of neurons 1 and 2 are shown in Fig. 4.15 for four values of the delay 1" 

ranging from 0.64 ms to 0.97 ms. For 1" < 0.64 ms the system shows limit cyc1e 

behavior similar to that shown in Fig. 4.15(a). In the range 1" = 0.64 ms - 0.97 ms 

the system undergoes a series of period doubling bifurcations leading to chaos. As the 

delay is increased beyond 0.97 ms, both chaotic and periodie regimes are found. 

4.6.3. Chaos in delay systems with noninvertible feedback 

The chaotic circuit described above is c10sely related to a well-studied class of chaotic 

de1ay-differential systems with noninvertibie feedback [see, for example: Mackey and 

Glass, 1977; Farmer, 1982]. These systems are defined by a scalar de1ay-differential 

equation of the form 

x(t) = -ax(t) + h(x(t - 1")) , (4.50) 

where a,1" > O, and the function h is noninvertible (also called "humped" or "mixed"). 

Equation (4.50) has been studied in the context of white blood-cell production 
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Fig. 4.15. Period doubling to chaos in the electronic analog network (described in Ch. 3) 
as the delay of neuron one is increased. The dynamicai equations for this three-neuron 
circuit are given by Eq. (4.49). Pietures are photographs of the oscilloscope screen. 
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[Mackey and Glass, 1977; Glass and Mackey, 1988], recurrent inhibition in a three-cell 

circuit in the hippocampus [Mackey and an der Heiden, 1984], and other biological and 

ecological systems [Glass and Mackey, 1988 (and references therein)]. Analysis of 

(4.50) indicates that the noninvertiblity of h is crucial for chaos [an der Heiden and 

Walther, 1983; Hale and Sternberg, 1988]. 

The relation between (4.50) and the electronic network, with its three monotonie 

neurons, can be seen by plotting the total feedback/tot to neuron l, 

(4.51) 

which is noninvertible, as shown in Fig. 4. I 6(b). Note that using neurons with different 

gains is necessary (in this examp1e) to obtain noninverting feedback. Though the 

correspondence belween the (4.49) and (4.50) is not perfect, we feel thaI the 

noninvertibility offlOllies at the heart of the chaolic behavior in the electronic nelwork. 

In the limit" --. 00, Eq. (4.50) and the equation for ul from (4.49) ean both be written 

as a l-dimensional ileraled map: 

x(t + l) = H(x(t)) (4.52) 

where the function H ( = h/a or f tot ) is, again, a noninvertible or humped function. 

The logistic map [May, 1976] is a famous case of a noninvertib1e iterated map (4.52) 

whose behavior has been studied extensively [see Berge et al., 1984). 
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Fi g:. 4.16 Illustration of how monotonic nonlinearities can combine to give noninvertibie 
feedback. (a) The three neuron transfer functions in Eq. (4.49c). (b) The total feedback to 

neuron ftot(ul(t-"l"))=h(.fi(ul(t-"l")))-h(.fi(uj(t-"l"))). Note that fIOl is 
noninvertible. 
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4.7. DISCUSSION AND REVIEW OF RESULTS 

This chapter is quite long and contains a number of new results. This final section is 

included IO provide a summary of its contents. 

We have considered the stability of analog neural networks with delayed response. 

The aim has been to extend the stability condition: "symmetric connection implies no 

oscillation" - which is valid when the neuron S have instantaneous response - to a more 

realistic modelof neural networks where time delay is included. We find that 

symmetrically connected networks can show sustained oscillation when the neurons have 

delayed output, but only when the ratio of delay to relaxation time exceeds a critical 

value. 

At low neuron gain, linear stability analysis about the origin suggests that for 

1: < -n/(2f3Åmin) asymmetric network will not oscillate. In this inequality, 1: is the 

neuron delay in units of the network relaxation time, f3 is the gain (maximum slope) of 

the neuron transfer function at the origin and Åmin is the minimum eigenvalue of the 

connection matrix Tij as defined in Eq. (4.3). 

The stability criterion based on linear stability analysis is valid at all values of gain but 

becomes overly conservative in the large-gain limit. We find experimentally and 

numerically that symmetric networks with extremal eigenvalues satisfying 

IÅmaxlÅminl> I do not oscillate as long as the delay is comparable to or less than the 

network relaxation time. In contrast, symmetric networks satisfying IÅmaxiÅ.-minl < I do 

show coexisting fixed point and oscillatory attractors at large gain. There exists a critical 

delay Teri! in the large-gain limit below which oscillatory attractors vanish and only fixed 

points attractors are observed. For symmetric networks in which the oscillatory mode 

present for the smallest delay is coherent (as defined in § 4.4.1), sustained oscillation 

vanishes for" < "eri! = -ln(1 + Åma.,JÅmin)' This result is independent of gain and 
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is useful as f3 ~ ~, unlike the linear stability result (Eq. (4.17)). 

The stability criteria have been tested numericaIly and in the electronic neural network 

described in Ch. 3. Agreement between theory, experiment and numerics is very good. 

Some results for particular network topologies: 

(a) The all-inhibitory nel\~'ork is the most oscillation-prene eonfiguration of the delay 

network. For this configuration, the critical delay in the large-gain limit is given by 

"eri! = In«N-2)/(N-I)) - l/N, where N is the size of the network. Diluting the a11-

inhibitory network by randomly - but symmetrically - sening a smalt fraction d« l of 

the intereonneetions (Tij and Tji) to zero will increase the critical delay by a factor of 

(4dN) 1/2. 

(b) Rings of symmetrically connected delay neurons will oscillate only when the ring 

is frustrated (Sgn(Il ring Tij) = -1) and when there is an odd numbeT of neurons in the 

nng. 

(c) The critical delay for large two-dimensional networks with nearest-neighbor 

lateral inhibition ean be either finite OT infinite, depending on the type of lanice. For zero 

self-conneetion, Tcril ~ ~ as N ~ ~ for a square lattice, and Tcril ~ ln(2) = 0.693. .. as 

N ~ ~ for a triangular lanice. 

(d) The Hebb rule, Eq. (5.13), satisfies IÅmaxlÅminl > l and, as expected, does not 

show sustained oscillation numerically OT in the electronic network for any observed 

(finite) delay. Clipping algorithms, which limit the interconnections to a few strengths, 

can introduce large negative connection eigenvalues and produee sustained oscillation in 

networks with delay smaller than the network relaxation time. 

Finally , we have discussed chaotic dynamics in asymmetric neural netwoTks. An 

example of a chaotic three-neuron network with a single time delay was presenled. A 

conneetion was made between asyrnrnetric nelworks of monotonie analog neurons and a 

well-studied ehaotie system thaI has noninvertibie or "mixed" delayed feedback. 
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Chapter 5 

TRE ANALOG ITERATED-MAP NEURAL NETWORK 

5.1. INTRODUCTION 

In this chapter, we analyze in detail the dynarnics of an analog neural network with 

discrete-tirne parallel dynamics. Because the network's dynamical equatians form a set 

of caupled iterated maps, we will refer to the system as an iterated-map neural network. 

The main purpose of this chapter is to show that the notorious problem of sustained 

oscillations associated with parallel dynamies can be eliminated by using analog neurons. 

Specifically, we present a global stability criterion that places an upper limit on the gain 

(maximum slape) af the neuron transfer function. When satisfied, this criterion 

guarantees that a syrnrnetrically connected iterated-map network will always converge to a 

fixed point [Marcus and Westervelt, 1989c]. As an application, we treat the problem of 

associative memory, and present novel phase diagrams for analog associative memories 

based on the Hebb rule and the pseudo-inverse rule [Marcus et al., 1990J. These results 

show that analog associative memaries ean be updated in parallel over a braad range of 

neuron gains and storage ratios while maintaining good recaU and guaranleed 

. convergence IO a jixed point. This feature distinguishes analog networks from the 

standard Ising-spin netwarks (with ar withoU! temperature) which, in general, must be 

updated sequentially to prevent oscillation. 

We will also discuss a secand irnponant advantage of analog associative memories, 

which is that lowering the neuron gain can greatl y increase the chances that an initial state 
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far from all memories will correctly flow to a recall state without gelting trapped in a 

spurious attractor. 

The subsections of Ch. 5 are organized as follows. In § 5.2 we define the iterated­

map neural network and prove !hat for a broad c1ass of transfer functions and symmetric 

connections, the only attractors are period-2 limit cycles and fixed points. In § 5.3, we 

then show that all limit cycles can be eliminated by lowering the neuron gain belowa 

critical value. In § 5.4, we investigate analog associative memories based on the Hebb 

rule [Hebb, 1949; HopfieId, 1982] and the pseudo-inverse rule [Personnaz et al.,1985; 

Kanter and Sompolinsky, 1987), and present phase diagrams in the parameter space of 

neuron gain f3 and memory storage ratio a. In § 5.5, numerical results for the 

associative memory networks are presented. These results agree well with the analytical 

results of § 5.4. The numerical results in § 5.5 also show that the probability of retrieval 

is increased at low analog gain, suggesting the use of analog annealing to enhance recall. 

Applications of these results and conclusions are presented in § 5.6. Some lengthy - but 

important! - details are presented in two appendices: In appendix 5A, the storage capacity 

of the Hebb rule for the analog iterated-map network is deri ved. This analysis 

generalizes the cavity method approach of Domany et al. [1989J. In appendix 5B, 

storage and recall properties of the pseudo-inverse rule are deri ved. 

5_2. ITERATED·MAP NETWORK DYNAMICS 

The dynamicaI system investigated in this chapter is an iterated-map neural network in 

which all neuron s have continuous input-output transfer functions and updating is done 

in parallel [Marcus and Westervelt, 1989c]. The network is defined by the set of coupled 

nonlinear maps, 
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(5.1) 

where the real variables Xj(l) describe the state of the system at time l. Time. in its 

present usage. is a diserete index: t = 0.1.2 •...• and ean equivalently be thought of as a 

layer index in a feed-forward network with identieal eoupling between eaeh layer (cf. 

[Meir and Domany. 1987; 1988]). The intereonneetion matrix Tij is assumed real and 

symmelric. We also assume that the neuron transfer functions Fj are all single-valued 

and monotonic (without loss of generality. we take all F j to be monotonicaIly 

increasing) and may be different for eaeh i. Notice that the functions F j ean be 

coneave-up or eoneave-down at any finite argument and do not need to saturate to a finite 

value. However. to insure that the Liapunov functions presented below and in § 5.3 are 

bounded below. we require that all F i increase in magnitude slower than linear for large 

negative and positive argument. An example of a neuron transfer funetion that satisfies 

these conditions is illustrated in Fig. 5.1 (a). The maximum slope of each Fj is defined 

as the gain øj for that neuron. as shown in Fig. 5.1(a). 

There is a completely equivalent form of Eq. (5.1) that has the neuron transfer 

functions inside of the sum: 

Uj(t+ l}/Rj = ~);jfj(Uj(t)) +l j (5.2) 
J 

Equation (5.2) describes the evolution of the neuron inputs u/t) rather than the outputs 

x/t). and is related to (5.1) by the change of variables: 

(5.3) 
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Ca) F; (x) 

x 

(b) F(x) 

x 

. Fig. 5.1. (a) An example of a non linear neuron transfer function which meets the 
conditions for the dynamic properties given in § 5.2 and § 5.3. Those conditions are: 
Each function must be single valued and monotonic, and must grow in magnitude slower 
than linear in the limit of large positive or negative argument. The maximum slope f3i 
that appears in the stability criterion (5.11) is also indicated. (b) An example of a 
nonlinear function F (idemical for all i) which meets the less general conditions 
assumed for the associative memory phase diagrams, Figs. 5.3 and 5.4. These 
conditions are given at the beginning of § 5.4. 
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The continuous-time version ofEq. (5.1), given by 

(5.4) 

has the same fixed points as the iterated-map system (5.1), but not the same stability 

properties: For Tij symmetric and all F j monotonic, Eq. (5.4) will always converge to a 

fixed point, regardless of neuron gain. Finally, we note that the cominuous-time system 

(5.4) is equivalent to the elecll'onic circuit equations used in chapters 3 and 4, 

Cj dU j(r')/dt'= - uJt')/ Rj + I,T;}iAUj (c')) + lj 
j 

(5.5) 

when the time constants RICj are equal for all i. Equation (5.4) ean be transformed imo 

(5.5) by the change of variables (5.3), plus the rescaling of time, r' '" (RjCj ) t. 

We will now prove that all attractars of the iterated-map network (5.1) - or, 

equivalently, all attractors of (5.2) - are either fixed points ar period-2 limit cycles 

[Marcus and Westervelt, 1989c]. The proof consisrs of showing that a function E(t), 

defined as 

i,j 

where 

+ I, [Gj(Xj(t))+Gj(xj(t-I))] , 
j 
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is a Liapunov function for the iterated-map network, Eq. (5.1), and that the minima of 

E(t) are at either fixed points er period-2limit cycles ofEq. (5.1). 

The change in E(I) between times I and Hl, defined as L1E(t) '" E(I+l) - E(t), 

can be found from (5.6a) and (5.1) and the symmetry Tij= Tji, and is given by 

where L12Xj(l) ",xj(l+l)-xj(l-l) is the change in xi(r) over rwo time steps. For 

Gi(x) cencave up at all values of its argument x, we can write the folIowing inequality 

(see Fig. 5.2): 

(5.8) 

where G[(Xj(l+l)) is the derivative of Gi(x) at the point x =xi(Hl). The case ef 

equality in (5.8) only occurs when L1 2Xj(t) = O. The requirement that Gi(x) be concave 

up is not very restrictive: it is satisfied as long as Fi is a single-valued, invertible, and 

increasing function. Insening the inequality (5.8) into (5.7) gives 

The difference in the square braeket equaIs zero by Eq. (5.6b) giving the result: 

M(I) S;O 

L1E(t) =0 => L12xJt)=0 
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Thus E(r) is a Liapunov function for the iterated-map network (5.1) and all attraclOrs of 

(5.1) - where .1E(t)=O - satisfy .12Xi(t) = O, orxj(t+l) =xj(r-l) for all i. 

Therefore all attractors of (5.1) are either fixed points or period-2limit cycles. 

5.3. A GLOBAL STABILITY CRITERION 

In this section we show that all period-2limit cycles of the iterated-map network (5.1) 

can be eliminated, leaving onJy fixed points, by lowering the neuron gains f3j to satisfy 

the stability criterion: 

1 
> -Amin for all j , 

f3i 
(5.11) 

where {3j ( > O) is the maximum slope of F i and Åmin is the minimum eigenvalue of the 

connection matrix Tij [Marcus and Westervelt, 1989c). This criterion applies for any 

distribution of the (real) eigenvalues of Tjj' When T jj has negative eigenvalues, 

Ålnin( 'lij) refers to the most negative eigenvalue. Assumptions made abeut the network 

in proving this result are the same as aiready used in § 5.2. As areminder: The 

eonneetion matrix Tij is symmetrie and the neuron transfer funetions F i are single­

valued, monotonie and inerease in magni tude slower than linear at large positive or 

negative argument 

The stability criterion (5.11) is derived by showing thaI the funetion L(t), dermed as 

(5.12) 

with Gj given by Eq. (S.6b), is a Liapunov funetion of (5.1) when the srabiliry criterion 
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is obeyed, and that the minima of L (t) are at fixed points of (5.1). 

From (5.1), (5.12) and the symmetry Tjj = Tjj, the ehange in L(r) between times 

t and t+1, defined as LIL(t) '" L(t+1) - LU), ean be written 

LIL(t) = -{I,1;j .1x;(t) .1Xj(t) - L fj-l(Xi(t+l)).1Xi(t) 
i,j 

+ I.[ Gi(Xi(t + l)) -Gi(Xi(t))] , (5 . 13) 

where .1Xj(t) '" Xj(t+1) - Xj(t). Note that .1x;(t) is the ehange in Xj(t) in one 

time step. 

We now eonstruct an inequality similar to (5.8), but including a quadratic term along 

with the linear term. Choosing the coefficient of the quadratic term to be the minimum 

curvature of G j(xj), 

min(d2GJdx/)=f3i- l , 
x, 

yields the folIowing inequality, as illustrated in Fig. 5.2: 

Equations (5.13) and (5.15), and the equality G'j(Xj) = F(I(Xi) from (5.6b) yield 

LIL(t) $; - t L [:r;j + '\f3i- I ].1xi (t).1xj (t) 
i,j 

(5.14) 

(5.16) 

where Ojj = 1 for i = j and Ojj = O for i ~ j. As long as the matrix (T + B-I) - which 

appears in componem form in the square braekets ofEq. (5.16) - is positive definite, then 

the right side of (5.16) is negative, and, in that case, we can immediately write 

- 110-



Fi (z) 

, , 

t t 
A B 

J 

Fig. 5.2. Graphical representation of inequalities (5.8) and (5.15) for a typical sigmoid 
nonlinearity Fi(z) with maximum slope f3i (inset). The concave-up function G i (xi) 

is defined in Eq. (5.6b). A line and a parabola with second derivative f3(1 ~ minx 
[d2G(x)/dx2j are tangent to the curve Gi (Xi) at the point [xi(t+l), Gi(xj(t+I»]. 

Eq. (5.15) is represented by the inequality C S; B; Equation (5.8) is represented by the 
inequality C S; A where the case of equality, C ~ A, implies L12xi (t) = O . 
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L1L(t) $ o 
L1L(t) =0 => LlXi(t)=O . 

(5.17a) 

(5.17b) 

Thus, as Ion g as (T + B-l) is a positive definite matrix, L(t) is a Liapunov function for 

the iterated-map system (5.1). At the minima of L(t) the condition Llxi(t) = O holds 

for all i, thus all attractors are fixed points. A sufficient condition for (T + B-l) to be 

positive definite is f3(1 > -Amin for all i. This condition is therefore sufficient to 

guarantee that L(t) is a Liapunov function and that all minima of (5.1) are fixed points, 

which gives the stability criterion (S.II). 

5.4. ANALOG ASSOCIA TlVE MEMORY 

We now apply the iterated-map neural network to the problem of associative memory 

[Marcus et al., 1990]. In this section we assume a less general form for the network, 

one in which Ii = O for all i and the nonlinear functions F i are single-valued, odd 

functions and are the same for all i. We also assume the function F (now dropping the 

index i) has its maximum slope at zero input, F'(O) = f3 , and that the slope of F is a 

non-increasing function of the magnitude of the argument. As before, the maximum 

slope f3 will be referred to as the gain of the neurons. Possibie fonns for F include, 

but are not limited to, tanh-like functions including the transfer function for the e!ecrronic 

network, Eq. (3.3 ). As in § 5.3, we do not require that F saturate at large argument 

though it must increase in magnitude slower than linear at large positive or negative 

argument. We nonnalize the amplitude of F so that the accessibie state space ("the 

hypercube") is of length 0(1) on a side; that is, nonzero solutions of m' = F(m') are 

typically 0(1). Fig. S.I(b) shows a function which meets the conditions assumed in this 

section. Under these assumptions, the associative memory network is given by the set of 
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coupled maps 

i = l, ... ,N. (5.18) 

We will consider connection matrices Ti} for two leaming rules, the Hebb rule and 

the pseudo-inverse rule, storing random unbiased memory patterns, ~i/L = ±l. For the 

Hebb rule, 

where aN is the number of stored memory panerns. For the pseudo-inverse rule 

aN 
r..=..!.." J;I'(C-!) J;V , 

IJ N L... '>, BV"'J 
1'. v=! ~ 

where ~ l is the inverse of the correlation matrix, 

N 
_ I " ):I'J;V 

CI'V - N L... '>i '>i 
i=l 

(5.19) 

(S.20a) 

(S.20b) 

Notice that we are considering the modified pseudo-inverse rule with TU = ° studied by 

. Kanter and Sompolinsky [1987). These authors showed that this modification increases 

the basins of attraction for the memories without sacrificing error-free recaU. The 

analysis in the folIowing two subsections assumes f3 > 0, 0< a < 1 and 

N » l. 
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5.4.1. Hebb rule 

A phase diagram for the Hebb role, showing four distinct regions in the parameter 

space of analog gain {3 and the storage ratio a, is presented in Fig. 5.3. The four 

regions are characterized as follows: In the region marked 'origin' a fixed point at the 

origin, Xi = ° for all i, is the global attractor. In the region marked 'spin glass' the 

origin is no longer an attractor, but neither are the memory recall states. In this region, 

the network converges to a fixed point with small [O(N-l!2)] overlap with all memories. 

In the region marked 'recal!', fixed points having large overlaps with memory pauems 

exist and have large basins of attraction. In the 'recal!' region the iterated-map network 

operates well as an associative memory. The boundary separating 'recal!' from 'spin 

glass' is shown in Fig. 5.3 for the particular choice F(z) = tanlz({3z). With thi s 

choice of nonlinearity, this boundary agrees with the ferromagnetic transition curve found 

by Amit et al. [1985b; 1987] for the Ising-model associative memory at finite 

temperature. The present analysis leading to this curve, however, is not restricted to case 

F(z) = tanlz({3z). Details are given in appendix SA. In the region marked 

'oscillation' the stability criterion (5.11) is no longer obeyed and convergence to a fixed 

point is not guaranteed. Numerically, we find that limit cycles are quite abundant in this 

region, especial!y for larger values of {3 and a (see § 5.5). 

The stability of the origin can be determined by linearizing Eq. (5.18) about the point 

Xi = 0, which gives N decoupled linear iterated maps: qJi(t+I) = {3AjfPi(t) for 

evolution along the itll eigenvector of the matrix Tij,with associated eigenvalue Ai. (cf. 

Eq. (4.S), the corresponding equation for the delay-differential system). For 1{3\ I < I 

for all j, the origin is stable, and because of the form of F, il is also the global attraclor 

of Eq. (5.18). (The proof of this is based on a contraction mapping theorem. See: 

Ortega and Rheinboldl [1970], Thm 12.1.2].) Notice that when the eigenvalue spectrum 
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Fil:. 5.3. Phase diagram for the Hebb rule associative memory with neuron transfer 
function F(z) = tanh(f3z). The parameter f3 is the neuron gain, and a is the number 
of stored patterns divided by the number of neurons N. All borders separating the 
regions are based on analysis at large N, as described in the text 
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is "skewed negative" (O < Ama .. < -Amin)' the stability eondition for the origin IS 

identieal to the global stability criterion (S. 11). 

The minimum and maximum eigenvalues for the Hebb matrix (S.19) with a < 1 in 

the large-N limit are 

Amax = 1+ 2..J(i , 

[N(l- a) - fold degenerate] 

[edge of continuous distribution] 

(5.21a) 

(S.21 b) 

[Geman, 1980; Silverstein, 1985; Crisanti and Sompolinsky, 1987], thus for a < 1 the 

boundary where the origin loses stability is given by the condition f3 = 1/(1 + 2..J(i). 

From the value of Amin in (S.21 a) we ean also identify the border of the oscillatory 

region as f3 = Ila. Crossing the 'origin'-'spin glass' line corresponds to a forward 

pitchfork bifurcation of the origin, analogous to aseeond order transition in 

thermodynamies. Note that this transition oceurs along a different eurve from the 

corresponding paramagnet-spin glass transition in the Ising model associative memory 

[Amit et al., 1985b; 1987]. 

Crossing the border from the 'recaU' region into the 'spin glass' region marks the 

disappearanee of a fixed point having a large overlap with a single memory. As in the 

case of the Ising model network, this transition is due to the random overlaps of the state 

of the network with pattems other than the one being reealled. These overlaps generate 

an effective noise term whieh destabilizes the fixed point near the recalled pattern. 

Because our system has no reaction fieid, the analysis is somewhat simpier than either the 

replica [Amit et al., 1985b; 1987] or eavity [Mezard et al., 1987; Domany et al., 1988] 

approaches used to anal yze the thermodynarnic Ising model network. In appendix 5A we 

derive a set of four self-eonsistent equations that determine the border between the 'recal!' 

and 'spin glass' regions assuming random, unbiased memory patterns: 
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(5.22a) 

(5.22b) 

(5.22e) 

..jaq 
(Y=--

l-C 
(5.22d) 

where F'(z);: dF(z)jdz. The quantity ml in Eq. (5.22a) is the overlap of the network 

state vector with a single memory pattem, arbilrarily chosen to be pattem l. In the recaU 

state, these equations have a self-consistent solution with ml - l. For the panicular 

choice F(z) = tanhC{3z), the quantities C and q obey the usual Fischer relation 

C=j3(I-q) [Fiseher, 1976]. 

5.4.2. Pseudo-inverse rule 

The pseudo-inverse learning rule, Eq. (5.20), offers several advantages over the 

Hebb rule, chiefly a greater storage capacity, error-free recaU states and the ability to store 

correlated pattems [Personnaz et al.,1985; Kanter and Sompolinsky. 1987]. Its primary 

disadvantage is that it is nonlocal, meaning that a given element of the connection matrix, 

T ij' cannot be determined from the ith and jth elements of the memory pattems, but 

depends on all components of all memories. However, iterative learning algorithms have 

been presented which are local and which converge IO the pseudo-inverse rule [Diederich 

and Opper, 1987]. 

A phase diagram for the pseudo-inverse rule showing three distinct regions 

depending on analog gain {3 and storage ratio a is shown in Fig. 5.4. This phase 

diagram differs from that of the Hebb rule in three distinctive ways: First, there is no 
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Fig. 5.4. Phase diagram for the pseudo-inverse rule (diagonal elements = O) with 
sigmoidal neuron transfer function as described at the beginning of § 5.4. The parameter 
f3 is the neuron gain, and a is the number of stored patterns divided by the number of 
neuron s N. All borders separating the regions are based on analysis at large N, as 
described in the text. Note that the pseudo-inverse rule does not possess a spin glass 
phase for a < 1. 
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'spin glass' phase. This does not imply that the pseudo-inverse mIe does not pos ses s 

spurious attractors; just as for the Hebb rule, there are many spurious fixed point 

attractors within Ihe recall and oscillalory regions which have small overlap with all 

memories. Unlike the Hebb rule, however, there is no region of the pseudo-inverse 

phase diagram where only spurious fixed-point attractors are found. The second 

di fference is that Ihe recall region is much larger, extending to a = O.S for {J = 2. 

Above this point, and for higher gain, recaU states still exist, but convergence IO a flxed 

point is not guaranteed. The third distinctive feature is the adjacency of the 'origin' and 

'oscillation' regions at larger values of a. Crossing the border between these two 

regions, say by increasing {J, constitUles a multiple flip bifurcation [Guckenheimer and 

Holmes, 1983] in which N(l-a) eigendirections about the origin simultaneously lose 

stabiliry giving rise to period-2 limit cyc\es in the subspace orthogonal to all memories. 

As in the Hebb rule phase diagram, the region marked 'origin' for the pseudo-inverse 

phase diagram satisfies i{JÅi I < l for all i, where Åi are the N eigenvalues of the 

pseudo-inverse matrix (S.20). For TU = O, the extremal eigenvalues in the limit of large 

N are given by 

A.min = -a, 

Åmax=l-a 

[N(l- a)- fold degenerate] 

[Na - fold degenerate] 

(S.23a) 

(S.23b) 

[Kanter and Somplinsky, 1987]. Belowa = O.S the origin loses stability at gain 

{J = l/(l-a). This condition defines the border between the regions marked 'origin' 

and 'recaU.' In appendix SB we show that stable recall states appear as soon as this 

bifurcation occurs. From the stability criterion (5.11) and Eq. (5.23a), convergence to a 

fixed point is not guaranteed for {J > l/a, which defines the region marked 

'oscillation' in Fig. S.4. 

Adding a positive diagonal element TU = r > O to the connection matrix shifts the 
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Fig. 5.5. The recaU region for the pseudo-inverse rule for various values of diagonal 
element r Note that the maximum capacity in the recaU region is for analog gain 
f3 = 2, regardless of y. Although the recaU region is expanded for positive diagonal 
element, too large a diagonal will greatly reduce the basins of attraction for the recaU 
states, as discussed by Kanter and Sompolinsky [1987]. 
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eigenvalues to Åmin = -a + y and Åmax = 1- a + y and increases the maximum 

storage capacity in the recaU region to amax = 1/2 + y. l The recaU region for several 

values of positive self-coupling are shown in Fig. 5.5. Note that the maximum always 

occurs at {J = 2. Recently, Krauth et al. [1988] have demonstrated that using a small 

positive diagonal element with the pseudo-inverse rule in an Ising network (at zero 

temperature) increases the radius of attraction for the recall states2 For example, they 

find numericaUy that for a = 0.5, using a diagonal term of -0.075 instead of zero 

increases the basins of attraction by about 50%. Too large of a diagonal term, however, 

greatly reduces the basins of attraction for the recall states [Kamer and Sompolinsky, 

1987; Krauth et al., 1988]. 

5.5. NUMERICAL RESULTS 

5.5.1. Numerical verification or the phase diagrams 

In this section, phase diagrams for the Hebb rule and pseudo-inverse rule are 

invesligated numerically for networks of size N = 100 wilh F(z) = tanh({Jz) and 

random, unbiased memory patterns. The data in Figs. 5.6 and 5.7 show, as a funelion 

of analog gain /3, lhe fraction or randomly ehosen initial states which converged to a 

particular type of attractor - either the origin, a memory pattern (or its inverse), a spurious 

fixed point, or a period-2 limit cyele. These attractor types are the only possibilities. 

Each panel in these figures is for a fixed value of a, so eaeh represents a horizontal slice 

through the phase diagrams for the Hebb rule (Fig. 5.3) or the pseudo-inverse rule 

t This definition of y dirrers from the one used in chaptcr 4: Here, the mauix elements T jj are equal 
to r. In chapler 4, the value y is the diagonal matrix element before normalization. See, for example. 
Eq. (4.18). 

2 Krauth er al. (1988) use yet another definition of r. For them. Tjj = xl-a) for large N. 
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(Fig. 5.4). 

The data in each panel were generated as follows: For each of 38 values of {3, 

ranging from {3 - 0.3 to {3 - 90, twenty Tij matrices were generated using random, 

unbiased panems, er = ± 1 . For each matrix, 50 initial states located at random comers 

of the state space (xj(O) = ±1, i = 1, ... ,100) were chosen and the attractor for each was 

found by iterating the map, Eq. (5.18). The condition for convergence was 

Ilx(t) - x(t - 2)11 < 10-6
, where distances are defined by IIzll E (l/2N)"L:;!zil. Though 

the initial states were located at the comers of the hypercubic state space, all attractors 

were real-valued N-vectors located away from the comers of the stale space. Plotted in 

each panel are the fractions of the 20xSO = 1000 runs for each value of f3 which 

converged to each of the four attractor types. A fixed point x * was counted as a recall 

state if, for any 11,l!sgn(x *) ± ~JlII < 0.05; similar criteria were used to recognize the 

other attractor types. 

Along the top of each panel in Figs. 5.6 and 5.7 is a strip marked 'orig.' , 'recall', 

etc. These strips show the regions of the theoreticaI ph ase diagram (from Figs. 5.3 and 

5.4) for the particular value of ex in that panel. The appearance of the various altractor 

types corresponds very closely to the theoretical regions in these slices, giving strong 

numerical support to the phase diagrams. Furthermore, the data indicate that the basins 

of attraction for limit cycIes in the 'oscillation' region do occupy a significant part of state 

space as soon as the stabil it y criterion is violated. That is, the 'oscillation' region is more 

than just the region where convergence to a fixed point is not guaranteed by the stabil it y 

critenon, it is in faet the region where oscillatory modes are quite abundant. 
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Fig. 5.6. Numerical data for the Hebb rule showing the fraetion of random initial states 
whieh lead to the four types of attractors: the origin (circJe), a memory pattem or its 
inverse (square), a spurious fixed point (triangle), or a period-2 limit cyc1e (eross), as a 
function of neuron gain f3. Each data point represents a total of 1000 initial states from 
20 matrices constructed from random, unbiased memory pattems with N = 100. The 
three panels are for aN = 5, 10 and 20 pattems, and the strip along the top indicates the 
regions of the phase diagram, Fig. 5.3, for that value of a. 
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initial states which lead to the four types af attractors: the origin (circle), a memory 
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(cross) , as a function of neuron gain /3. Each data point represents a total of 1000 initial 
states from 20 matrices constructed from random, unbiased memory patterns with N = 
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indicates the regions af the phase diagram, Fig. 5.4, for that value af a. 
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5.5.2. Improved recaU at low gain: deterministic anneaIing 

Figures 5.6 and 5.7 show that the probability of recall is greater at lower values of 

analog gain within the 'recaU' region. This phenomenon suggests apotentially powerful 

technique for annealing a deteTministic analog neural network to a good (low energy) 

solution [Hopfield and Tank, 19851 . Annealing by varying the analog gain is not only 

useful as a fast numerical technique. but can be easily implemented in analog elecrronics. 

eliminating the need for electronic noise generators to perform stochastic annealing. 

As with standard simulated annealing (Kirkpatrick et al. , 19831. convergence times 

at reduced gain can be quite long. To speed convergence, the gain should follow an 

annealing schedule. starting at the low-gain border of the 'recall' ph ase. and ending at the 

high gain border. The phase diagrams. Figs. 5.3 and 5.4. can be used to find the range 

of gains over which annealing should take place. Note that annealing range depends 

strongly on the storage ratio a. The surprising fact that the performance of an 

associative memory can be improved by using analog neurons will be considered in more 

detail in Ch. 7. 

5.6. DISCUSSION 

In this chapter we studied the dynarnics and associative-recaU properties of an analog 

network with parallel dynarnics. We found that using analog neurons has two important 

benefits: First, analog networks can be updated in parallel with guaranteed convergence 

to a fixed point as long as the stability criterion (5.11) is satisfied. For the associative 

memories considered. the iterated-map network has rather large regions in the space of 

neuron gain f3 and storage ratio a where recall states exist and the stability criterion is 

satisfied. The second benefit, seen numerically in Figs. 5.6 and 5.7. is that using a 
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reduced neuron gain improved the chances that a random initial state would make it to a 

memory state without getting caught in a spurious attractor. 

The usefulness of analog dynamics goes beyond the stability and improved recaU 

propenies studied here. By taking advantage of the generality of the stability results of 

§ 5.3, one ean design stable networks of neurons having nonsigmoidal transfer 

functions with computationally useful propenies. As an example, the stability results 

apply to three-state (+1, O ,-1) neurons [Yedidia, 1989; Meunier, el a/., 1989] 

generalized to a smooth 'staircase' analog transfer function. Networks of three-state 

analog neuron S bear a strong resemblanee to the mean field spin-l Ising model at finite 

temperature [Blume, 1966; Capel, 1966], with regions of parameter space where both the 

origin and recaU states are locally stable. Such systems might be used to allow an '} 

don't know' state of the network, sue h that initial states with insufficient overlap with 

any pattem will converge to the origin. In a numerical investigation
3 

of networks made 

of three-state analog neuron s, it was found that the attraetors inc!uded not only the recaU 

states and the origin, but also new mixture states in which a pattern was partially recaUed, 

with some neurons converging to the zero-output state. 

Another generalization of the iterated-map associative memory is the de!iberate 

inclusion of limit cycles as recall states. Several techniques for storing and recalling limit 

eyc!es have been explored in continuous-time systems with delay [Grossberg, 1970; 

Kleinfeld, 1986; Sompolinsky and Kanter 1986; Gutfreund and Mezard, 1988; Riedel, 

et al., 1988; Herz, et al., 1988; KOhn, el al., 1989] and in discrete-time systems, both 

for sequential [Buhmann and Schulten, 1987; Nishimori et al., 1990] and parallel 

dynamics [Dehaene, er al., 1987; Guyon, el al., 1988]. Because these models use 

asymmetrlc connections, !ittle is known analytically aboUl their stability or the types of 

attractors they can produee. On the other hand, it is possibie to store 2-cycle attraetors in 

3 This work was done by Fred Waugh. 
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the iterated-map network using asymmetric connection matrix. This can be done most 

easily with a generalized Hebb rule in which a weighted Hebb matrix for the osciliatory 

directions 'v is subrracted from a Hebb matrix for the fIxed-point pattems ~11 : 

1 [PIP po,,] 
N L~f'~f-ALsnr . 

11=1 v=1 

(S.24) 

The weighting factor A can be uSed to cause fIxed point pattems and 2-cycle pallerns to 

appear at different values of analog gain. A detailed analysis of such an analog network, 

yielding for example the combined storage capacity of lirnit cycles as well as fIxed points, 

remains an open problem. 

APPENDIX 5A: STORAGE CAPACITY FOR THE HEBB RULE 

In this appendix we fInd the border separating the 'spin glass' region from the 'recall' 

region in the phase diagram for the Hebb rule, Fig. S.3. The derivation is a slight 

generalization of a cavity method approach presented by Domany et al. [1989], but is 

somewhat simpier because of the absence of the reaction fIeld [Marcus et al.,19901. The 

form assumed for the nonlinear function F (taken to be identical for all i) is described at 

the beginning of § S.4 . We also assume all memory patterns, ~iJ.l. = ±1, to be 

uncorrelated, and we set li = O for all i. For the special choice F(z) = tanh(f3z), the 

border we obtain is the same as that obtained for the Ising model network at temperature 

1/f3 [Amit et al., 1985b; Arnit et al., 1987; Mezard et al., 1987; Domany et al., 

1989]. Throughout this appendix and appendix SB, sums over roman indices 

(j, j, k, ... ) run from 1 to N; sums over greek indices (J.l., Y, p, ... ) run from 1 

to aN. 

A recaU state is characterized by the existence of a fIxed point of the iterated map, 
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whieh satisfies 

(SA.l) 

and whieh has a large (0(1» overlap with a single memory pattern. where the overlaps 

mil are defined 

l ml' = - ~ J:!,x­
N .LJ '>. • 

• 
(SA.2) 

For the Hebb matrix. Eq. (S.19). the input hi to neuron i ean be wriuen in terms of the 

mil as 

It; = L T;jXj = L ~fml' (SA.3) 
j l' 

whieh gives a set of aN fixed-point equations for the overlaps 

ml' =2.L~fF(h;) , Jl=I, .... aN . 
N j 

(SA.4) 

For F odd and ~f = ±1, these equations ean be written 

mIL = ~LF(~rh;)= ~LF(Hr)=(F(HIL)) 
• • 

(SA.S) 

where Hf '" ~r hj . Borrowing spin glass terminology, Hf will be referred to as a local 

field for memory Jl. The braekets in (SA.S) denote an average over the index i: 

- 128-



(z) = l/N Lli . In the large-N limit, this average ean be written as an integral over the 

distribution of local fjelds P(HJl): 

(5A.6) 

We now seek a self-consistent expression for the distribution funetion P(H1) when 

ml -l and mll - 0(N-112) for 11>1. The loeal fjeld for pattern 1, 

Hl = glLgtmV , (5A.7) 
v 

ean be split imo rwo parts, 

H l l ):l"):v v 
i = m + '-;,i ~ ~i m . (5A.8) 

v>l 

For a - 0(1), the seeond term on the right side of (5A.8) aets as a noise term whieh we 

take IO be gaussian distribuled wilh zero mean and varlanee (T2 given by 

(5A.9) 

To evaluate the sum of squares in (5A.9) we first write the overlaps m v wilh the 

uneondensed pallems using (SA.3) and (5A.4): 

(5A.IO) 

Notiee that the right side of (5A.lO) is of the form L.AiBi' A sum of Ihis form with 
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uncorrelared random variables Ai and Bi has an expected square of Lr4?B? In 

(SA.IO) however, the two factors in the sum over i are correlated through the p =v 

term in the argument of F , and this tenn must be treated separately before squaring. 

Writing the correlated tenn separately, 

(SA.!!) 

and noting that the single tenn ( p = v) is small compared to the sum over all the rest 

( p .. v), we expand F to fITst order in m v giving 

(SA.12) 

where F' is the derivative of the function F . The missing p = v term in the argument 

of F' only affects the value of F' to order O(l/N) which we neglect by taking the 

argument to be the whole hi' We now define the quantity C, 

C'" (F'(h») = J.-L F'(h;) 
Ni 

(SA.13) 

and write (SA.12) as 

(SA.14) 

With the p = v term removed from the argument of F, the two factors in the sum over 

i on the right side of (SA.14) are now uncorrelated and can be squared to yield an 
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expected value of 

(SA.IS) 

where, again, the OO/N) error in the value of F2 from the p = v term is ignored. 

Next, we defme the quantity q in analogy with the Edwards-Anderson order parameter, 

(SA.16) 

and write (SA.lS) as 

(SA.17) 

From (SA.9) and (SA.!7), the variance cl ofthe local field distribution is given in teons 

of the quantities C and q by 

(SA.18) 

Beeause F' and F2 are both even funetions, we ean multiply their arguments by ±l 

without ehanging their values. This allows us to write the averages in Eqs. (SA.13) and 

(SA.16) in terms of Hl rather than hj, and finally as integrals over the distribution of 

local fie1cls P(H1), given by the normalized gaussian distribution 

1 l -H-m [( 11)2] 
p( H ) = ...fi7fa exp 2a2 . (SA.19) 
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where the variance a2 is given by (SA.18). Together with Eq. (SA.6), the self­

consistent equations for quantities m I, C and q are given by the folIowing integrals: 

ml = f dH1p(H1)P(HI) 

c= f dHlp(H1)F'(HI) 

q= JdH 1p(HI)p2(H 1) 

(SA.20a) 

(SA.20b) 

(SA.2Oc) 

Af ter a change of variables, y == (H l_ml l/a, Eqs. (SA.18) - (SA.20) yield the self­

consistent set of equations (S.22a)-(S.22d) in § 5.4.1. 

APPENDIX 58: RECALL STATES FOR THE PSEUDO-INVERSE RULE 

In this appendix we show that for the pseudo-inverse learning rule, stable recall states 

exist whenever a < I and {3 > l/(l-a) [Marcus et al.,1990). This implies that there 

is no spin glass phase for the pseudo-inverse rule in the iterated-map network, in contrast 

to the thermodynamic Ising-spin network with the same learning mie [Kanter and 

Sompolinsky, 1987). The analysis below closely follows Kanter and Sompolinsky 

[1987) . 

As described in appendix SA, a recaU state is defined as a fixed point which has a 

large overlap with a single pattern (again, taken IO be pattern l). For large N, Ihe single 

large overlap ml can be written as an integral over the distribulion of local fieIds 

(SB.1 ) 
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where P(H l) is a gaussian disoibution whose mean and variance must be found self-

consistently. The local field for memory pattern I, 

wim the pseudo-inverse matrix 

is given by 

T = ~"J!p. (C-l) ;: v 
ij N L~. p.v ~ J 

p., v 

N 
_ I ,,;:p.;: v 

Cp.v - N L ~i '>i 
i=1 

(SB.2) 

(SB.3) 

(SB.4) 

(SB. 5) 

The -axi term explieitly takes care of setting the diagonals to zero sinee the Tii as 

defined by (SB.3) are narrowly peaked around a at large N. The state veetor xi , 

i = I, ... , N ean be written as a weighted sum of the pattern veetors, with real-valued 

weights all. plus a vector Xi ,i = I ..... N. whieh is perpendicular to the subspace 

spanned by the patterns 

Xi = IaP.~f + Xi' 
!' 

(SB.6) 

From (SA.2). (SB.4) and (SB .6). the weights all are related to the overlaps mJ.l through 
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the inverse correlation matrix 

(SB.7) 

Writing the local field Hl in terms of the aP-, 

Hl = (1 - a )a1 
+ ~l (1- a)[ L ~i aJ.t] - aXi ' 

J.t > l 

(SB.8) 

reveals a similar structure to the Hebb mIe (compare (SB.8) to (SA.8)), with a 'signal' 

term proportional to al and a 'noise' term due to the other patterns. The third term on 

the right causes the state to relax towards the sllbspace spanned by the memories, and 

does not add any destabilizing 'noise.' Comparing Eqs. (SB.8) and (SA.8) also reveals 

why the pseudo-inverse mie allows perfect recall with an extensive nllmber of patterns 

and the Hebb mie does not: for the pseudo-inverse mie, the variance of the gaussian 

noise due to the other patterns is given by 

(SB.9) 

whereas for the Hebb mle, the variance is 

(SB. IO) 

When the state of the network is fIllly aligned with, say, pattern 1, then all aP-, J1 > I 

vanish. On the other hand, the overlap s mJl, J.l > l do not vanish, even when the state 

is perfectly a1i gned with a pattem, unless all memories are orthogonal. Therefore the 
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'noise' term for the Hebb rule is in general always non-zero. 

In a recaU state (for pattern 1), al = m l and a1l= O for J1 > 1, giving a delta 

function distribution for the local fieids 

(S8JI) 

Inserting this distribution into (58.1) gives the self-consistent solution for the overlap 

with pattem 1, 

(58.12) 

When the function F is tanh-like with maximum slope {3, there is a non-zero m l given 

by (SB.12) whenever a < l and {3 > l/(l-a). The value of m l grows continuously 

from zero at the transition. In analogy with thermodynamics, the appearance of recall 

states is therefore a second order transition. As mentioned above, the behavior of the 

analog network with the pseudo-inverse rule for the particular choice F(z) = ranh({3z) 

is not the same as the corresponding Ising-spin network at finite temperature 1/{3: as 

shown by Kanter and Sompolinsky [1987], the recall states for the Ising model appear at 

avalue of {3 significantly above l/Cl-a) and the transition to the recaU state is first 

order. These differences can be attributed to the absence of areaction field in our system. 
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Chapter 6 

TRE ANALOG MULTISTEP NETWORK 

6.1. INTRODUCTION 

In Ch. 5, we showed that analog neural networks offer several computational 

advanrages over networks of binary neurons, including rhe property that convergenee ro a 

fixed point under parallel dynamics ean be assured by a global stability eriterion for 

networks with symmetric eonneetions. The purpose of this ehapter is to extend these 

stability resuIts to networks with an updating rule based on multiple previous time steps, 

and apply the new stability eriterion to the problem of associative memory. 

The signifieam resuIt whieh emerges from this analysis is that the eriterion for 

assuring eonvergence to a fixed point allows a larger neuron gain in proportion to the 

number of time steps used in the updaring rule, while other properties, including the 

storage eapaeity, are independent of the number of steps used. We emphasize that even 

when many previous states are used in the updating rule, parallel is still parallel: Thinking 

in terms of eleetronie hardware, one ean imagine using a tapped analog delay line I at 

the input of eaeh neuron; upon eaeh time step, the local states at each neuron are 

simultaneously advaneed one position in the delay line. In this scheme. previous time 

steps are local and only need ro be evaluated once. 

A further motivation for studying multiple-time-step networks is to provide a first 

lDelay. linc dcvices are described in Mcad [1989). Commercial tapped delay lines are available, for 
example, from EG&G Relicon Corp. (see: EG&G Reticon Applicalion Note 105, A Tapped Analog 
Delay for Sampled Data Signal Processing.) 
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step in the application of global stability analysis to networks that make explicit use of the 

time domain as part of the computation, including recently proposed models for storing 

and generating sequences of patterns [Grossberg, 1970; Kleinfeld, 1986; Somplinsky 

and Kanter 1986; Dehaene, et al., 1987; Gutfreund and Mezard, 1988; Riedel , el al., 

1988; Herz, et al., 1988; Guyon, et al., 1988; Kiihn, el al., 1989]. Typically, 

sequence-generating networks sample multiple previous states - for example by using 

time delay - to determine their evolution. Numerical stucties [Riedel, et al. , 1988; 

Babcock and Westervelt, 1986; Aihara et al., 1990] well as experiments using analog 

circuits [Marcus and Westervelt, 1988] (see § 4.6) show that the neural networks with 

time delay can be chaotic, and very few analyticaI results on their stability and 

convergence are known [Marcus and Westervelt, 1989a] (see § 4.3 and § 4.4). The 

analysis presented here is greatly facilitated by considering a relatively simple discrete-

time multi step system with symmetric connections. In this sense, our results apply to 

sequence-generating networks when they are configured to retrieve fixed points only. 

The dynamicaI system we will study is defined by a set of N coupled iterated rnaps 

(6.1 a) 

where zP) is the output of the ih neuron time-averaged over M previous time steps: 

j = 1,,, .,N ; M E {1,2,3,,,.} (6.1 b) 

This system will be referred to as a multislep neural network. Updating of the state 

variables xi(t) as well as the z/t) is done in parallel (i.e. synchronously) and is fully 

deterministic. We assume throughoul that the connection matrix T ij is symmelric. The 
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(a) 

(b) 
Fj( input) 

x· l 

input 

Fig. 6.1. The analog multistep neuron. (a) Schematic representation of a multi step 
neuron with M = 3. Electronic implementation could use a tapped delay line as part of 
the input (or output) circuitry. (b) An example of a neuron transfer function F i (solid 
line) that satisfies the conditions required for the analysis: F i is monotonic, single­
valued, and increases in magnitude slower than linear at large argument. The maximum 
slope of Fi (dashed line) is defined as the neuron gain Pi' 
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non linear neuron transfer funetions Fj must obey the same eonstraints as in Ch. 5: All 

F j are monotonie (Without loss of generality, we ean choose all F j to be monotonically 

increasing) and single-valued. Also, the F j may be locally concave up or concave 

down, and do not need to saturate, but must eventua1ly increase in magnitude slower than 

linear for large positive and negative argument. An example af a function F j that 

sati sfies these conditions is shawn in Fig. 6.I(b). The maximum slope of each F i is 

defined as the gain {3j for that neuron. ResuIts af § 6.2 and § 6.3 ean be applied to 

networks af binary (Ising) neurons by letting all {3i ---> "". 

Equation (6.1) with M = 1 is the standard analog iterated-map neural network 

discussed in Ch. S [Marcus and Westervelt, 1989c]. The M = 2 case of (6.1 ) with all 

F j = Sgn was investigated numerically by Kanter and Sompolinsky [1987] for an 

associative memory neural network based on the pseudo-inverse learning rule. These 

au thors found that the basins of attraction for the recall states are considerably larger for 

M = 2 than for M = 1 (the basins for recall states under sequential updating are larger 

than for either of these parallel schemes). Kanter and Sompolinsky [1987] offered the 

folIowing explanation for this observation: First, the use of two previous states in the 

updating rule adds an effective momenTUm to the dynamics, allowing the network to 

"coast" over shallow local minima; Second, spurious oscil/atory attractors for this 

network are 3-cycles, which, they argued, are rarer than the 2-cycles found in the 

M = l network. Below, we will prove (for general F j ) the claim of Kanter and 

Sompolinsky [1987] that the only attractors for M = 2 besides fixed points are period-3 

limit cyc1es. On the other hand, numerical evidence for the M = 2 Ising spin glass 

presented in Ch. 7 suggests that spurious 3~ycles may be quite abundant for multistep 

networks. 

The rest of the chapter is organized as follows. In § 6.2 we derive a global stability 

criterion whieh guarantees that the multislep analog network will always converge to a 
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fixed-point attractor as long as the maximum neuron gain f3 ;: maxi (f3i) does not exceed a 

critical value which is proportional to the number of time steps M in the update rule and 

inversely proportional to the minimum eigenvalue of the connection matrix. For the 

particular case M = 2 we also prove that the only other possibIe attractors (i.e. when the 

stability criterion is violated) besides fixed points are period-3 limit cyc1es. In § 6.3, we 

apply these results to multistep associative memory networks and give a simple stability 

criterion for the Hebb rule [Hebb, 1949, Hopfieid, 1982] and pseudo-inverse rule 

[Personnaz, et al. , 1985; Kanter and Sompolinsky, 1987]. This criterion depends on 

M, f3, the ratio a of stored memories to neurons and the self-coupling r In § 6.4, 

we show that the convergence time of the multistep network inereases proportional to M, 

but that in some instances, optimal choices for both f3 and M give faster convergence 

with increasing M . Finally, conc1usions and open problems are discussed in § 6.5. 

6.2. LIAPUNOV FUNCTIONS FOR MULTISTEP ANALOG NETWORKS 

6.2.1. Global stability criterion for general M 

In this section we prove that the analog multistep network, Eq. (6.1), will have only 

fixed point attractors whenever 

(6.2) 

where f3;: maxj(f3i) > O is the maximum neuron gain, M E {1,2,3, ... } is the number of 

time steps in the update rule and Åmin(1ij) is the minimum eigenvalue of the symmetric 

connection matrix Tjt This criterion applies for any distribution of the (real) eigenvalues 

of Tjt In particular, when Ti} has both negative and positive eigenvalues, Åmin(1ij) 
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refers to the most negative eigenvalue. This result should be compared to the 

corresponding result for the iterated-map network (the case M = l) presented in Ch. 5, 

which is the stability criterion (5.11). 

FolIowing a similar approach to Ch. 5, we consider the discrete-time evolution of the 

real scalar function L(t) deflned 

L(t) (6.3) 

where 

(6.4) 

The requirement that F i change in magnitude slower than linear at large argument insures 

that the function L(r) is bounded below. 

The change in L(t) in one time step, deflned as L1L(t) '" L(t+ l) - L(r), is 

L1L(t) = -~ ~ 7;;[ zj(r + l)zj(r + 1) - zj(r)zj(r)] 
I.) 

1 
+ L M [Gj(xj(r + 1») - Gj(Xj(t - M + 1))] 

I 

1 
-L-Ij[Xj(t+l)-Xj(t-M+l)] . 

jM 

. This ean be simplifled by defming the change in z/r): 

1 
.1z j (t) '" [zi(r + l) - zj(r)] = -[Xi (r + l) - Xj(t - M + l)] 

M 

and using the symmetry of Tij , giving 
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M(t) = -~ 2: Tij Lizj(t) Lizj (t) - L, Liz j (t)[L, JjjZj (t) + lj] 
t .) ') 

1 
+ L, M[Gj(Xj(l+ J))-Gj(xj(t-M + 1))] . 

I 

(6.7) 

Expanding the last term in (6.7) in a two-term Taylor series about the point Xj(t+ l) and 

replaeing the eoeffieient of the quadratie term with the smallest value that it ean take, 

which is 

min(d2GJdx?) = f3j-l , 
Xi 

(6.8) 

gives the folIowing inequality [see Fig. 6.2): 

where G;' is the derivative of Gj with respeet to Xj' From Eqs. (6.1a) and (6.4) , G;' 

ean be wri tten 

G/(Xj(t+l)) = F;- I(Xj(t+ 1)) = L,Tijz/t)+lj, 
j 

leading to an inequality for Æ(t): 

M(r) 
1 

< - -" y, . Liz-(r) Liz -(t) - 2~ I) I ) 

I.) 

By defining a matrix Kij as 
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F 
! 

G · ! 

i t 
B A 

~-.Æ 

Fig. 6,2, Inequalities (6.9) and (6.20), illustrated for a particular transfer function F i 
(inset) and its corresponding Gi' defined by Eq. (6.4). The curve tangent to Gi on the 
right side is a parabola with second derivative {3i- 1 ,the line on the left is tangent to Gi' 
Equation (6.9) is the statement A ~ B. ; Eq. (6.20) is the statement C ~ D, and C = D 

only when xj(r + l) = xi(r - 2). 
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K '" ~[T. + 8 .. Mn.-l] = ~ 
'I 2 l' l' fJI 2 

the inequality (6.11) can be rewritten in the simple form 

LlL(t) ~ - L, Kij Llzj(t) Llzj(t) . 
i,j 

, (6.12) 

(6.13) 

From (6.13) it is clear that if Kij is a positive definite matrix, !hen LlL(t) ~ O, and that 

the case of equality (LlL(t) = O) only can occur when all Llz / t) = O. Writing the 

ilifference of Eq. (6.1) at subsequent times as 

L,'lij Llzj(t) = r;- l(xj(t+l)) - r;-l(X j( t») 
j 

(6.14) 

indicates that the condition Llz/t) = O for all i (and therefore the eondition M(t) = O) 

further implies that Xj(t + l) = Xj(t) for all i ; that is, that the system must be at a fixed 

point. 

A sufficient condition for Kij to be positive definite is M fJi-) > -Amin(Ti) for all 

i , where Amin(Ti) is the minimum eigenvalue of the matrix Ti} . (Thi s holds for any 

value for Amin') In terms of the maximum neuron gain fJ '" maxj(fJ;), this sufficient 

condition ean be stated 

Kjj positive definite . (6.15) 
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Equations (6.13) - (6.15) and the arguments in the preceding paragraphs can be 

summarized as follows: 

Srabjliry Criterion . 

1 
-> 
{3 

=) (1) L(t) is a Liapunov function of system (6.1), 

(2) All attractors of (6.1) are fixed points. (6.16) 

As mentioned above, this criterion applies for any distribution of the (real) eigenvalues of 

Til" When Tij has both negative and positive eigenvalues, Amin(T;j) refers to the most 

negative eigenvalue. The stability criterion (6.16) is immediately satisfied if the 

connection matrix Tij is itself positive definite (since M and {3 are both strictly 

positive), although this is usually not the case in most currently-used network 

applications (see § 6.3). 

What can be said about the attractors of (6.1) when the stability criterion (6.16) is 

not satisfied? For M = l, we showed in § 5.2 that the only new kind of attractor that 

can appear when (6.16) is violated is a limit cyde of period 2. For M = 2, we will prove 

in the following subsection that the only possibIe attractors besides fixed points are 

period-3limit cycles. For M > 2 , we know of no results - analytical or numerical - that 

limit the possibIe types of attractors of (6.1) when (6.16) is not satisfied. However, the 

trend for M = 1,2 suggests that for general M, attractors of (6.1) (with symmetric Ti) 

might be restricted to limit cycles with periods of (M+ I) and its divisors. 
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6.2.2. The case M = 2: Only fixed points and 3-cydes 

The simplest multistep ex tension of the standard parallel update rule is the M = 2 

case of (6.1). An Ising-model version of this network was stu<iied by Kanter and 

Sompolinsky [1987] for the pseudo-inverse rule associative memory. These authors 

found numericaIly that the M = 2 network has improved recall over the corresponding 

standard (M = l) Ising-model network. As part of their explanation for the improved 

performance, they also point out that the only non-fixed-point attractors for their network 

were period-3 limit cycles. 

In this subsection we prove a generalization of the statement of Kanter and 

Sompolinsky [1987]: We show that all attractors of the multistep network (6.1) with 

M = 2 are either fixed points or period-3 limit cycles for general nonlinearities Fi as 

defined in § 6.1. Again, this result assumes a symmetric Ti)" 

Consider the time evolution of the function E(I), defined 

E(I) = - L. Ty [Zj(I)Zj(l-l)+~Xj(l-l)Xj(I-I)] 
I., 

2 

+ ~ r r [Gj(xj(l-r))-ljXj(l-r)] 
i 1'=0 

(6.17) 

where the function Gi is given by Eq. (6.4). As with L(t), the requirement that all Pi 

change in magni tude slower than linear at large argument insures that the function E(t) 

is bounded below. The exact form of Eq. (6.17) was not deri ved, but was found via 

guesswork and some intuition, though il bears an obvious resemblance to L(I) as well 

as to other previously discovered Liapunov functions [Cohen and Grossberg, 1983; 

HopfieId, 1984; Goles-Chacc el al., 1985; Golden, 1986]. The change in E(t) in one 

time step, defined .1E(I):: E(I + l) - E(I), is 

- 146-



LlE(t) = - I. T;j [zj(t+l)zj(t)-Zj(t)Zj(t-I)] 
i,j 

+ ± ~ T;j [Xj(t)Xj(t)-xj(t-l)xj(t-I)] 
l.} 

+ i I. [Gi(xi(t+1))-Gj(xj(t-2))-ljxj(c+l)+/jx;(C-2)]. (6.18) 
I 

Expressing the first term an the right of Eq. (6.18) in terms of x/s and x/s (from 

Eq. (6.1b)) and using the symmetry ofTjj , the change M(t) can be .... 'litten as 

M(t) = - i ~ [Xj(t + l) - Xj(t - 2){ t-T;jZj(t) + li J 
1 

+ "2 I, [Gj(Xi(t+l))-Gj(Xj(t-2))]. 
I 

(6.19) 

We now expand G j to first order about the point Xj(t+l) and use the following 

inequality [see Fig. 6.2]: 

Equation (6.20) differs from the second-order expansion of G j used above (Eq. (6.9» in 

that the only case af equality for Eq. (6.20) is when Xj(t + l) = Xj(t - 2). Combining 

Eqs. (6.10), (6.19) and (6.20) yields 

LlE(t) :s; -iI,[fi-1(Xj(t+1)) - Gj'(Xj(t+I))j{Xj(t+I)-(Xj(t-2))}. (6.21) 
I 

From Eq. (6.10), the difference in square brackets equals zero, and therefore 
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.1E(t) s; o; 
.1E(t)=O ~ xj(t+1)-xJt-2)=Oforalli. 

(6.22a) 

(6.22b) 

Thus, E(t) is a Liapunov function for the system (6.1) with M = 2, and all attractors 

(the minima of E(t» satisfy the condition Xj(t + l) = Xj(t - 2) for all i. That is, all 

attractors are either period-1 (flxed points) or period-31imit cycles. 

6.3 MULTISTEP ASSOCIATIVE MEMORIES 

To illustrate some of the beneflts of using a multistep update rule, we now consider 

associative memory networks based on the two learning algorithms studied in Ch. 5: the 

Hebb ru1e and the pseudo-inverse rule. The connection matrices Tij to be insened imo 

the multistep network (6.1) in order to store a set of p flxed-point memory pattems ~,jl 

(~f= ±1; i = 1, ... , N; 11= 1, ... , p) are specified by the following rules: 

HebbRule: 

Ii} = 

Pseudo-inverse Rute: 

1 p 

N L ~/' ~/ (i ... j) 

r 

r 

}L=\ 

(i = jl 

1 N 
C =_"J;)lJ;v 

}Lv N ~." ." 
;=1 
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(6.23) 

(i ... jl 
(6.24a) 

(i = jl 

(6.24b) 



We take the self-coupling term y to have an adjustable value in both learning mies. The 

influence of self-coupling y on the recaU performance [Kanter and Somplinsky, 1987; 

Krauth et al., 1988; Fontanari and K6berle, 1988a,b,c] and stability [Jeffery and 

Rosner, 1986a; Denker, 1986c; Fontanari and K6berle, 1988a; Marcus and Westervelt, 

1990Jon various associative memory models has been discussed previousl y. 

Mean field analysis [Amit et al., 1985b, 1987; Marcus and Westervelt, 1990] in the 

large-N limit suggests that overloading these two associative memories results in the 

disappearance - not merely the destabilizing - of f"ixed points close to the stored patterns. 

That is, storage capacities for these networks seem to depend only on the presence or 

absence of fixed points, not on the detaiIs of the dynamics. Because the fixed point 

condition for (6.1) is independent of M, storage capacities for these associative 

memories are aiso independent of M. 

To apply the stability criterion (6.16) to these associative memories, we need the 

minimum eigenvalues of the connection matrices defined by (6.23) and (6.24). For the 

Hebb mie, 

Å . (r/lebb ) = y- a mm 'l [a < I] (6.25); 

for all values of the network size N [Crisanti and Sompolinsky, 1987]? For the 

pseudo-inverse mie, the minimum eigenvalue asymptotically equaIs the Hebb-mle value, 

Å . (r .p- i ) ~ y-a mm '1 [a<l;N»I] (6.26) 

and is slightly [O(N-I/2)] more negative for [mite N [Kanter and Sompolinsky, 1987]. 

2Equation (6.25) can be proved by nrst showing that the outer product matrix ~ ~ T is non-negative 
definite and has rank les s than or equal to the number or patterns p. Thus for p < N • 
Å.min(~;-T) = O. Then, because the diagonal of (IINg;-T is a, setling the diagonal in (6.23) to r 
immediately gives (6.25). 
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We assume N» l and take Åmin = Y - a for both rules. We emphasize: thi s value of 

Åmin is exact for the Hebb rule and is valid as N --t = for the pseudo-inverse rule. For 

both ruIes, it is valid for O < a < 1. We have not placed any restrictions on biases or 

correlations among memories, although (6.25) and (6.26) are not valid if the connection 

strengths are c1ipped or diluted [Marcus and Westervelt, 1989a]. 

From Eqs. (6.16), (6.25) and (6.26) we can imrnediately write the main result of this 

seetion: An M-step analog associative memory based on the Hebb or pseudo-inverse 

rule with self-eoupling y and all neuron gains less than or equal to f3 will al ways 

converge to a fIXed point attractor when the condition 

(6.27) 

is satisfied. 

This is a remarkably simple result. To illustrate its usefulness, con sider a pseudo­

inverse rule network loaded to a = 0.8 and no self-coupling, y= O. From (6.27), the 

M = l network can oscilIate whenever f3 > 1.25. On the other hand, it ean also be 

shown using a multistep generalization of the contraction mapping theorem [Weinitschke, 

1964; Baudet, 1978] that the pseudo-inverse network has a single, global attractor 

whenever the maximum gain satisfies 

(6.28) 

independent of M. In this low-gain state, all initial states evolve to the same fixed point 

and the network is not useful as an associative memory. For the present example, the 

condition (6.28) requires f3 > 5 to create recall states, which is unfortunately at odds 

with the stability condition f3 < 1.25. To simultaneously satisfy both requirements, one 
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could add positive self-coupling r> o, but this has the deuimental side effect of 

reducing the size of the basins of attraction for recaU states [Kanter and Sompolinsky, 

1987; Krauth er al., 1988]. An alternative is to use a multistep updating rule: From 

(6.27) and (6.28), the two desired conditions - guaranteed convergence to a fixed point 

and existence of recall states - can be simultaneously satisfied in the pseudo-inverse rule 

when 

a < [(::1)+ r] (6.29) 

Thus, in our example, the M = l network must have r> 0.3 to simultaneously provide 

guaranteed convergenee and the existenee of recaU states; however, a multistep network 

with M > 3 ean satisfy both conditions without the use of positive self-coupling. 

6.4 CONVERGENCE TIME 

In this section we present a simple analysis of the eonvergence time for the multistep 

network, and show that the convergence time "M for the M-step network is greater than 

for the l-step network by a factor "M / "I where 

(M+l)f2 < "Mf"l < M. (6.30) 

In the eontext of discrete-time dynamics, the expression "time" means "number of 

iterations, " and is not equivaIent to the real time taken to perform the updating, which 

depends on the detail s of the implementation. For example, in a multi processor 

implementation of the multistep network, each processor (one for each neuron) must read 

and sum the N states of the other neurons in order to determine its local fieid. Thus the 
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update time in this implementation is roughly N times the processor's cycle time. Note 

that the real time for an update does not scale with M, however, since local fieids ean be 

stored in an array and used M times. By this same argument, the real time taken to 

update all neuron s sequentially is proportional to N2. 

Convergence times for associative memories have been studied previously for binary 

neuron S and discrete-time parallel dynamics with M = l [Kanter, 1989] as well as 

eontinuous-time dynamies with time delay [Kerszberg and Zippelius, 1989]. An 

imponant result reported by Kanter [1989] is that the convergence time for binary 

networks under parallel dynamics increases in proportion to the logarithm of the network 

size for the Hebb rule, but appears to reaeh a size-independent limit for the pseudo-

inverse rule. 

To analyze the convergence time in the analog multi step network, we eonsider 

evolution in the vicinity of any attraeting fixed point, which may be a memory recall state, 

a spurious fixed point, or, for very low gain ( f3IA( T jj )1 < 1 for all A, independent 

of M), the single, globaIly attracting fixed point. Close to the fixed point X * , the time 

evolution of the deviation 8(t) .. (x(t) - X *) « 1 ean be described by a linearized 

version of (6.1): 

(6.3Ia) 

where D ij is the Jaeobiall matrix, 

D·· =[~(F(~ .T. .. x.))] 'l lix . I k..l 'l l 
} i· 

(6.31b) 

In general, D ij is not symmetrie, but it ean be shown that all of its eigenvalues are real, 
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due to the monotonicity of the F j • We now further assume that the system has had 

sufficient time for fast modes IO relax, allowing the evolution to be eharacterized by a 

single characteristie multiplier - that is, the system has reached the slow manifold. In this 

case, the approach to the fixed point can be described by the linear, scalar iterated map 

(6.32) 

where the characteristic multiplier AM is real-valued and IAMI < 1. We emphasize that 

even though (6.32) is a single step equation, this form applies for any value of M . 

For M = l, (6.31) is a simple N- dimensional linear map, and the value of Al is 

just the eigenvaIue of Dij in the slow manifold. For M > 1, the equation for 8(1) near 

i * ean be written in terms of Al as 

A 
8(/+1)=_1 [8(/)+8(1-1)+ ... +8(r-M+1)] 

M 
(6.33) 

By repeated applieation of Eq. (6.32), the multistep equation (6.33) ean be east in the 

form of the single step equation 

(6.34) 

For eonsistency with the definition of AM in (6.32), we require 

(6.35) 

Summing the parti al series in (6.35) gives a self-consistent expression relating the 
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characteristic multipliers Al and AM: 

(6.36) 

We now define a characteristic time "M > O as the number of time steps needed to 

reduce an initial distance 00 « 1 by a factor of l/e. From (6.32), the distance from the 

fixed point decreases according to 0(1) = oo[A M ]'. This yields an equation for 

converting characteristic multipliers imo characteristic times: "M = -[lnlAMIrI. The ratio 

T M / TI , which indicates how much slower the multistep network is compared to the 

single-step network, is therefore given by 

(6.37) 

Values for TM/TI as a function of T, for M = I through 4 are plotted in Fig. 6.3. For 

large and small values of TM , the limiting values of the ratio" M / TI are 

Lim [TM/Tl] = M 
TM 40 

(6.38a) 

Lim [TM/TI] 
M+I 

= --
TM4C>O 2 

(6.38b) 

- 154-



4 

3 ~ 
2 ------
1 

o 
O 0.5 1 

M 4 

M 3 

M 2 

M=l 

1.5 2 

Fi~. 6.3 The characteristic time "M for the M-step network. normalized by the single­
step characteristic time ,,), as a function of ,,) for M = l - 4. Curves are from Egs. 
(6.36) and (6.37), and are based on linear analysis in the vicinity of an attracting fixed 
point. 
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As a practical example of the convergence time result, we consider the multistep 

associative memories discussed in § 6.2, taking F;Cz) = ranh(f3z) and Ii = O for 

all i. In the vicinity of areeall state (or in the vicinity of the origin (x = O), when it is 

the unique attractor) the overlap m(t) of the state of the network with a memory pattern 

evolves according the scalar iterated map 

m(t+1)= ranh(bm(t» 

where 

b = (1- a + y)f3 [pseudo-inverse rule], 

b = (1 + r)f3 [Hebb rule; analysis is only valid for a ~ O l. 

For these nerworks, the characteristic time for the single-step network is 

(6.39) 

(6.40a) 

(6.40b) 

(6.41 ) 

where m* is the stable fixed point of (6.39): m * = ranh(b m *). A plot of "rI as a 

function of b from Eq. (6.41) is show n in Fig. 6.4. Values for the characteristic time 

"rM for M> l can be found by multiplying "'M /"'1 (from Eqs. (6.36) - (6.38) or Fig. 

6.3) by the value of "rI (from Eq. (6.41) or Fig. 6.4). 

Although a given network configuration takes longer to converge as M increases 

(with other parameters fixed), it is possibie in some instances to optimize both the neuron 

gain 13 and M to satisfy the stability criterion (6.16) with a resulting reduction in the 

convergence time for larger M . For example, in the case of the pseudo-inverse network 
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Fig. 6.4. The eharaeteristie time TI for the one-dimensional map m(t + l) = ranh(bm(r)) 
as a funetion of b, from Eq. (6.41). For b < l the map eonverges to m = O; for b> l 
the map eonverges to one of two non-reTO fixed points. This map describes the evolution 

of the overlap of the state veetor with a memory pattem in the vicinity of a recaU state for 

the Hebb ruIe in the a ~ O limit, and for the pseudo-inverse rule with a < l. Values for 

b are given by Eq. (6.40). 
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described above with a= 0.4 and y= O, the stability criterion (6.16) places an upper 

limit on the neuron gain that depends on M. For M = 1,2 the optimal values are 

M = l: .lI< (1/0.4) = 2.5 

M = 2: f3 < (2/0.4) = 5.0 

[b < 1.5] 

[b < 3.0] 

"'1> [1. 07 x 1.00] = 1.07 , (6.42a) 

"'2 >[0.29x1.72]=0.49 . (6.42b) 

In this example, using the maximum safe gain for the panicular value of M gives a 

convergence time for the M = 2 network that is roughly half that of the M = l 

network. 

6.5 CONCLUSIONS AND OPEN PROBLEMS 

In this chapter we studied the dynamics of a symmetric analog neural network with a 

parallel update rule that averages over M previous time steps. We have shown that 

convergence to a fixed point attractor can be guaranteed by a simple stability criterion, 

Eq. (6.16), which limits the maximum neuron gain to a value proportional to M. The 

global analysis leading to this result is based on a new Liapunov function given in Eq. 

(6.3). For the system we have considered, certain aspects of the dynamics do not depend 

on M; these invariant properties include the associative memory storage capacity and the 

val ue of neuron gain needed to create fixed points away from the origin . The results 

were applied to multistep associative memories based on the Hebb and pseudo-inverse 

\earning rules, giving the stability criterion (6.27). 

In general, the multi step updating scheme is useful when (1) parallel dynamics is 

desired - for example, to take advantage of multiple processors; (2) connections are 

symmetric, and convergence to a fixed point is desired; and (3) the connection matrix has 

a negative eigenvalue of sufficient magni tude to render the stability criterion for the 
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single-step network overly restrictive (see: § 5.3). For example, if Amin/Arna:< < -I, the 

only way to prevem oscillation in the M = l network is to lower all neuron gains umil 

there is only a single, globally attracting fixed point (at which point the dynamics are 

compUlationally unimeresting). Increasing the number of time steps M allows the gain to 

be (safely) increased (as per (6.16» to a sufficiently large value to create multiple fixed 

points. 

As a quick (and final) example of where a multistep updating would be particularly 

useful, consider an analog network with a spin-glass conneclion matrix: the symmelric 

matrix T has random elements picked from a gaussian distribution with zero mean and 

variance J2/N. This system has been studied [Soukoulis et al., 1982; 1983; Ling et 

al., 1983] as an approximation to the TAP mean-field approach [Thouless et al., 1977] 

and yields reasonable predictions, comparable to Monte-Carlo techniques. [See, 

however: Reger et al., 1984]. The numerical work of Soukoulis et al. was done using 

sequential update, and using a parallel updale rule (for instance, using a muItiprocessor 

computer) for such a system is problematic, since the large-N eigenvalue spectrum of T 

is symmetri c aboul O (i.e. Amax = -Amin): as soon as spin glass states appear, period-2 

limit cycles also appear. Figure 6.5 shows a phase diagram for the fully connected (SK­

like) analog spin glass. The phase diagram shows that the parallel updating problem can 

be cured by going to a multi step updating rule. As Ion g as M > l, there is a range of 

neuron gain f3 for which spin glass states - but not oscillatory states - ean be found. 
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Fig. 6.5. Phase diagram for the M-step analog spin glass in the large-N limit. 
Connection matrix elements are random gaussian distributed with zero mean and variance 
i 2/N. The gain of each neuron is {3. Notice that oscillation-free parallel updating 
requires M > l. 
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We have also presented a simple analysis of convergence times and found that the 

number of iterations required for a multistep network to converge to a fixed point 

increases proponional to M when all other networks parameters held fixed. However, 

because an increase in the value of M allows the gain to be safely increased, in some 

instances using a larger M ean reduce the convergence time when the gain is also 

optimally adjusted. 

Two imponant extensions of the present results, which remain open problems, are 

the inclusion of (I) weighred averages over previous time; and (2) nonsymmetric 

matrices, especiaIly those used to generate desired cyclic attractors. Another open 

problem is to prove the conjecture that the only attractors of (6.1) (with symmetric 

connections) for arbitrary M are limit cycles of period M + l and all of its divisors 

(including l, i.e. fixed points). 
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Chapter 7 

COUNTING ATTRACTORS IN ANALOG SPIN GLASSES 

AND NEURAL NETWORKS 

7.1. INTRODUCTION: DETERMINISTIC ANNEALING 

The data in Figs. 5.6 and 5.7, showing the fraction ofrandom initial states that settled 

onto various types of attractors in an analog associative memory, reveal a remarkable and 

useful propert y of analog neural networks: over a bro ad range of neuron gain, the 

chances of correctly finding a memory pattern increase as the gain is reduced. This 

propeny has been observed and discussed by several authors in a variety of applications 

[Hopfield and Tank, 1985, 1986; Koch et al., 1986; Blake and Zisserman; 1987; Durbin 

and Willshaw, 1987J, and may well be the primary motivation for developing parallel 

computation in analog. The benefits of analog computation were emphasized by 

Hopfield and Tank [1985, 1986J, who explained the improved performance at lower gain 

by way of a comparison to the stochastic dynarnics of simulated annealing [Kirkpatrick 

el al., 1983]. In his review of neural networks in Physics Today, Sompolinsky [1988] 

assessed the situation from a slightly different perspective: 

What is the reason for the improved performance of the analog circuits? 
Obviously, there is nothing in the circuit's dynamics, which is the same as 
gradient descent, that prevents convergence to a local minimum. 
ApparentJy, the introduetion of continuous degrees of freedom smooths the 
energy surface, thereby elirninating many of the shallow local minima. 
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Thus Sompolinsky makes a keen distinction between stochastic (or Monte-Carlo) 

dynamics on a rough energy landscape and detenninistic, gradient-descent dynamics on a 

smooth energy landscape. 1 The results of the two schemes may be similar, but the 

dynamical proces s is quite different. The hypothesized smoothing of the energy 

landscape is illustrated schematically2 in Fig. 7.1. 

In this chapter we explore the structure of the energy landscape in an analog neural 

network by counting - analytically and numerically - the expected number of local minima 

in the landscape of a typical realization of a Hebb-rule associative memory. The analysis 

adapts techniques previously developed to count fixed points in the mean-field spin glass 

model ofThouless et al.[1971] (rAP) [Bray and Moore, 1980] and in neliTal networks 

with binary neurons [Gardner, 1986; Treves and Amit, 1988; KepIer, 1989]. The result 

provides a quantitative demonstration that using analog neurons dramatically reduces the 

number oflocal minima in the energy landscape [Waugh et al., 1990]. 

We find that the expected number of local minima in the energy landscape (N ) , 
lp T 

averaged over realizations of the connection matrix T, increases exponentially with the 

number of neurons N, 

(7.1) 

J "Energy" here means any Liapunov function appropriate to the particular network dynamies. In 
physieal systems - or, more generally, in systems obeying detailed balance - the free energy behaves as a 
Liapunov function in the thermodynamic limit [for a proof, see Amit, 1989, §3.6.31, hence this 
expression. The "energy landseape" describes how a Liapunov funelion ehanges as ane maves around in 
state space. 

2 These sebematic energy landscapes are ubiquitous in the spin glass literature and seem to have a great 
influence an the way the community visualizes the comp1ex state space of spin glasses and neural 
networks. Reducing state space to one dimension ean create false intuitions if embraced too lilerally. 
Not only dees this representation give a distorted sense of adjacency and distance, but it also creates the 
impression that fixed points are all either maxima or minima, with necessarily equal numbeTs of each. In 
high-dimensional space, this is not the case: First of all, there can be saddle points in addition to maxima 
and minima Second, fixed points need not be evenly divided among the various Iypes. For example, in 
the diserele stale space of a binary-neuron network with deterministic sequential dynamics, all fi,ed 
points are minima. 
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Fig. 7.1. Schematic energy landscapes illustrate how reducing the gain of the analog 
neurons smooths the landscape, thereby reducing the number of local minima. 
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with a scaling exponent a( a.p) which is an increasing function of both the neuron galn 

f3 and the ratio a of memory pattems to neurons. 

For the case of binary neurons. Gardner [1986] found that fIxed points in a Hebb rule 

network are not distributed evenly throughout state space. but tend to be correlated with 

the memory patterns. as seen in Fig. 7.2. For low storage (P/N < 0.11) there is a 

separate clump of fixed points very near each memory pattem. At a critical storage 

fraction. this high ly correlated clump disappears. suggesting the disappearance of the 

recall state. This analysis provides an interesting alternative method for fInding the 

storage capacity of a network. Although the result for the storage capacity (P/N - 0.11) 

is not as accurate as that found by Amit et al. [1985b; 1987]. Gardner's technique is 

more versatile. being applicable. for example. to nonsyrnmetric matrices [Treves and 

Amit. 1988; Kepier. 1989; Fukal. 1990 (Fukai considers networks obeying Dale's rule. 

the physiologically-motivated requirement that a neuron be either purely excitatory or 

inhibitory)]. 

Despite the correlation of the fIxed points with the memory patterns seen in Fig. 7.2. 

the vast majority of local minima are uncorrelated with all memory patterns. That is. 

nearly all fIxed points are truly spurious states. having a vanishing overlap with the 

stored patterns. In faet, as Gardner points out, the distribution of the fIxed points having 

overlap m with a stored pattern is very narrowly peaked about m = O in large systems; 

counting all fIxed points or only counting the uncorrelated fIxed points gives the same 

result in the large-N analysis. 

In the limit of large neuron gain f3. our scaling function a(a,oo) from Eq. (7.1) 

agrees numerically with Gardner's result for the total number of fIxed points in a Hebb 

role network with binary neurons. In the limit where both a.p ~ 00. we recover the 

familiar result for the zero-temperature Ising spin glass [Tanaka and Edwards. 1980; De 

Dominicis et al.. 1980; Bray and Moore. 1980]. 

- 165 -



10-1 
a=O.l 

10-3 

a(g) 

10-5 
_10-5 

0.00005 0.5 g 
(m=O) 

-10 - 3 

Fig. 7.2. Scaling exponent a(g) for the number of fixed points a Hebb-rule neural 
network with binary neurons and storage ratio a = 0.1. The expected number of fixed 
points at a Harnming distance N g from a stored pattem in a typical realization is 
(N[p(N,g))=exp[a(g)N]. Negative values indicate regions where no fixed points are 
expected. Fixed points at g = 0.5 (overlap with pattern m = O) dominate at large N. 

The dashed line shows the scaling exponent if the fixed points were evenly dislributed 
throughout state space. Af ter Gardner [1986]. 
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a(~,~) = 0.1992 ... (7.2) 

One might further suspect that for finite {3, the limit a ~ 00 would correspond to Ihe 

finite-temperature spin glas s result [Bray and Moore; 1980] with {3 playing the role of 

the inverse temperature in the TAP equations. This is not the case, however. The 

inclusion of areaction field term in the TAP equations greatly affects the number of fixed 

points, thus the function a( 00,{3) == a({3) is not equivalent to the spin glass result of Bray 

and Moore [1980], as we will show below. The reaction fie Id a1so makes the dynamicaI 

version of the TAP equations chaotic for finite {3 so that a direct numerical test of the 

theory for the TAP equations has not been possibIe [Bray and Moore, 1979]. 

The analyticaI results presented in § 7.2 are in good agreement with numerical counts 

of local minima, which are given in § 7.3 [Waugh et al., 1990J. This agreement 

suggests that the analysis is correcl despite its many approximations and assumptions. 

The work presented in Ihis chapter was done in collaboration with Fred Waugh, who 

led the way through most of the roughest terrain. both analytical and numerical. 

7.2. COUNTING ATTRACTORS: ANALYSIS 

7.2.1. Analog spin glass 

Before considering the analog associative memory, we begin by solving a slightly 

easier problem. We will calculate the expected number of local minima in the energy 

landscape for the analog version of the SK spin glass [Sherrington and Kirkpatrick, 

1975). The results are interesting in their own right as a demonstration of landscape 

smoothing in a well-studied multi-attractor system. Also, the techniques used here will 
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appear again when we analyze the analog associative memory. 

The fixed-point condition for the analog network is given by 

i= 1, ... ,N, (7.3) 

which can be wrinen as 

Gj ",g;(.rj)- f3L/ih = O i= 1, "0) N; (7.4) 

J 

with the definition 

(7.5) 

The neuron transfer function F must be invertible3 and the connection matrix T = 

(Tijl is assumed symmetric with elements chosen from a gaussian distribution having 

zero mean and variance j2/N. The normalized probability distribution for the Tij is 

(7.6) 

The type of dynamics or update rule leading to the fixed point condition (7.4) is 

unspecified; the results apply to systems with continuous-time dynamics, discrete-time 

sequential dynamies and parallel dynamics as Ion g as the stability criterion of § 5.3 is also 

satisfied. 

We are most interested in counting the stable fixed points, that is, minima of the 

energy landscape, not saddles or maxima. To limit the count to include only stable fixed 

3 No other constraints on the nonlinear function are mandated by the analysis. However, the only 
nonlinearity for which the theory has been checked by numerical experiment is F(hj) = tanh(j3hj). 
How well the theory works with other nonline&' functions is unknown. 
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The squared sum an the right af (7.16) can be made linear using a Hubbard-Stratonovieh 

transformation, 

(7.17) 

(with a '" ([31 IN) LjkjXj and A'" N in this case). This introduees a new integration 

variable V, which wiil eventually be evaluated by steepest deseent. We now have 

(7.) 8) 

Next, we introduee the order parameter 

q= ~LX? 
j 

(7.19) 

by multiplying (7.18) by an integral over a complex exponential that is equal to l: 

l = ~fj~ dAf~ dq exp[-A(Nq - Lx?J] . 2m -j~ -~ . 
j 

(7.20) 

This adds two more variables, q and A, to be determined by steepest deseent. With thi s 

substitution, the integrals over kj in (7.18) are now gaussian and ean be integrated to 

give 
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(7.20) 

Notice that the x/s on different sites i are now decoupled. This allows the N integrals 

over the x/s to be written as a product of N identicai integrals. or as a single integral 

over x (no index) raised to the Nh power. 

We next consider the (Idet AJ)T' which we evaluate using the folIowing propert y of 

the multidimensional gauss ian integral: 

(7.22) 

where Ai' i = l ..... N are the eigenvalues of A. and 9 is the step function. 

e(z)=(I+Sgn(z))/2. Notice that the RHS of (7.22) equaIs det A as long as A is 

positive definite, otherwise it equaIs zero. This is just what we need to count stable fixed 

points: Recall that A is the Hessian of the Liapunov function for the dynamical systems 

discussed above. Thus replacing Idet AI in (7.20) with (det A) TIi e[ Aj(A)] will pick out 

the minima of the energy landscape. The RHS of (7.22) can be averaged by introducing 

replicas [Bray and Moore. 1980], and eventually setting the number of replicas to -2. 

Dropping the step functions (and understanding thatthe count now includes only stable 

fixed points), we write 
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(7.23) 

Calculating the average over realizations (der Ah from (7.23) follows Bray and Moore 

[1980], and is presented in Appendix 7 A. The result, which assumes replica symmetry, 

is 

(detAh'" Mjn I1(g'(xj)-2/iTR) exp(2NR
2
). , 

(7.24) 

The Min over R comes from a steepest descent integral. Having to minimize with 

respect to R (rather than maximize) is an anifaet af the replica method, as explained in 

Appendix 7-A. 

In cenain regions of state space {Xj}, the RHS of (7.24) becomes negative. We 

interpret a negative result in (7.24) as indicating that A is not positive definite in that 

region of state space, and that the rep lica symmettic treatment has failed to return a zero 

for the average, as it should. Because we are interested in counting the stable fixed 

points (where A is positive definite) we willlimit integrals over Slate space to the sub­

region of the range of F where (g' (x) - 2f3JR) is positive . This is indicated by a n + n 

marking such integrals. We note that limiting the integrals in this way was necessary to 

obtain meaningful results from the saddle-point equations below. 

From (7.21), (7.24), and the change af variables: B = -2f3JR, .1 = -f3.N, the 

average number of fixed points can now be written 
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(NfP)T = ~~ Mjn {exp[ N( ~~;:Z2 ÅQ+ln(I))]} 

'" Max MB in {exp[Nå(J3,q'Å ,B,L1)]} 
q,Å.LI (7.25) 

where 

[ 

( )2 ] 1 g(x)-L1x 2 
1= ~ J dx(g'(x)+B)exp 2 2 +.A..x . 

27rq J3J + 213 J q 
(7.26) 

and the + on the integral means "only integrate where (g'(x) + B) > O". Finding extrema 

of (7.25) is done by setting derivatives of å(J3,q,Å,B,Ll ) to zero. This leads to the 

folIowing set of coupled equations 

då/dÅ =0 ::::) q = ((x
2
)) 

då/dL1 = O ::::) L1 = _1 ((x g(x))) 
2q 

då/dq=O ::::) Å = __ 1 (1 J32~2q (( (g(X)-L1x)2 ))) 2q 

då/dB = O ::::) B=_J32J2(( (g'(x) + Bfl)) 
(7.27) 

The double braekets in (7.27) indicate a weighted average, with the weight function 

given by the integrand of I from Eq.(7.26): 

(( ( )) 
= L dx f(x) W(x) . 

f x) - J ' dx W(x) 
+ 
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W(x) .. (g'(x) + B) exp[ (g(x)- LUl + }.x2]. 
2/32 J2q 

(7.28b) 

A self-consistent solution to the four equations in (7.27) can be found numerically. 

Resulting values of q, Å, B, .6, and I are inserted in to (7.25) to yield avalue of 

(Nfp)T .. e.xp[Na(/3)J. The resulting numerical values fora(f3) are shown in Fig. 7.3 

for the particular nonlinearity F(h j ) = tanh(/3h j ) along with the corresponding value 

for the TAP spin-glass result of Bray and Moore [1980]. For all finite values of /3, the 

analog spin-glas s with neuron gain f3 has more local mimima than the TAP equations 

with inverse temperature /3. In the limit of large gain, both the TAP result and the 

analog spin-glass result approach the zero-temperature Ising spin-glass value 

a(/3 ~ 00) = 0.1992 .. [Bray and Moore, 1980]. 

A slight complication: Numerically evaluating the integrals in Eq. (7.26) and (7.27) 

is difficult for saturating nonlinearities, for example F(h j ) = tanh(f3h j ) because the 

integrands diverge at the endpoints while the integral itself remains fini te. To evaluate 

these integrals, it was necessary to expand the integrands near the endpoints and evaluate 

the integrals analytically in these regions. The relevant formulas are given in Appendix 

7B. 
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Fi~. 7.3. Theoretical result for the scaling exponent a(f3) as a function of inverse neuron 
gain 1/f3 for the analog spin glass. The expected number of local minima is 

(NIP) ~ exp[ a(f3)N j. Also shown for comparison is the number of solutions of the TAP 
equations at temperature l/Ø from Bray and Moore [1980]. 
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7.2.2. Analog neural network 

In this section, we calculate the average number of local minima in the energy 

landscape for an analog neural network as a funetion of neuron gain f3 and the ratio a 

of stored memories to neurons. This ealculation [Waugh el al., 1990] is a hybrid of the 

methods used in the previous section - which were originally developed by Bray and 

Moore [1980] for the TAP spin-glass [Thouless et al., 1977] - and the analysis by 

Gardner et al. [Gardner, 1986; Bruce et al., 1987] of the number and distribution of 

fixed points in a Hebb-rule neural network with binary (Ising) neurons. We will not 

consider how the fixed points are distributed in state space, but will instead eount their 

total number. Based on Gardner's results, we expect that most of the fixed points have a 

vanishing overlap with any of the memory pattems as N ~ 00. That is, most of the fixed 

points are completely spurious states. 

The analysis begins just as in the previous section, except that now the 

interconnection matrix T = {Tijl is given by the Hebb rule: 

i, j = l, ... , N. (7.29) 

where eaeh ~; = ±l at random with equal probability and aN is the number of stored 

patterns. The normalization (N -fa t l is ehosen to make I./ij - 1, independent of N 

and a. 

As in the previous section, the expected number of fixed points is found by 

integrating a produet of delta functions on Gi over state space, 
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(7.30) 

with g(x) defined in (7.5) and A, the Hessian of the Liapunov funetion, defined in 

(7.8). We use an integral representation of the delta function, this time taking k; real, 

which gives 

(7.31) 

We now make the approximation that det A can be averaged separately from the rest of 

the integral in (7.31). That is, we set the average of a product equal to the product of the 

averages: (X x det A) = (X) x (det A). Physically, this procedure assumes that the vast 

majority of local minima have identieal local eurvatures, so that a single value - the 

average - ean be used as the multiplier for eaeh. This assumption is reasonable in light of 

the faet that other features of the local minima, sueh as their energies and overlaps with 

the stored pattems, behave in this way, i.e. their distributions are dominated by a single 

value at large N. The only term in (7.31) whieh depends on the ~r -besid es det A -

is the second term in the exponential, whieh we write as 

This term ean be further "simplified" by separating the produet on the right of (7.32) and 

- 180-



introducing two new integration variables for each Jl. This replacement uses the double 

Fourier integral: 

1 f~ f~ exp[-i(AB)] = - da db exp[i(ab- Aa - Bh)]. 
2.rr _ 00 _00 

(7.33) 

Rearranging slightly, (7.31) can be written 

(N ) =f- rr(dk;) Irrdx;f- rr(dalldbll ) x 
fp ~ -~ . 21r . -~ 21r , , Il 

eXP[<~::'k;(g(X;) + f3{ax;)+ i~allbll ] x 

(exp[ -{N~ r t (all k; + bl'xj )sf ]) ~ (Idet AI)~ (7.34) 

For sf = ± 1 with equal probability, the average over sf can be done easily, 

(7.35) 

where the term corresponding to a in (7.34) is « 1 for large N. Applying (7.35) to 

(7.34) gives 
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(Idet AI)~ (7.36) 

We now define three order parameters, q, s, and t, and their conjugate fields Q, S, 

and T via integral defmitions of l: 

1 
1 = (N/2Jri)fI dqdQ exp[ Q(Nq- tX/)] q= N I, x? ~ 

, 
(7.37) 

l 
1= (N/2Jri)ff ds dS exp[s(NS- tk?)] s= - I,k.2 

~ N . ' , 
(7.38) 

t=~ I,xk ~ 1 = (N/21ti)ff dldT exp[ T(Nt - itX;k;)] N . " , 
(7.39) 

This allows the integrals over aJl and bil in (7.36) to be evaluated by straightforward 

gaussian integration, giving 
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(N fp ) ~ = (;:.S J dq dQ ds dS dulI' ap[ NG] x 

r~If(~;) JIfdx i eX+tki(g(Xi)+(øra -T)Xi)] x 

exp[ -QtX? -Stk?] (Ider AI)~ (7.40) 

where 

(7.41) 

Beeause q, s, and t now only appear in the exp[NG] term, integrals over these 

variables ean be evaluated easily using steepest descent by setting partial derivative s of G 

equal to zero, 

which yields solutions 

2Sa 
q = 4QS+T2 

()G=()G=aG=o, 
aq as ar 

2Qa 
s - --=--.". 

- 4QS+T2 
Ta 

t----" 
- 4QS+T2 

(7.42) 

(7.43) 

(7.44) 

The integrals over kj are now in gaussian form and ean be evaluated using (7.17), to 
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give 

(N fp) = Max {( bJN exp[N(a- T.Jfi - a Itl( fJ2
a 2J)] x 

~ Q.S.T v47l'S f3 2 4QS + T 

[ 
( )2]1 g(x.) + fJ.Jfi - T x 

fIldxi exp L -Qx? - I ( ) , (Idet AI)~ 
I i 4S 

(7.45) 

where Max indicates that the integrals over Q, S, and T are evaluated by steepest 

descent by nurnerically maximizing the expression in curly brackets. 

Calculating (Idet AI) ~ is done in a similar manner as for the analog spin glass: We 

stan with (7.23), which picks out only the stable fixed points (the subspace where A is 

positive definite) and average using the replica method over realizations of the Hebb 

maoix. Again, we drop the absolute value brackets, as (7 .23) is only applicable where 

del A > O. This rest of the calcularion is shown in Appendix 7C. The replica 

symmetric solution is 

(7.46) 

where g'(x;) is the derivative of g(Xi} with respect to xi' As we discovered for the 

analog spin glas s, the RHS of Eq. (7.46) becomes negative in cenain regions of state 

space. Again, we exclude such regions from all integrations over state space. This 

provides an approximate way of counting only the stable ftxed points, as described in the 

previous section. Resoicting the domain of integration in this way was also necessary in 
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order to obtain meaningful results from the saddle-point equations below. Substituting 

(7.46) into (7.45), and changing the variables Q, R, S, and T to a new set: A, B, 

q, and LI, by the definitions 

gives 

where 

B == f3.J(i - 2R 

A==-Q 

q == 2S/f32 

LI == T - f3.J(i 

== Max Min {exp[N a(a,f3.q .A,B,LI)]} 
q,Å,<I B 

(7.47) 

(7.48) 

i = -.J l f dx (g'(x)+B) exp[- (g(X)~LIx)2 +Ax2J (7.49) 
2nq f3 + 2f3 q 

and the "+" on the integral means that the region of integration is restricted to the range of 

F where (g'(x) + B) > O. Notice that i from (7.49) is identicai to l from (7.26) upon 

setting J = I. The rest of the present solution, Eq. (7.48), also bears a slTong 
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resemblance to the corresponding analog spin-glass solution, (7.25), but has some 

significant differences. We note, however, that as a ~ 00, å(a,f3,q,Å,B,L1) ean be 

expanded to the leading order in a and becomes identical to å(f3,q,Å,B,L1) from Eq. 

(7.25). That is, in the limit a ~ 00 the analog Hebb-rule network is formaIly equivalent 

to the analog spin glass. This eorrespondence has been noted aIready for the case of 

binary neuron s [Gardner, 1986; Treves and Amit, 1988]. 

To find extrema of (7.48) with respeet to q, Å, B, and L1, we set partial 

derivatives of å(a,f3,q,Å,B,L1) equal tozero, 

aa _ aa _ aa _ aa _ O 
aq - (JÅ - aB - aL1 -

which gives a set of four integral equations: 

q = (<1 +.Ja:~2-2Af32q ((x2)) 

O = af32 +((L1 +.Jaf3)2 -2Å{32q)[ (;g~:)) -1] 

B = (~-f32)(( (g'(X)+Br
1

)) 

Å = _[(<1 +~:~2~2Af32q ](I-tk(( (g(x)_L1x)2 ))) 

(7.50) 

(7.51) 

where, as above, the double brackets are a weighted average with the weight funetion 

given by the integrand of j. The weighted average is exactly that given in Eq. (7.28), 

setting J = 1 in (7.28b). For given values of a and f3. a set of solutions for q, l, 

B, and L1 are found by numerieally solving (7.51). These four values are then inserted 

into (7.48) to yield a numerical value for the quantity ofinterest, a( a,f3), defined as 
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(7.52) 

Notice that the tenns within the double brackets in (7.51) are identical to those appearing 

in the spin glass analysis, Eg. (7.27). Thus to evaluate the integrals implied by the 

double brackets we again must use the expansion of Appendix 7B. 

Values for a( a,f3) are plotted in Fig. 7.4 for the particular case F(h) = tanh(f3hi). 

The data show that for any value of the storage ratio a, the number of fixed points in the 

energy landscape is reduced as the neuron gain is lowered. In the large-gain limit, 

a(a,oo) is found numericaIly to agree with Gardner's [1986] result for binary neurons. 

The fonn of (7.52) indicates that the number of fixed points is dramatically affected 

by even small changes in a( a,f3), especiaIly for large N. As an example, consider the 

effect of lowering the neuron gain from f3 = 100 to f3 = 10 in a network with storage 

ratio a=O.I: Using the values a(O.l, IOO) =0.059 and a(O.l,lO) = 0.040, we expect 

that the average number of fixed points will be reduced by - 97% for N=200 and by 

eight orders of magni tude for N= 1 000. 

7.3. COUNTING ATTRACTORS: NUMERICAL RESULTS 

7.3.1. Technique for counting fixed points 

The analyticaI resuIts of § 7.2, summarized in Figs. 7.3 and 7.4, have been tested for 

the standard sigmoidal nonlinearity F(hi) = tanh(f3h) by directly counting the stable 

fixed points in small computer-generated analog spin glasses and neural networks. 

Numerical data were obtained by the folIowing procedure: At several values of f3 for the 

spin glass, or pairs of values (a,f3) for the neural network, 20 random connection 
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Fig. 7 .4. Theoretical result for the scaling exponent a( a,{3) as a function of inverse 
neuron gain 1/{3 and inverse storage ratio l/a for the analog Hebb-rule associative 
memory. The expected number of flxed points is (NIP) '" e.xp[a( a,{3)N] . 
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matrices were generated for each of 6 values of N. For the spin glass, matrices were 

symmetric with gaussian distributed elements having zero mean and variance liN. For 

the neural network, the matrices were constructed using the Hebb rule, Eq. (7.29) with 

sf = ±l at random. The values of N were chosen so that the number of fixed points 

was roughly in the range 20 to 400. 

The number of fixed points in each network was counted by choosing random initial 

conditions xj(O) = ±l and iterating the map 

Xj(t+ I) = tanh(/3 h; (t)) (7.53) 

(7.54) 
j<; j>i 

(sequential updating) until convergence to a fixed point was reached. RecaU that under 

sequential updating of state variables, a network with symmetric connections (and zero 

diagonals) will converge to a fl.Xed point for all values of gain /3. 

For each realization, the search for new fixed points was terminated af ter J05 initial 

conditions or when no new fixed points had been found for 104 consecutive initial 

conditions and for every fixed point found, the inverse point (Xj -t -Xi for all i) had 

also been found. Then, for each sel of parameters (a,{3,N), the mean N fp and the 

variance of the observed number of fixed points (for the 20 realizations) were computed, 

and an experimental value for a, defined by the line 

ln( Nfp(N))=aN+const., (7.55) 

was found by a weighted least-square fit. Note that we average the number of observed 

fixed points in each realization rather than averaging the logarithm of the number of fl.Xed 
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points. This coincides with the analysis above: recall that in § 7.2. we calculated 

in(N fp)' not (in(N fp )). As we have argued. the two types of averages are expected to 

agree in the large-N limit for the fully connected network. 

7.3.2. Numerical resuIts for analog spin glass 

Numerical resuIts for the analog spin glass. obtained using the above procedure. are 

shown in Figs. 7.5 and 7.6. Notice that the data in Fig. 7.6 agree quite well with the 

analyticaI result for the analog spin glass. but are quite different from the TAP result of 

Bray and Moore [1980]. To our knowledge. there are no comparable data verifying the 

Bray and Moore curve away from T = 1If3 = O. This is due. in part. to the chaotic 

dynamics exhibited by the dynamical version of the TAP equations [Bray and Moore. 

1979]. In particular. since few initial conditions terminate at fixed points for the TAP 

equations at finite f3. it is extremely difficult to count fixed points numericaIly in even a 

single realization5. 

7.3.3. Numerical resuIts for the neural network 

Fixed point counts for the Hebb-rule neural network were performed at six points in 

the (a.f3) plane. Results are shown in Figs. 7.7 and 7.8. In Fig. 7.8. the numerical data 

are presented along with the analyticai resuIts for a = 10. 1. and 0.1. The agreement is 

very good at larger values of a and f3. and reasonably good - though oUlside the range 

of the error bars - for smaller a and f3. 

It is not clear why theory and numeries disagree for a( a.f3) <- 0.05. At small a. 

5 Nemoto and Takayarna [1985] claimcd IO be investigating just thi s problem using a variation of the 
TAP equations which is guaranteed IO converge and which has as its solutions a superset of the solutions 
of the TAP equations. Apparently. this work has not been published. 
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Fil:. 7.5. Numerical counts of stable fixed points for the analog spin glass at several 
values of gain /3. as a function of the system size N. Lines are weighted exponential 
filS to the data. Numerical values for the scaling exponent a(/3) are given by Ihe slopes 
of Ihe lines (using log-log scale). 
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Fig. 7.6. Comparison of theoretical and numerical resuIts for the scaling exponent a(/3) 
in the analog spin glass, as a function of the inverse neuron gain 1//3. Note that the 
agreement is good, and that the numerical values clearly differ from the corresponding 
result for the TAP equations. 
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Fifl: 7 7 Numerical counts af stable fixed points for the analog neural network for 
severa1 values af a and {3, as a function af system size N. Lines are weighted 
exponential fits to the data. Numerical values for the scaling exponent a(a,[3) are given 
by the slopes af the lines (using log-log scale). 
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Fig. 7.8. Comparison of theoretical and numerical results for the scaling exponent 
a(a,{Jl in the analog associative memory. The agreement is good, especiaIly at larger 
values of a and {J. 
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the problem ean likely be traced to the assumption in the analysis that N{(i » I, while 

numerical data for a = 0.1 are limited to the range IS < N{(i < 30. Why smaller values 

af /3 should also cause problems - even for large a and for the analog spin glass - is 

unknown. 

7.4 DISCUSSION 

7.4.1 Asymmetry - An alternate way to eliminate spurious aUraclors 

We have shawn analytically and numerically that lowering the gain af the neuron 

transfer function in an analog spin glass or neural network greatly reduces the number af 

local minima in the energy landscape. This phenomenon provides one rnechanism for the 

observed improvement af performance in analog neural networks compared to their 

binary-neuron counterparts. Because the present method af smoothing the landscape is 

fully deterministic , it ean be implemented in electranic hardware much more easily than 

stochastie methods sue h as simulated annealing. 

An altemate strategy for deterministieally eliminating the spurious ("glassy") fixed 

points in a neural network is to add same degree af (quenehed) asymmetry to the 

eonneetion matrix. This idea has been considered by several authors [Parisi, 1986; Hertz 

et al., 1987; Crisanti and Sompolinsky, 1987; Treves and Amit, 1988; Kepier, 1989]. 

In a deterrninistie Ising spin glass, for example, asymmetry reduees the number af fixed 

points (Fig. 7.9a) as well as the total number af attraetors (Fig.7.9b) [Gutfreund et al., 

1988]. For the fully asymmetric spin glass (k = 1 in Fig. 7.9), the number of fixed 

points is no longer exponentially inereasing with N, and the total number af attraetors is 

minirnized. 
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Fig 79 (a) Scaling exponent a(k) for fixed points and as a function af asymmeu-y 
parameter k for asymmetric spin glas s with binary (Ising) state variables and sequential 
dynamics. Conneclion matrix is composed of gaussian random symmetric and 
antisymmetric pans, ~j = ~J + k~t . Line is theory, squares are from numerical counts. 
(b) Numerical counts of the total number af attractors as a function of asymmetry for 
various size systems. Both the number of fixed points and the total number of attractors 
can be reduced by introducing asymmetry, but this also introduces non-fixed-point 
attractors. After Gutfreund et al.[1988]. 
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In the limit N -> 00, all attractors of finite period disappear entirely; the only dynamical 

state for the fully asymmetric analog spin glass (besides the origin at low gain) is chaos 

[Sompolinsky et al., 1988]. 

Treves and Arnit [1989] have studied the distribution of fixed points in Hebb-rule 

neural network (with binary neurons) for arbitrary symmetry and dilution. They find 

that, in contrast to the spin glass, a neural network at finite a has an exponential number 

of fixed-point attractors for all values of asymmetry - including full asymmetry. Kepier 

[1989] has taken an additional step to eliminate these remaining spurious fixed points by 

adding a self-inhibition term Tii < 0, which eliminates fixed points, and (for parallel 

dynamies) creates in their place period-2 limit cycles. Kepier's result, as well as Fig. 

7.9, highlights an imponant drawback of smoothing with asyrnmetry: Using asymmetry 

to reduce the number of [ued point attractors necessarily creates new, nonjixed·point 

attractors. In contrast, smoothing the landscape using analog neurons eliminates fixed 

point attractors without introducing any new attractors. 

7.4.2. A short discussion of attractors in multistep systems 

Finally, we will briefly discuss the nature of the attractors in the multi step updating 

mie defined in Ch. 6. We will restriet our attention to the binary (Ising) spin glass (Tjj 

gaussian random symmetric), and compare a sequential update scheme to the M= 2 

updating rule, where state variables are updated in parallel based on the average of two 

previous time steps. We expect that our observations will be qualitatively correct for 

analog systems and neural networks. 

First - to check the validity of our numerical method owe reproduce the well-known 

result that the Ising spin glass under single-time-step sequential dynamics always 

converges to a fixed point and that the expected number of fixed points is 
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(NIP) = exp[aN] with a = 0.1992 ... [Tanaka and Edwards, 1980; De Dominicis et 

al., 1980; Bray and Moore, 1980; Gutfreund et al., 1988]. This result is shown in Fig. 

7.10. The numerical method is similar to the one described above: Here, 40 random 

gaussian matrices were generated for each value of N with 8 S N S 18. For each 

matrix, random initial states (random N-vectors of ±I's) were generated and their 

associated anractors were found using sequential dynamics: 

Xi(t + l) = Sgn[~TijXj(t + l) + ~1ijXj(t)] . 
) <, j >' 

(7.56) 

Fixed points for each matrix were counted and tabulated. A particular matrix was 

considered fully mined for attractors when 500 consecutive initial states were tested 

without finding a new attractor. (This occurred af ter anywhere from 502 to several 

thousand initial states had been examined). The numbers of fixed points for each of the 

400 matrices were plotted and a direct, least-square exponential fit to all 400 points was 

made (using KaleidaGraph 2.0) to find the scaling exponent a. This method of 

averaging is not the same as finding the average number of fixed points for each value of 

N first, and then doing an exponential fit. The two methods, however, yield very 

similar results. The least-square fit gives a = 0.2030, within 2% of the theoretical value. 

Now we tum to the M = 2 multi step update rule. Recall that in § 6.2.2 it was proved 

that all attractors for this update rule (with symmetric connections) are either fixed points 

or period-3 limit cycles. This resuIt is supponed by the present numerical investigation. 

Counts of fixed points and 3-cycles are show n in Fig. 7.11. The fixed points and 3-

cycle were counted by the same method described above (40 matrices for each N, 8 S 

N S 18 and 4 matrices for N = 19). In this case, initial states were generated until no 

new attractors of either type had been found for 500 consecutive initial conditions. 
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Because there were typically a large number of 3-cycles, this often meant checking tens 

of thousands of initial conditions per matrix. Care was taken not to overcount 3-cycles 

that are identicaI under cyclic permutation, though noncyclic permutations were counted 

as separate attractors. We point out three important features of the data in Fig. 7.11 : 

(1) The scaling exponent for the number of stable fixed points using 2-step dynamics is 

significantly below 0.1992. The measured value is afp = 0.175. 

(2) The scaling exponent for stable 3-cycles is larger than that of the fixed points (for 

either type of dynamics), and is measured to be a3-cyc = 0.237. Thus 3-cycles are quite 

abundant in the 2-step network - much more so than fixed points. On the ether hand, the 

3-cycles are not as abundant as the 2-cycles generated by standard (M = l) parallel 

updating, which are known to have a scaling exponent or a2.cyc = 2(0.1992) = 0.3984 

[Gutfreund et al. , 1988, Cabasino et al., 1988). 

(3) The number of 3-cycles seems not to be self-averaging. For a given system size, 

the number of 3-cycles found in particular realizations varies by up to two orders of 

magnitude, with (Ni:' - Nj}n)j NIp - 0(1). 

- 199-



fit: Y = 0.94 exp(0.203x) 
100 

sequential dynamies o 

• 
o ! I 

N
fP o o o o o § o 

o o o 
o 

o o o o 8 8 10 o o o o 
o o o o o o o 

o o o o o o 

o o o o o o 

o o • 

l 
6 8 IO 12 14 16 18 20 

N 

Fig. 7.10. Number of fixed points Nfp as a function of system size N for the Ising spin 
glas s with single-step sequential dynamics. See text for detaiis of the numerical method. 

The direct exponential fit to all 400 points (line) gives a scaling exponent of a = 0.203, 

in good agreement with the theoretical value of 0.1992. 
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(a) fit: y : 1.19 exp(0. 175x) 
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Fig. 7.11 . Number of fixed points Nfp and distinct 3-cyc1es N 3-eye as a funetion of 
system size N for the Ising spin glass with 2-step parallel dynamics (see § 6.6.2). See 
text for details of the numerical method. (a) The numerically determined fi xed-point 
scaling exponent is afp: 0.175. This value is signifieantly less than the sequential 
update value of 0.1992 (see Fig. 7.10). (b) The numerieally determined 3-cycle scaling 
exponent is a 3-eye : 0 .237. This value is larger than afp ' so at large N the vast 
majority of attractors for the 2-step spin glass are 3-cyc1es. 
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APPENDIX 7A: (der Ah FOR THE ANALOG SPIN GLASS 

In thi s appendix we calculate the average (over realizations) of the determinant of the 

Hessian matrix A, defined in Eq. (7.8). The method follows Bray and Moore [1980]. 

Replieas were inrroduced in the main text; we piek up the calculation starting at Eq. 

(7.23). 

From Eq. (7.23), the average overrealizations is given by 

(7 A.l) 

Writing the average in (7 A.l) as an integral over the gaussian distribution of matrix 

elements (7.6), 

{ ( ) 1/

2 

[ ()] 
. ~ dPia ~ N N 2 

(der Ah = LIm L IT = L ITdT;j --2 exp I. - ~ 7;j X 
m-->-2 ~ i.a -v 2n ~ (ij) 21t.l (ij) 2J 

(7 A.2) 

with (ij) indicating distinct pairs. Integrals over Tij are gaussian and ean be integrated 

to give 
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(7 A.3) 

where now the double sums over i and j are unrestrieted. The squared sum ean be 

redueed using a Hubbard-StralOnovieh transformation (7.17), whieh introduees !Wo new 

order parameters, an m-eomponent veetor R a and an m x m matrix M afJ ' 

exp[ (J:~2) t ( ~PwPja J] 
= exp[ J:~2 ~( ~>ia 2 J] exp[ J:~2 a~J ~PiaPiP J] 
= (cermA)(tennB) (7 A.4) 

where 

(7 A.5) 

(7 A.6) 

FolIowing Bray and Moore [1980], we adopt the repliea symmetrie solutions Ra = R for 
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all a, and M (lP = O for all (a,p>, which reduces (7 A.S) and (7 A.6) IO 

1/2 []m (termA)=(~) CdR exp(-NmR2) exp J/3Rt Pia2 , 
(7A.7) 

(rermB) = 1. 

mserting (7 A.7) imo (7 A.3) gives 

(7A.8) 

mlegrals over Pia are now gaussian and ean be inlegrated to give 

(der Ah= m~~2 {r .. dR( ~r exP[-NmR2 1[ ~(g'(Xi)- 2/3JRr1/2 r} 
= r .. dR(~r exp[2NR21 ~(!?'(x;)-2/3JR). (7A.9) 

The imegral over R in (7 A.9) is eventually done by steepest descent. Because the 

number of replicas has been set to -2, the correct solution of this steepest decem integral 

tums out to be a minimum over R, rather than a maximum. This is also the case in the 

analysis of Bray and Moore [1980] as they use the solution B = 0, which is likewise a 

minimum of det A. Neglecting numerical prefactors of 0(1), we obtain the folIowing 

result: 
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(7A.I0) 

which appears as Eq. (7.24). 

APPENDIX 78: EXPANSIONS FOR STEEPEST DESCENT INTEGRALS 

Finding a solution of the sad dIe-point equations for the analog spin glass (7.27) or 

the analog neural nerwork (7.51) requires solving a set offour coupled equations, each of 

which contains an integral in the fonn of the double angle braekets defined by (7.28). 

These integrals, five in total, must be evaluated numerically . For the analog transfer 

function F(h j ) = tanh({3h j ), four out of the five integrands diverge at the end points of 

the domain of integration, ±I, causing fatal problems for the numerical integration 

package used (NAGLIB 001 AHF). To get around this problem, we split the domain of 

integration into three regions: 

J1 J-I+' JI-' Il 
-l = -l + -IH + l-c 

(7B .l) 

which can be evaluated as 

JI JI-C rI 
-I = -I+c + 2 Jt-, (7B.2) 

by vinue of the (even) symmetry of all of the integrands. The integrals with limits at 

±(l-e) no longer have divergent integrands over this reduced domain, and ean be 

evaluated accurately using the NAGLIB integration package. The remaining parts, 

extending over [1-e,I], ean be approximated for e « l, keeping only those terms 
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which diverge as x ~ 1. Once nonleading tenns are dropped, the [1-1",1] integrals can 

be evaluated in closed form, giving expressions which depend on e. The procedure is 

straightforward, and we give only the results. The approximations were checked by 

comparing several values of e, ranging from 10-4 to 10-8, and confirming that the sum 

of the two integrals on the right of (78.2) was insensitive to the choice of e, though the 

individual parts of each integral did depend on e. 

We have suppressed the "+" markers on the integrals indicating that the range of 

integration is limited to a sub-region where (det A) > O. The excluded region is in the 

center of state space - covered by the "easy" integral over [-1+1", l-e] which is done 

numerically. 

First, we consider the integral j of the weight function W(x) defined in (7.28b) for 

the case of the neuron transfer function F(hi) = tanh({3h): 

- Jl 1= dxW(x) 
-) 

(78.3) 

W1xl=C_'" +B 1""'[ (7B.4) 

Notice that j is proponionalto the I's defined previously: i = [..j27rq {3J]/ from (7.26) 

and i = [-J27rq {3]i from (7.49). Expanding (7B.3) near ±l as descibed above gives 

- Jl-o b-f7i Å l:: dxW(x) + -e ettc[ajb) , 
-IH 2 

(78.5) 

where 
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a = !n(2/e) - 2t1, 

b = 2f31..j2q , 

and erfc is the complementary error function, 

2 f~ _/ 2 

erfc( z) '" ..fii z dt e . 

(7B.6a) 

(7B.6b) 

(7B.7) 

U sing these same definitions of a and b, the integrals in double braekets from (7.27) 

and (7.51) have the folIowing expansions: 

(( X 2)) '" J 5~1 dxx
2 

W(x) 

::1[51
-< dxx2 W(x) + 

l -1+< 

(( x g(x»)) = J C dx (x tanh -1(x») W(x) 

b..fii .1. ] -2-e erfc[a/b] , 

:: 1[51
-< dx(xtanh- 1(x»)W(x) 

l -1+< 

+ e: (%exp(_a 2/b2
) + t1..fii erfC(a/b»)] 

(( g(x) - t1x)) '" J fl dx( tanh -1(X)_ t1x)W(x) 

::1[51
-< dx(tanh-1(x)-t1x)W(x) 

l -IH 

+ (%f e.1.( (: )exp(-a
2
/b

2
) + ~ erfc(a/b»)] . 
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Finally, the integrand in (( (g'(x) + Bt )) does not blow up at ±I for F(h) = 

tanh(f3hi), so it is not necessary to expand the integrand in arder to numerically evaluate 

this integral. 

APPENDIX 7C: (det A)~ FOR THE ANALOG NEURAL NETWORK 

In thi s appendix, we deri ve the expression (7.46) for (del A)~, the average 

determinant af the Hessian matrix A, defined in (7.8). The average af det A is taken 

over realizations af Hebb matrices, defined in Eq.(7.29), each storing aN unbiased and 

uncorrelated random memory patterns. That is, each ~f', i = l, ... , N; 11= l, ... , aN 

in (7.29) equals ± 1 at random. 

We start with the identity (7.22), 

(7C.1) 

and introduce replicas, indexed by r, with the number af replicas eventuaIly set to -2, 

- . J- dPiy (I ~ ~ J det A - L/m __ IT ~exp --~ ~PiyAijPjr . 
m->-2 i yv2lC 2.. I 

• I.J r= 
(7C.2) 

As with the analog spin glass, we drop the absolute value braekets around the 

determinant, recognizing that (7C.l) is nonzero only when A is positive definite, which 

implies det A > O. The cIaim that (7C.2) picks out only the stable fixed points after 

averaging is ani y valid insofar as replica symmetry is valid. The validity af replica 

symmetry in this problem wilI not be studied. 
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We write the average over ~f as 

. (f~ dPiy (1" ~ J~ (detA)~ = LIm _~n =exp --~ ~PirAijPjr 
m->-2 i Y ,,271: 2 . . l 

• I,j y= ~ 

(7C.3) 

where the angle brackets denote an average over all 2 (J]oI2 slates of ~f'. 
Note in (7C.3) that averaging is done before the number of replicas is set to -2. Insening 

Aij from (7.8) and Tij from (7.29) into (7C.3) gives 

(der A) ~ = Lim (en d~ exp[-~ L Pi/(g'{X;) + ø..Ja) 
m .... -2 iy--v271: 2 . , I,y 

I ø ( 1')2]\ +"2 N..Ja L LPiy ~i ) 
~I' I ~ 

(7C.4) 

The square in the last term of (7C.4) can be reduced to a linear form via a Hubbard-

Stratonovich transformation, 

(7C.5) 

[with),,= l and a = (ØIN..Ja)1/2Li~fpiY in this case]. This introduces a new set of 

integration variables, (J'YJl (y= l, ... , m; Po = l, ... , aN) and gives 
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J~ da,!!, J- dPir 
(derA), = Lim n = n = x 

., m .... -2 -- '127r -- . '127r r,~ I,r 

(exp[(N~ rI Piy a}!' ~t]) . (7C.6) 
',y,~ ~ 

Averaging over the ~t' can now be done imrnediately using the relation 

(7C.7) 

The term eorresponding to a in (7C.6) is small for large N, so that the O(a4 ) terms ean 

be dropped: 

We now assume replica symmetry by sening a}!' = aJL and Piy = Pi for all y. This 

allows (7C.6) to be written as a single-site integral (in replica space) raised to the power 

m: 

(7C.9) 
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Next, we introduce the order parameter 

l 
r=-~>? 

Ni 
(7C.1O) 

and its conjugate field R via an integral definition of l: 

(7C.ll) 

Insening (7C.1O) and (7C.ll) into (7C.9) gives 

(detA)~ = Lim {(~)ffdrdRf~ n ..,ffiidap f~ n..,ffiidPi exp[-NRr] x 
• m .... -2 2m -~ 27r -~. 27r P , 

which, af ter gaussian integration of aJ1. and Pi' yields 

(7C.13) 

The integrals over r and R are evaluated by steepest descent, which is justified for large 
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N. Each integral produces a factor (2rr/N) 1/2 to cance! the existing prefactor 

proportional to N. Other numerical prefactors of 0(1) will be ignored. The steepest 

descent integral over r can be done explicitly by setting 

.!...[rR + a ln(l- f3r/..J(i)] = O ar 2 
(7C.14) 

which gives 

(7C.lS) 

The steepest descent integral over R will eventuaIly be done numerically. Seuing the 

number of replicas to -2 before performing the saddle point integral makes the minimum 

(not the maximum) with respect to R the valid solution. lnsening (7C.lS) into (7 C. 13) 

and setting m = -2 yields tlle desired result, 

. { [(2..J(iR (detA)~ = ~n exp N f3 

(7C.16) 

which appears as Eq. (7.46). 
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Chapter 8 

TRE DISTRIBUTION OF BASIN SIZES 

IN TRE SK SPIN GLAS S 

8.1. INTRODUCTION: BACK TO BASINS 

In this chapter, we return to the problem considered in Ch. 3, namely, the structure of 

the basins of attraction in systems with a large number of atlractors. We restrict our 

attention to the zero-temperature SK spin glass [Sherrington and Kirkpatrick, 1975J, and 

study the distribution of basin sizes, averaged over the ensemble of (gaussian) random 

connection matrices. 

The dynamical system we consider is the SK model with deterministic, discrete-time 

(sequential) dynamies: 

Si(l+l)=Sgn[~"lijSj(/+I) + L "lijSj (l)] 
Jq J>I 

i = I, ... , N. (8.1) 

The state space of this system is discrete, Sj = ±1, equivalent to the eorners of an N­

dimensional hypercube. Later in the chapter (§ 8.5) we will consider an analog version 

of Eq. (8.1). The connection matrix T ={Tjjl is taken to be symmetric (Tjj = Tjj) 

with off-diagonal elements drawn at random from a gaussian distribution P(T;) with 

zero mean and variance liN, 
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(8.2) 

and all Tii = O. 

The main result of thi s chapter is that over a wide range of basin sizes W, the 

numerically-measured distribution j(W) of basin sizes for Eq. (8.1) is roughly 

described by a power law, j(W)= KW-r , with r - 3/2. (These quantities are defined 

precisely below, see (8.4) and (8.7)). Af ter exploring some of the immediate 

consequences of such a power-law distribution (§ 8.3), we will compare this resuIt to 

known basin-size distributions for other systems, and to a closely related quantity defined 

for the SK spin glass, the distribution of cluster weights (defined in § 8.4). Finally, we 

show that using analog state variables selectively eliminates fixed points with smal! 

basins as analog gain is lowered (§ 8.5). A discussion and open questions are presented 

at the end (§ 8.6). 

With all of the attention that has been paid to the SK spin glass over the past fif teen 

years [Binder and Young, 1986; Mezard et al., 1987], it is surprising that a direct 

measurement of basin sizes has not been presented previously. l Two explanations for 

this lacuna seem likely: First, there is the well-known "universality" of systems with 

multivalley energy landscapes [Derrida and Flyvbjerg, 1987a, 1987b; Gutfreund, 1988; 

Derrida, 1988b]. This univers ali ty has prompted comparisons of different quantities in 

different systems, all of which characterize state space in some way. For some models -

such as the Kauffman model (§ 8.4.2) - the quantity used for comparison is in fact the 

IN. Parga and G. Paris i have studied a rclated distribution in the T=O SK model using a numerical 
technique very similar to ours. Rather than looking at the distribution of basin sizes, they mcasured the 
fraction of initial states that terminate at a fixed point with energy between E and E + t1E, as a 
function of E. They found that as the system becomes large, most initial states flow to fixed points 
with E/N - 0.7, with a rather narrow peak. Apparently, this work has not been published except as a 
preprint [Triest preprint IC/85/l33 (1985)). Some aspects of the work are discussed in Parga [1987J, and 
a figure from the preprint appears in the book by Chowdhury [1986. p. 82-83J. 
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distribution of basin sizes. For the SK spin glas s, it is another quantity, the distribution 

of cluster weights which is generally used for comparison. An exact expression for the 

distribution of cluster weights has been presented and analyzed thoroughly [Mezard et 

al. , 1984a; 1984b]. Our results for the SK model suggest that besides the important 

concepmal difference between the distribution of cluster weights and the distribution of 

basin sizes, there are also fundamental qualitative differences between these two 

distributions. Our conclusion is that perhaps such distributions are not so universal, and 

that care must be taken in making comparisons between them. 

The second reason why this problem has not received more attention is that basins of 

attraction can only be strictly defined for deterministic systems. Furthermore, their shape 

can depend on the detaiIs of the dynamics. li is only recently that spin glasses have been 

trealed as dynamical systems in their own right, and thaI the standard dynamical-systems 

type questions have begun to be addressed [see, for example: Gutfreund et al., 1988; 

Cabasino et al., 1988; Sompolinsky, 1988; Kanter, 1990]. 

8.2. PROBABILISTIC BASIN MEASUREMENT 

FirSI, we note that all attractors of (8.1) are fixed points (this is nOl true for 

asymmetric connections or parallel dynamics). This faet ean be established by showing 

that the total energy, E (Le. the spin-glas s Hamiltonian) 

(8.3) 

is a Liapunov function of (8.1). In Eq. (8.3), E; is the energy eontributed by site i, 

equivalent to the local field al sile j times -S/2. We will also refer to the average energy 

per site, defined e == E/N. Intuitively, we expect that the most stable attractors (those 
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with the most negative energy) will have the largest basins of attraction. lndeed, this idea 

is observed to hold for the recaU states in associative memory models [Forrest, 1988; 

Kepier and Abbotl, 1988; Opper et al., 1989], and is an important principle for 

developing robust learning algorithms [Krauth et al., 1988; Abbotl, 1990]. The 

numerically measured relationship between basin size and average energy per spin e for 

the SK model (8.1) is shown for N = 20 in Fig. 8.1. This figure shows - 11,000 fixed 

points from 200 realizations, and confirms the intuition that more stable fixed points have 

larger basins of attraction. It is significant, however, that the dependence of basin size on 

energy is quite weak: Fixed points with identicai energies have basin sizes ranging over 

two orders of magni tude. 

We now explain how Fig. 8.1 was made. Define the size W s of the basin of 

attraction of the sID attractor as 

= number of initial states leading to attractor s 
Ws 

- total number of initial states 
(8.4) 

TIlls definition satisfies the normalization 

(8.5) 
s 

Having only fixed point attractors greatly simplifies the task of measuring basins, since it 

is always clear to which attractor a particular initial cOlJdition has flowed. Still, because 

of the large state space ( 2N states for a system of size N ) a complete enumeration of 

basin sizes is prohibitively time-consuming for all but the smallest systems (such an 

approach was used by Gutfreund et al., [1988]). The problem is compounded by the 

need to average over large numbers of rea1izations in order to obtain reliable statistics. 

Instead, we compute basin sizes Ws by the folIowing probabilistic method. For each 
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Fil.:. 8.1 . Basin size versus energy per site t;; = E/N for fixed points in 200 realizations 
of the detenninistic SK spin glas s, Eq. (8.1) and (8.2). The number of data points, equal 
to the number of fixed points found using the statisticai technique, is 11 ,032. The 
relation Nfp = exp[aN] gives a = 0.200 for this data, in good agreement with the 
theoretical value 0.199. Each realization was checked for fixed points until 500 
consecutive initial states failed to produce a new fixed point (see text). Note the general 
trend that the most stable fixed points (i.e. fixed points with the most negative IO) have 
the large basins of attraction. Also note that the trend is rather weak. 
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realization of Tij' random initial states (random, unbiased strings of ±I 's) are generated, 

and the attractor for each initial state is found under the dynamics of (S. 1 ). Convergence 

is fast, typically requiring fewer than 5 updates per site. A list of the distinct attractors is 

kept along with the total number of initial states that flowed to each attractor. For each 

initial state, the attractor found is compared to the list of those previously found, and if 

there is a match, the basin size of that match is incremented. If no match is found after 

checking the entire list, the attractor found must be new. The new attractor is then added 

to the list of attractors with its basin size initialized to l. For each realization of Ti}' 

initial states are generated until a quitting condition is reached. The quitting condition is 

that a specified number of consecutive initial conditions have been generated without 

tinding a new attractor. Typically this number is set to 500 for N::; 20 and SOD for N > 

20. This quitting condition is superior to simply using a large, fixed number of initial 

conditions to test each realization; It is efficient over a wide range of possibIe numbers of 

attractors withoUl requiring a good "guess" (i.e. a pre-inserted theory) for how Ion g to 

sample. Af ter reaching the quitting condition, basin sizes for each of the found attractors 

are given by the number of initial states that flowed to that attractor divided by the total 

number of initial states tested. Statistics are accumulated over a large number of 

realizations (typically 20D - 500). 

There is a check which tells us if we have sampled long enough. We know the total 

number of tixed points that we should find. The expected number of fixed points NIp 

for (SJ) is 

(8.6) 

with A-I and a = 0.1992 ... [Tanaka and Edwards, 1980; De Dominicis et al., 19S0; 

Bray and Moore, 1980]. (Henceforth we will drop A, calling it l, and drop the braekets 
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on Nfp indieating an average over realizations). The result (8.6) was originally 

ealculated assuming large N, but it is remarkably aeeurate for N as small as N = 4 (!) 

when averaging is done over a large number of realizations IGutfreund et al., 1988] . 

The distribution of basin sizes ean be found numerically by selting up a histogram of 

basin sizes, and collecting data over a large number of realizations. A histogram of basin 

sizes for the 11,000 points of Fig. 8.1 is shown in Fig. 8.2(a). Figure 8.2(b) shows a 

histogram of energies per site t: for this same data set. 

8.3 THE DISTRIBUTION OF BASIN SIZES 

8.3.1. Definitions 

The distribution of basin sizes, averaged over realizations, ean be written as a 

eontinuousfunetion2 

(8.7) 

The Dth and 1 SI moments of the distributionf(W) must satisfy the folIowing eonstraints: 

ff(W)dW =Nfp , (8.8) 

f f(W) W dW = 1 . (8.9) 

2 The distribution g(E) studied by Parga and Parisi [Chowdhury 1986. p. 82·83; see footnote l] is 

g(E)=(LsWs 8(E-Es))T' 
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Fi&. 8,2, Histograms of the data of Fig, 8, l , nonnalized by the number of realizations = 
200, (a) Histogram of basin sizes, showing the characteristic power law behavior with 
rounding at large and small basin size, Bin width.1W = 0,002, (b) Histogram of energy 
per site e = E/N, with E defined by (8,3), Bin width .1e = 0,01. Distribution of 
energies is in good agreement with theory ofTanaka and Edwards [1980]. A Ieast square 
fit of the energy histogram to the gaussian f(e)= Aexp[-N(e - e)/2~l gives e = 
-0.49 and <Y = 0,36; theoreticai values are e = -0,50 and <Y == 0,31 [Tanaka and 
Edwards, 1980], 
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Other moments offtW), defined generally as 

Ym = f j(W)Wm dW , (8.10) 

will also be of interest , especiaIly for comparing our results to results for other 

dynamicaI systems and to numerical data a1ready in the literature. 

As a first example, con sider the case where all basins are the same size. The 

constraints (8.8) and (8.9) then require the distribution to have the folIowing form: 

[equal-sized basins]. (8.11) 

We recover the obvious result that if all basins were the same size, that size would be 

l/Nip (= e-O.1992N). Figures. 8.1 and 8.2(a) show that it is clearly no t the case that all 

basins are the same size. 

The range of possibIe basin sizes is limited by the dynamics. an the small end, a 

fixed point of (8.1) will a1ways be stable to the flipping of a single state, thus no fewer 

than N states will will flow to any fixed point. This automatically gives a minimum 

basin size W min of 

(8.12) 

an the large end, the maximum basin size consistent with the invariance of (8.1) to the 

global inversion Si -7 -Sj for all i, is 

1 
Wmax = 

2 
(8.13) 
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That is, there will always be at least two fixed points dividing state space into equal 

halves, so the largest possibie basin size is 1/2. Even if we demand that the number of 

fixed points in every realization equal exactly Nfp - and we should, since (8.6) is self­

averaging as N -7 00 - we still find that the largest possibie basin size is -1/2 to a very 

good approximation. For example, with N = 20, a maximum basin size of 

W max = .4995 still allows room for (eO .1992·20 - 2) == 52 other attractors, each of 

minimal basin size. This approximation, W max == 1/2, improves for larger N. 

8.3.2. Numerically observed power-Iaw behavior of !eW) 

Figure 8.3 shows the main observation of thi s chapter. Over a broad range af basin 

sizes,j{W) is approximately described by a power-/aw 

[(W)=K W-r (8.14) 

with r - 3/2 (±O.2). The data in Fig. 8.3 were collected from 330 realizations of (8.1) 

with N = 28. The average number of basins found per matrix was 232.1, 

corresponding to a scaling exponent (8.6) of a = 0.195, which is in reasonably good 

agreement with the theoretical value of 0.199. This suggests that most of the basins were 

counted. This result is consistent with the histogram in Fig. 8.2(b), but contains more 

data. 

The value of r is found to be independent of N , though as we will discuss in the 

folIowing subsection, there is a cutoff for small basins which does vary with N. 

We emphasize that the observed power law is an empirical result. Below, in § 8.4.1, 

we will discuss a related theoretical result which suppons this observation. However, we 

do not yet have a theory which directly explains the power law, let alone the exponent. 

We also point out that the distribution we observe is not a perfec! power law, but is 
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Fig. 8.3. Normalized histogram of basin sizes for N = 28 based on 330 realizations. 
Count (per realization) corresponds to j(W)Ll W. where j(W) is the distribution of 
basin sizes and LI W is the bin width. Here. LI W = 0.0005. Each realization was 
checked for fixed points unril 800 consecutive initial states failed to produce a new fixed 
point (see text). Line on right indicates slope of -3(2. for cornparison. 
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eoneave down for both large and smal! W. Sueh deviations might be explained as 

numerical artifaets; on the other hand, there is no eompelling reason to insist on a perfeet 

power law for f(W). At our present levelof knowledge, the fairest statement is this: 

The assumption that f(W) is a power law allows us to easily calculate some 

consequences of the observed basin-size distribution. Hopefully, these conclusions do 

not depend critically on the value of y, or on slight deviations from a perfect power Jaw. 

Lacking a theoretical model, this seems to be a reasonabJe pJace to start. 

8,3.3. Consequences uf a power law distribution of basin sizes 

We now expJore some consequences of a distribution of basin sizes given by 

f(W) = K W-Y, focusing on the case y= 3/2. The normalization conditions (8.8) and 

(8.9) impJy that there is a cutoff W cutoff > O which sets the scale of the smallest basin 

size. Taking the maximum basin size W max = 1/2 gives the pair of equations 

fl/2 K w-y dW - N 
w - lp 

CWDff 

(8.15) 

(8.16) 

Eqs. (8.15) and (8.16) together determine values for K and Wcutoffwhich depend onJy 

on y. These normalization equations imply that y is between 1 and 2. This is 

consistent with our observation y- 3/2. For the case y= 3/2, Eqs. (8.15) and (8.16) 

yield 
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.J2 
K=---

2-4/Nfp 
[ Lim (K) = 1/.J2] 
N .... ~ 

(8.17) 

Wc• ,off = 2N fp -2 ; [Lim (Wc• ,off ) = oJ 
N .... ~ 

. (8.18) 

Equations (8.17) and (8.18) already lead to three rather surprising conclusions: 

(i) The value of K depends very weakly on N, especially for larger values of N. That 

means that the average (absolute) number of fixed points with basin size between W and 

W+dW for any W> Wcu/Offis independent oJN. 

(iO The cUloff of the power la w, W cutoff, tends to zero more slowly than the minimum 

basin size W min as the size of the system N becomes large . Specifically, 

W -0.398N h' l W -o.693N B I W h d . f b' f 11 eU/off - e w I e min - e . e ow cutoff' t e ens Ily o asms a s 

rapidly to zero. Thus the smallest (typical) basin size is much larger than W min for large 

N. 

(iii) W cutoff is also lhe most common basin size, sinceJ(W) has its maximum at this 

value. The value of W cutoff is different from the average basin size W ave' which is 

l/Nfp by definition. Thus as the size of the system increases, the most common basin 

size goes to zero faster than the average basin size. 

Theoreticai values for W ave' Wcutoff' and W min are shown in Fig. 8.4(a) along 

with numerical measurements of W cutoff for several values of N. Numerical values of 

W cUloff are taken to be the maxim a of the histograms of basin sizes, as shown in 

Fig. 8.4(b) for the case N = 22. 

Higher moments of J(W) ean also be calculated. Using J(W) = K w-y with 

y= 3/2 and values for K and Wculoff from (8.16) and (8.17), we find 
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(a) 

Fif;. 8.4. The small-basin cutoff Weurof! for the power law f(W) = K W-r with 
y = 3/2, as a function of system size N. From Eq. (8.18), 
Weuloff = 2N IP -2 = 2e-.398N. Also shown are the average basin size W ave = I/Nfp 
and minimum basin size W min = 2-N(N+I), beth of which are independent of the 
ferm ef f(W). Data (circ1es) are numerical values ef W eutof! for several values ef N, 
defmed as the maximum efthefiw), as shewn in (b) for the case N = 22. 
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21- m N 2m _ 2mN 
y = t ) lp , m=0,1,2,3, ... 

m Nfp2m-1 Nfp-2(2m-1) 
(8.19) 

. 1 
LIm [Yml = l' m = 1,2,3, ... 
N .... - (2m-1)2m-

(8.20) 

Of particular interest is second moment Yz, which approaches the value 1/6 as the 

system size (and thus the number of fixed points) becomes large, according to (8.20). 

Numerical results of Gutfreund et al.[1988] for a system identical to (8.1), generalized 

to include asymmetric connections, showed that Y2 tends to zero as the system size 

increases for symmetric connections. The data of Gutfreund et al. were obtained using a 

different technique from ours, one which tested only !Wo initial conditions per realization 

and sampled an extremely large number of realizations. Repeating these measurements 

using our probabilistic method also indicates that the numerical value of Y2 tends to zero 

, not 1/6, as N becomes large. This disagreement shows that a strict -3/2 power law 

does not provide a completely accurate description of j(W). In panicular, the -3/2 

power law must exaggerate the number of large basins, leading to a finite second 

moment. 

8.4. DISTRIBUTIONS FOR OTHER MODELS 

There is theoreticai and numerical evidence for universal it y in the way state space 

breaks into clusters - basins of attraction, for example - in dynamical systems with many 

attractors [Derrida and Ryvbjerg, 1986, 1987a, 1987b; Derrida, 1988b; Gutfreund et 

al., 1988]. This section provides a brief summary of results for some of the systems 

which show these universal propenies. 
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8.4.1. Clusters of states in the SK model 

Mezard et al.[1984a, 1984b] supplied a crucial piece of the spin glass puzzle by 

describing the state space of the SK model in terms of a hierarchical or ultrametric 

geometry. Ultrametricity gave deep physical insight into the meaning of the Parisi order 

parameter q(x). and also provided a satisfying picture of the state space of a spin glass 

as a hierarchy of valleys within valleys [Mezard et al., 1987; for a review of 

ultrametricity, see: Rammal, 1986]. These papers [Mezard et al., 1984a; 1984b] also 

presented an analytic form for the distribution of clusters of states3, with clusters 

defined according to the mutual overlap q of states. We will present some of their 

resuIts without providing detaiIs (see Mezard et al., 1987, Ch. IV, for a very readable 

account). 

Consider a division of the state space of the SK model into clusters, such that states 

with overlap larger than q belong to the same cluster. The overlap between a pair of 

states a and {3 is defined qa{3 = N-l l.i(S/,')(S!) with brackets denoting a 

thermodynamic expectation value. Define W s to be the size of the srh cluster. When 

averaged over realizations, the cluster sizes will form a continuous distribution j(W), 
which was given by Mezard et al. [1984a; 1984b l, 

(8.21) 

The quantity y in (8.21) depends on the choice of q used to set the cluster size and also 

on physical parameters such as temperature and applied magnetic fieId. The gamma 

3Throughout this section the term "states" will refer to equilibrium states, or states separated by energy 
barriers that become infinite in the thermodynamic limit. At T = O, equilibrium states of the SK model 
are equivalent to fixed points of the dynamical system (8.1). 
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functions in (8.21) normalize J(W) so that 

f J(w)w dW = I. (8.22) 

The derivation ofJ(W) takes into account the Boltzmann probability of a state being 

present in counting the number of states in a cluster. Setting q to its maximum value, 

which is qEA (the Edwards-Anderson order parameter) reduces the cluster size sueh that 

each cluster comains just a single state (recaU: qEA == qaa is the equilibrium overlap af a 

state with itself). For this ehoiee of q, the funetionJ(w) is just the average density of 

states with Boltzmann weight W. That is, for q= qEA the weight W .. (y(q» of the 

s/h state is given by 

-ØF e ' (8.23) 

where f3 = l/kT and F .. is the free energy of the s/h state. 

It ean be shown that y(q) for q = qEA is given by the 1ength of the plateau of the 

Parisi arder parameter q(x) [Mezard er al., 1984a, 1984b). A value for y( qEA) ean 

be found using an approximation known as the PaT hypothesis [Vannimenus et al., 

1981], which assumes certain quantities to be independent af magnetic field and 

temperature. In the limit T ..... O the PaT hypothesis gives 

Limy(qEA) =.!.. r .... o 2 
(8.24) 

Inserting (8.24) imo (8.21) gives the folIowing encouraging result: For small elusters, 
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j-(W-) - ~W--3/2 , W- l T O « , -t . 
n 

(8.25) 

Before celebrating the appearance of a -3/2 power law, we emphasize two points: 

(i) Recall what we have found. j(W)d~V is the number of states with Boltzmann 

weight between W and W +dW. It is not at all clear how this weight is related to the 

basin size, although Fig. 8.1 may offer some clues. 

(ii) We have considered the solution as T -t O because in this limit, the fixed points of 

(8.1) correspond to thermodynamic equilibria of the SK model. However, another effect 

of the T -t O limit is to heavily weighl the states with lowest free energy. Thus 

j(W;T -t O) pertains only to the lowest energy states, nOl all equilibria. This explains 

why the distribution i( W) has a divergence at W -t I : As T -t O the sum in the 

denominator of (8.23) is dominated by a single term, the ground state for that realization. 

When the state s in the numerator of (8.23) is the ground state, the numerator is nearly 

equal to the denominator, so W gs - l. Note that the divergence inj(W) as W -t 1 IS 

not present in the distribution of basin sizesfiW) which must vanish above W = 1/2. 

Nevertheless, the form of (8.25) is tantaJizing. At present, however, we do not have any 

satisfying way to relate this resuIt to the observed power law for the distribution of basin 

slzes. 

8.4.2. The Kauffman Model and the Random Map 

Kauffman introduced a simple modelof genetic mutation and adaptation which shares 

many features with spin glass models [Kauffman, 1969, 1984, 1990]. The model 

consists of N sites, representing individual genes, each of which is characterized by a 

binary state (O or 1) indicating one of two possibIe aJleles for that gene. Each site is 

affected by exactly K sites, selecled al random from the N sites in the system. The 
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response of a site to its K inputs is a random Boolean function which is chosen 

independently for each site, and is flxed for all time (i.e. quenched) once chosen. The 

dynanlics are deterministic and parallel, with each site folIowing its random truth table 

(2K input states assigned randomly to a O or l output slate). Because the model is 

detenninistic and has a discrete and fmile slate space, all attraetors must be periodic, with 

periods ranging from l (fixed points) to 2N. 

The distribution of basin sizes in the Kauffman model has been studied numerieally 

as a funetion of K [Derrida and Flyvbjerg, 1986; see also Kauffman, 1990 for basin size 

vs. energy plots similar to Fig. 8.3]. The numerical results of Derrida and Flyvbjerg 

[1986] sug gest a surprising universality: moments of the distribution of basin sizes, 

plotted one against another, agree extremely well with analytieal results relating the 

moments of J(w), the distribution of weights in the SK model. Such agreement 

indicates that certain statisticai propenies of multivalley state spaces are in sensitive to the 

detaiIs of the underlying dynarnical system. 

In the limit K __ 00, the Kauffman model is equivalent to a random mapping of an 

N-dimensional binary space onto itself [Derrida and Flyvbjerg, 1987a, 1987bJ. (Note 

that the limit K __ 00 ean be taken even for finite N, since the eonnection rule does not 

restriet how many times a particular site may appear in a truth table.) In contrast to the 

Kauffman model with general K, the random map model is mathematieally traetable, and 

many of its statisticaI propenies are known analytically [Harris, 1960]. From these 

results, Derrida and Flyvbjerg [1987a, 1987b] derived the following exaet expression for 

the distribution of basin sizes in the random map model: 

(8.26) 
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Note the similarity between fRM(W) and the distribution of weights i( W) for the SK 

spin glass in Eq. (8.21). Of particular interest is the divergence at W = 1 comrnon to 

both, but absent in the distribution of basin sizes for our system (8.1). 

8.4.3. The l-D spin glass 

The one dimensional (l-D) spin glass at zero temperature is another example of a 

system with many attractors for which the distribution of basin sizes is known exactly 

(the other being the random map). In this case, the result is that all the basins are the 

same size, that is,flW) is given by Eq. (8.11) [Ettelaie and Moore, 1985; Derrida and 

Oardner, 1986]. 

Derrida and Oardner [1986] analyzed the metastable states of a l-D chain of L Ising 

spins with symmetric nearest neighbor coupling and free ends. The dynamics they 

considered were single spin flip, with either random or deterIninistic order of updating. 

Their results do not depend on the detaiIs of the distribution p( 1ij) of the random 

connections, as long as it is symmetric ( p(1ij)=P(-Tij) ) and contains no delta 

functions. They find that the typical number of metastable states in a realization of length 

L is Nfp = 2LfJ and that the average number (over realizations) is N'};e = (4/,,)L [see 

also: Li, 1981; Ettelaie and Moore, 1985]. That the average and typical number of ftxed 

points in a realization are not equal is characteristic of short range models; for the infinite-

range SK model, NIP = N'};e. 

It may seem surprising that the l-D spin glass has many metastable states, since it is 

not frustrated in the sen se of Toulouse [1977] (see § 4.3.2). Indeed, for zero external 

field - where the number of metastable states achieves its maximum [Derrida and 

Gardner, 1986] - the l-D spin glas s is equivalent to a purely ferromagnetic chain by a 

Mattis transformation [Mattis, 1976], albeit a ferromagnet with a distribution of 
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ferromagnetic coupling strengths. How then, can such a system possess an exponential 

number of metastable states? The answer is that single-spin-flip dynamics does not allow 

kinks at weak bonds to unkink themselves. This point is illustrated by a simple example 

with four spins and three ferromagnetic bonds, two strong ones on either side of a 

relatively weak one. 

For this configuration, no single spin flip will allow the weak bond in the middle to 

become satisfied. The metastable state shown is also stable for parallel updating of spins. 

On the other hand, an update rule which checks for energy reduction upon 

simultaneously flipping pairs of spins will eliminate the metastable state shown. Moore 

[1987] has discussed the computational efficiency of update rules which use multiple spin 

flips to eliminate local energy minima. Finally, we note that recasting the l-D chain in 

terms of analog state variables - by replacing Sgn[h] with ranh[j3h] in (8.1), for 

instance - can also be used to reduce the number of metastable states. Continuing with 

the simple four spin arrangement above, with the particular connection strengths ITd = 

IT 341 = (3!2) IT 231, setting j3 < 1.44 will destabilize the metastable states, while the 

ground states will remain stable for f3 > 0.48. This holds for sequential, parallel, or 

continuous-time analog dynamies. 
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8.5. BASIN SIZES IN AN ANALOG SPIN GLASS 

The last example in the previous seetion showed how reeasting a binary system into 

its analog eounterpart ean dramatieally ehange the system's energy landseape. This idea 

was also diseussed at length in Ch. 7. What effeet will using analog state variables have 

on the basin strueture? We address this question for an analog version of the SK spin 

glass, 

j = 1, ... , N. (8.27) 

where the states xj(l) now take on eontinuous values. As before, connection strengths 

Tjj are symmetric (Tjj = Tj ) and gaussian distributed aecording to (8.2). In the limit 

oflarge gain, f3 --* 00, (8.27) reduces to (8.1 ). 

Figure 8.5 shows the distribution of basin sizes and energies for the analog spin glass 

with N = 20 for two values of neuron gain, f3 = 4 and f3 = 20, averaged over 100 

realizations. Basin-size counts and energies are based on binary states generated by 

applying the Sgn funetion to an analog fixed point af ter convergence of (8.27). Initial 

states were random corners of the unit hypercube, as before. The data in Fig. 8.5 show 

that the reduction in the number of fixed points at lower gain (see § 7.2.1 for theory) is 

strongly biased toward eliminating fixed points with small basin of attraction. For 

example, we see from Fig. 8.5 that the average number of fixed points whose basins 

occupy 0.1 of the state space (l05 initial states for N = 20) is essentially the same for f3 

= 4 and f3 = 20, while the average number of fixed points with basins occupying 0.001 

of the state space (103 initial states) is -50 times smaller at f3 = 4 than at f3 = 20. The 

distribution of energies - calculated using (8.3) af ter applying the Sgn function to the 

analog fixed point - also shows that lowering the gain shifts the distribution to lower 
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Fig. 8,5. Distribution af basin sizes and energies per site E. for the deterministic analog 
spin glass (defined in text) at two values af analog gain, f3 = 4 (solid line) and f3 = 20 
(dashed line), for system size N = 20. 100 realizations were counted for each value af 
f3. The critical value af gain where fixed points first appear away from the origin 
(x = O) is f3 = 1/2, not f3 = 1, as it would be for the finite temperature spin glass. 
(a) Histogram af counts (per matrix) =!(W)LiW for a bin width LlW = 0.0025. Data 
show that lowering the gain greatly reduces the number af small basins, while leaving 
most af the big anes. (b) Histogram ( =!(E.)L1E. ) af fixed point energies per site E. = 
E/N. Bin width LiE. = 0.01. Lowering f3 reduces the number af fixed points and also 
shifts j(E.) to lower (more negative) energies. 
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energies. This effect, however, is weak compared IO the shift in the basin-size 

distribution. From these observations, we conclude that using analog state variables is 

effective for selectively eliminating attractors with small basins, though not specifically 

the most shallow attractoTS. 

8.6. DISCUSSION AND OPEN PROBLEMS 

We have found numericaIly that the distribUlionf(W) of basin sizes in the SK model 

is approximately descibed by a power law with exponent - -3/2. Thus,[(W) appears 

to be quite different from the distribution fRM(W) of basin sizes in the random map 

model and different from the distribution l( W) of Boltzmann weights in the SK model. 

So what has become of the universality of multi valley landscapes discussed by DeITida? 

GUlfreund et al.[1988] have suggested that the general features of a multivalley 

landscape depend on whether the number of attractors grows exponentially with system 

size N. In the random map model for example, the average number of attractors (A) is 

linear in N: (A) = N In 2/2 . This is different from the SK model, where the average 

number of attractors is exponential in N. an the other hand, numerical data show that 

the number of attractors for the fully asymmetric spin glas s does scale linearly with the 

size of the system, and also that the distribution of basin sizes for the asymmetric spin 

glass shares some common features withfRM(W) and i(w) [GUlfreund et al., 1988]. 

Perhaps basin structure, and the general structure of state space, can be divided into 

universality cIas ses depending on whether the number of attractors does or does not 

increase exponentially with N. At present, is not clear that such broad classes of 

dynamicaI systems exist, or even by what phenomenological criteria such distinctions 

ought to be made. 

The resuIts presented in thi s chapter raise many new questions. Here are some: 
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-- Will other techniques for measuring basin sizes yield the same results? 

-- How do the the detail s of the dynarnics affect basin structure? For example, how is 

state space shared between the fIXed points and the 2-cydes in a parallel version of (8.1)? 

-- Why does a power law - or an approximate power law - appear? How is it related to 

the ultrametric structure of state space? 

-- How well do the results generalize to include (among other things) nongaussian 

connection distributions, nonsymmetric connection, correlated connections, and 

stochastic dynamies? 

-- How can these resuIts be applied to neural networks, where control over basins of 

attraction is of central importance? A first step in approaching such a question would be 

to study the distributionf(W) in an associative memory as the number of stored pattems 

p goes from p « N (the ferromagnetic limit), where presumably the basins for the 

stored patterns are all the same size, to p »N, (the spin glass limit), where the 

present resuIts should be recovered. 

-- Is the weak correlarion between the energy or depth of a fixed point and the size of its 

basin of attraction a general phenomenon? What abeut the correlarion between basin size 

and the stability parameter /(, defined as the minimum of the distribution of local fields? 

For the associative memory, numerical and analyticai evidence suggests that the 

correlation between /(and basin size is strong [Forrest, 1988; Abbett, 1990). 
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Chapter 9 

CONCLUSIONS 

In the introduction of this thesis, we discussed the idea that models of large nonlinear 

systems ought IO be simple on a microscopic scale if one is to have any hope of 

understanding their large-scale dynamicaI behavior. At that point, no mention was made 

of how, given a physical system, one should go about separating wheat from chaff, 

discarding the unimportant microscopic delluls and keeping the essentialones. Making 

such distinctions a priori seems to be impossible; small changes often make big 

differences, and vise versa. This distinction, and, more generaUy, how a dynamicai 

system's microscopic features influence its large-scale behavior, is at the heart of the 

controversy surrounding the whole neural network approach. One often hears that 

describing a neuron as a binary threshold element is a ridiculous oversimplification. If 

this is so, then why? Specifically, what global properties are lost, or even eroded, by 

making such an approxirnation? 

In this thesis, we have studied how properties of analog neural networks at the level 

o/ the individunI neuron affect the large-seale dynamics of the network, and how thi s 

effect is related to global network properties such as the spectrum of eigenvalues of the 

connection matrix. The neuron properties we have considered are especially relevant to 

designing fast, stable neural networks in electronic hardware. For example, an electronic 

neuron (or a biological neuron for that matter) does not have an infinite switching speed, 

and so, in principle, one must aeeount for any delay in describing the overall dynamies of 

the network. Intuition teUs us that when the delay is extremely small (compared to some 

characteristic time of the network), it ean probably be ignored. In thi s case, a simple 
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model which assumes instantaneous response will suffice. But when is small no longer 

small? At some point the chaff becomes wheat, and the delay must be accounted for. 

The problem of delay-induced instability was discussed in detail in chapters 3 and 4. In 

this example and throughout the thesis, we found that the gain of the neuron (i.e. 

maximum slope of its transfer function) has a strong influence on the global dynamics of 

the network. In several instances, the influence of neuron gain could be reduced to a 

simple stability <,TIterion for insuring convergence of the dynamics to a fixed point. 

From a practical point of view, the most important conclusion of this thesis is that 

networks of analog neurons offer important computational advantages over networks of 

binary (Ising) elements. Those advantages are: (1) SymmetricaIly connected analog 

networks can be updated in parallel with guaranteed convergence to a fixed point. In 

general, networks with binary neurons must be be updated sequentially to prevent 

oscillation. Parallel updating is faster than sequential updating by a factor of O(N) 

where N is the number of neurons in the network. (2) Lowering the gain of analog 

neurons shows many of the beneficial effects of using temperature to escape local 

minima. This was demonstrated numericalJy for associative memories in Ch. 5, and an 

explanation for this surprising effect was given in Ch. 7. Specifically, it was shown in 

Ch. 7 that lowering the neuron gain dramaticalJy reduces the number of local minima in 

the network's energy landscape. (3) The analog networks we considered have 

deterministic dynarnies, which means that they ean be built using standard analog VLSI 

technology. Implementing a stochastic update rule in hardware is difficult because ofthe 

need for lots of random numbers. Implementing a stochastic algorithm with parallel 

dynamics in e!ectronics would be even more difficult, as it would require N independent 

random numbers at each time step. Deterministic annealing could also be implemented 

easily in analog VLSI by changing all neuron gains simultaneously via a single control 

line. 
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One might also be lead to speculate that the analog character of biological neurons -

that is, their well-known graded response - has similar computational significance, rather 

than being an artifact of evolution. 

Another significant idea which has emerged in this work is that certain analyticaI 

techniques originally developed for Ising spin glasses, and later extended to treat binary 

neural network models, can also be successfully adapted to the study of analog neural 

networks. The analysis of storage capacity leading to the phase diagrams in Ch. 5 and 

the analysis of the number of local minima for the analog spin glass and associative 

memory in Ch. 7 are two places where techniques developed for discrete systems have 

been adapted to the analog problem. 

The systems we have considered were not arbitrarily chosen by any means. One 

should not get the impression that relaxing some of the assumptions made will make the 

problem only slightly more difficult. Usually, things get much harder. The most 

restrictive assumption made throughout the thesis was that the coupling was symmetric. 

Neural networks with asymmetric connections have vastly richer dynamics but are 

correspondingly more difficult to approach analytically. The extension of the present 

results to include asymmetric networks is the first and most obvious direction in 

extending the present results. Be warned, this fust step is a big one. Another example: 

The analysis of the multistep network in Ch. 6 does not generalize in any simple way to 

allow weighted averages of previous time steps. It is unclear whether qualitatively new 

dynamics would arise if different weights were allowed. One thing is certain: the present 

analytical approach quickly runs aground when the assumption of equal weights is 

relaxed. 

Finally , we end with some interesting but unanswered questions: 

Why is chaos so rare in finite-size networks? Can a "learning algorithm" be 

developed to train a network to be chaotic? 
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-- A related q uestion is how to train a network to possess higher dimensional attractors, 

or chaotic attractors with a specific (noninteger) dimension. Measuring the dimension of 

an attractor is straightforward, so there ought to be a way to develop a training algorithm 

which yields an attractor of arbitrary dimension. 

-- How can nonsigmoidal neuron transfer functions be used to advantage? One 

example, the smooth staircase function, is discussed in Ch. 5. What about nonmonotonic 

functions? Certainly from a dynamics point of view nonmonotonic neurons are more 

interesting. But interesting is not what one wants in a neural network. Boring and 

predictable make for robust computation. 

-- What other sorts of problems, besides associative memory and a few ad hoc 

optimization problems, can take advantage of the extensive feedback of Hopfield-type 

networks? An answer to this question will determine whether this model is destined to 

become a valuable technology or an academic curiosity. 
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Chapter 10 

APPENDIX: 

REPRINTS OF CHARGE-DENSITY W A VE PAPERS 

Reprinted with pennission from the American Physical Society 
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Simple Model of CoUec:tite TraDSpOrt witb Pbase Slippage 

S. H. Strogau:. (a) C. M. Marcus. and R. M. Westcrvcit 
Di"i$joll o/ Applied ScieflCe$ ønd INpdrlfMlIl af Physia. HarvtJrd UllilJersily. 

Camim'dp. Mll$$øc/uuel1$ 02 J 38 

R. E. MiroUo 
D~pt1rlm~lI' of Malhnnalia. Bro...,,, UIli~r$jIY. p,.avid~ffa. Rhode Island 02911 

(Rcc:civcd 29 April 1988) 

Wc present 3. mean-6c1d analysis a( a many-body dynunical system whicb models cbarae-density· 
wave transport in the prescnce af random pinning impuritics. Pbue slip betwc:en charse-density-wavc 
domains is modeled by a coupiing term that is periodie in the phase differenca. When driven by an 
Clternal fieid. the system exhibits a first~rder dcpinnina transition. hysteresis. and switching betwc:en 
PIDoed and slidin. stales" and il delayed OAset af slidine near tbrcsbold. 

PACS numbtn: 71.45.Lr. 03.20.h OS.4S.+b. 72.IS.Nj 

Collective transpon in c:oupled dyn am icai systems is a 
topic of considerable cum:nt interest. I An experimcntal 
example is thc nonlincar conduction seen in charge­
density-wave (CDW) samples. 2.3 When a sufficiently 
strong dc elcctric 6eld is appJicd to a sample with astatic 
CDW. the CDW dcpins from impurities in tbe lattice 
and begins to slide and carry current. Classical models 
of CDW transport'-IO assume thai the dynamics are 
dominaled by competition betweeD tht internaJ elasticity 
"af the CDW and the locaJ potentials of randomly spaced 
impurilies. 

These models of CDW transport do not account for 
e,;,perimentaUy obscrvcd hysteresis. switching, and de.,; 
layod conduction in "switching samples:>!J-U CDW in­
ertia. I' cumnt DOiK:. " and avalanche dtpinning It bave 
been proposed to account for switching. More rcccntly, 
switching aod hysteresis have been ascribed to pbase 
slippage in tbt CDW. 11·13 A pbysical model for a CDW 
in a switching sample is a collection of domains. each 
with a weH~c6ned phasc. separatcd by regions where 
the amplitude of the COW is weak. J2. J' Phase slip caD 
oecur easily in these connecting regions. A rigorous 
tbeory of CDW transpon for this case is very difficull, 
allbough a detaiJed anaJysis of a pbenomeoologica1 mod· 
el with a few degrees of frcedom bas beeD prcscnted. " 
It is also uncertain whicb of the ob$Crved complex pbe­
nomena are intrinsic and which are properties of panicu­
lar samples ar experiment&1 trcatrnents. 

]n tbis Letter we present a simple modelof coUective 
transpon which is applicable lO CDW transport in 
switching samples. Tbe model consislS af many pbases 
whicb represent tbe states of CDW domain5., and phase 
slip due to amplitude coUapscJS is modeJed by a wcak­
couplioø term periodic iD. the phasc difi'erenccs. This is a 
simple moditication of a w~lI-uDdenlOOd model'" witb 
clastic coupliD.g and no pbue slip. AI we will show, thc 
pcriodic coupling gives rise to switcbiol, bysteresis, and 
delayed cooduction. OUf approacb is to analyzc l simple 

model wbich may have sorne generalily, rather than to 
mate a dctailed pbenomenological treatment specific to 
charge-density waves. 

Tbe Hamiltonian is 

(la) 

and we assume uro temperature and relaxationaJ dy­
namica with a driving field 

. aH 
Oj--ae;+Eo. j-I .... ,N. (Ib) 

The Sj represent the phases af weakJy coupled 
domaios. u In otber models,'·1 8j rcprexnt (he phase 
distortion of tbe CDW at the }th pinning site. In Eq. 
()), J is the coupling strength, b is the pinning strength, 
ø j is a pinning phase randomly distributed an [- K,Jfl, 
and Eo is an electric ficld applicd along lhc CDW wave 
vector. Tbe coupling tcrm favors pbase coberencc. 
whereas tbc random fieids try to pin eacb Bj at a j o For 
weakly couplcd domains. tbe ratio K - J I b is small. The 
infiDite-raoge coupling in Eq. (t) ootTCSponds to tbc 
meao-6eld approximation. a1so used ror prcvious 
worL""'" 

Tbe model (I) is closely related to tbe system studied 
by Fisher. 6 Tbe difference is that in the Hamiltonian 
Eq. Oa) we bave assumcd aperiodie coup1inS I -cos(8j 

-Oj) rather than aquadr'lie couplin, t (O, -8j )'. 
Tbe periodie coupling in Eq. Oal aUow> for phasc-,Iip 
proc:esses,.1I and corresponds pbysicaUy to tbe effecu of 
CDW defccu 1.1' Dr amplitude coUapse 11.15 between 
cobemll ",gioQJ of Ihe CDW. In particular, Ih< model 
is appropriale in CDW ')'Items with Itronl pinom, 
centers tbat favor tbe formation Df wealdy coupled 
domaiDs. 12,20 Wc bave made the simplifying asrumption 
thaI Ih. araumenl ol Ihe periodic couplin, is Ih< pbue 
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diJl'erence Bj - 9J rather tban a more generaJ multiple 
I.(S/ -9,), wbe ..... toets tbe amouot of poW'izatioa 
tbal can be built up befare ph.ue slip occurs. Additional 
mctasu.blc states IO witb di.ft'erent polarizations cau emt 
below tht depionms threshold for A,fIII! I; thcsc are not 
praent in OUf model. 

Wc fint coDsider tbt statie configuration of tht system 
when Eo-O. Tbc pbasc cobcKncc of tht equilibrium 
conftgurations depeDds OD the normaJizcd coupling 
strcngtb K, For instante, in tbt absence of coupling 
(K-O), tht 8, are pinncd at a j aod are complctcly in· 
cohcrenl, whercas for K - GD, tbeR is perfect. cohcrcnce 
(8/-Ø, for all i,j). To charactcrizc tht traDsition from 
incohcrencc to coherence. wc defioe a complex order pa· 
rameter 

,./' - N - , 1;, exp(;9,) , 

whcre r measurcs tht cohcreDce and , is tbt averagc 
ph .... 

Wc now show anaJytically that lbere is a first-order 
transition in tbc model from the incobcrent state (r-O) 
to thc coherent state C,:It:: I) at K -2, when tbe domains 
are stroagly coupled. This uro--6eld transition is an ar­
titaet of mcaa-tield tbeory, but a relatcd hystcrc:tic tran­
sitioD occun for Donzero Eo in the physically relevant 
weak-c:oupling regime, as discu.ssed below. Tbe strategy 
af tbe analysis is to derivc a self-consistent equation for 
r, by U$e of tbe faet tbat , detcrmines tbe equilibrium 
pbases .9J and is in turn determinc:d by them. 

Equilibria of H satisfy aH las, -o, i.e .• 

sio(a,-9,>+ Z ~Sio(9/-9,)-0. 
Rewriting tbe sum in tenns of the order parameter yields 

sin(aJ - 9j )+K,sin(;:- 9j ) -O . 

We ma)' set .-0 becausc theR is DO absolute phas.e 
reference. This choke removcs tbe rotational degenera­
cy. Solvin, Eq. (2) for 9, yields 

(3) 

Combinin, Eq. (3) witb r-N-'!.jexp(;9j ) and lettiog 
N - 00, wc obtain tbe self-consistency relation for r. 

r-..LI· Kr+cosa da (4) 
21r -. (I+2K'C0S4+X 2,l)l f2 . 

For each K, tbe nlues af , that satisfy Eq. (4) may be 
found as rollo .... (Fig. )(a)1. Le, u -Kr and let /(u) 
dcnote the integral in Eq. (4), wbich may be expressc:d 
euetly as an eUiptic integral. 21 Bccause f(u) and u I K 
are betb equal to " tbe intersec:tions of f(u) and tbe line 
&ol I K yield solutioDJ for tbe coberenee " given tbe nor· 
malizcd coupling Slrenglb K (Fig. I (all. 

Figure I (b) shoWI tbe fi.nt~rder transition betwccn 
incoberent and coberent states. lbe iDcobeunl slale 
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ulK 

r'Oj I(u) 

05i 

0.0 ;?l ~~ ___ ( a_I I bl 

O 2 
u K 

FIG. I. (a) Solid lines indicate the Integral /(11) ploued 
(rom Eq. (4) topther with the line ulK (see tut>. Equilibri­
um solutions for,. oocur whcre /(11) inu:rsccts che line u/ K. 
For the value af K shoWl!, threc solutions exist (61Jcd c;:irclcs). 
Oashed lines show ul K for the critical values K -K~ and 
K-2. (b) Plot of Ihe cnct equilibrium solutions (or ,. vs K: 
solid lines. locally stable equilibria: brolc.en lines, unstable 
equilibria. 

, -O always 50Ives Eq (4), An unstable second brancb 
of the solutions bifurcates from r -o at K - 2, with 
r - (2 - K) '}2 as cao bo seen from Eq. (4J and the .. ries 
expaosioo /(u)-u/2+u'/16+0(u'), valid for u < I. 
We have also plOvenll that ,-0 is locally stable for 
K < 2 and u .. table for K> 2. A hJeally stable tbi.u 
brancb af solutions. with ':11:::' I, · is creatcd when II I K in­
terJeCU /(u) taogeotiaUy (Fig. l <all al K -K, .. 1.489. 
Note that for K between K( and 2, tbe system is bislable. 
Wc empbasize tbat thi! first~rder transition is a conse­
quencc of tbe cosine coupling in Eq. Oa) and would not 
bc SC(:D ir a quadratic coupling were assumed. 

Wc tum now from statics to dynamics. In the pres­
enee af a driving fieid. tbe equations of motion from Eq. 
(Ib)"", 

dS,/dl -E +Krsin(, - 9,) +sin(aj - 9J ) . (5) 

By lelliog E-EoIb lOd time l-bl. ",e have ICt b-l 
witbout lou of generality; as before, X -J/b. Tbe 
lCCOod term an tbe tigbt-hand side of Eq. (S) il the col­
lective torque exertod on Bj by aU other phases. For 
E -O and small K, the pbase coherence , -O and tbere­
fore tbe collcctive torque is uro. If r becomes nonuro, 
tbe collective torque provides a positive feedback wbicb 
tries to incrcasc r runber by illigning eatb 9, witb tbe 
average pbasc.. Tbe physical conscquenccs of tbi.s pro­
ccss are hystercsls and delaycd conduction, as discw.sc:d 
bclow. In our model hystercsls and switching result rrom 
the transition to coberencc af a randomly pinncd state. 
locohcrencc of tbe piaoed state occun naturaU)' for a 
larae numbcr of random pinoing phases aj; systems as 
small as tbrce phases show hysteresis and switching, but 
ooly wbeo tbe a, are CbOSCD evenly spaccd on (-X,.Ir). 
lbus in our modelibese pbenomena are associatcd witb 
many degrccs of frccdom. 
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Figu", 2 plou the ",gian. af stability af the pinned 
aDd slidiDg CDW sta .... The piDoed state (dS/dI-O) 
in tbis model ca.n be analyticaUy sbown to be iDcobereot 
(r -O). Using variationaJ stability anaJysiJ abou. 'be 
pinned statc. wc have proven 21 tbat tbis state becomes 
unstable above tho dopinnin, thrcshold fiold E T - Cl 
- K 2/ 4) [/1 wben K < 2. as shown in Fig. 2. For strong 
coupJing. K> 2 whcre tbt model is not physically 
rolovant, ET -O and tho CDW slides (d.ldl > O) for aDY 
fieids E> O. This is an anifact of mun-6cld tbeory 
which al50 occurs in modcls64 witb elastic couphng. 
Numerical solutions of Eq. (S) show thai tbt: slidins 
state is always cohcrent (r> O), Tbc slidiog stale be· 
cama pinned and incobcrcnt beJow a separate pinning 
tbreshold E p shown as tht dasbed line in Fig. 2. whicb 
was calculated numerically (rom tbt initial coodition 
r-l. This boundary extends (rom tht critical value K~ 
(ound analytically for E -O, also shown in Fig. 1. The 
solid and dasbcd lines in Fig. 2 bound a hystcretic region 
wh.ere botb pinncd and slidiog solutions are stable; tbe 
final state reacbed depcods on tbe initial condilioos. The 
physicaUy relevant wcak-coupling region of Fig. 2 is for 
K < Kr, where ET and E, are nonum. 

The model predicts bystercsis and switching between 
pinncd and sliding states as ilJustrated by the numerical 
solutions of Eq. (5) shown in Fig. 3. As E is increascd 
slowly past ET. the induced collectivc velocity d,ldr cor~ 
responding to thc CDW CUffent jumps up discoDtinuoUJ~ 
ly, then increases nearly lincarly. [f E is tben decreascd. 
the velocity d,hil dccreases and then drops di.scontinu­
ously to uro at tbe separate pioniDg tbreshokl E - E, aJ 

shown in Fig. 3. When tbe CDW pias. tbe cobcrencc , 
alsa drops discontinuously to uro. Thi! loss af coher­
cncc is iIlustrated in tbe limit E,. -o for tbc analytical 
resuhs iD Fig. Hb). Hystcretic currcnt-voltage curves 

2.0 

K 
1.5 

hysteretic sriding 

Kc 
1.0 

___ ET 

0.5 
pinned 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

E 
FIG. 2. Stability diagram for the model Eq. (S): solid line. 

depinning tbreshold ET -(I - X J/4) In detennined analytieal­
ly; duhed line, pinning lhreshold E ~ obt.ined by numerical in· 
tegutlon of Eq . (5). NOle tbc prcscnoe of hysterelie reJlotl. 
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have bceo ICCD in low-temperatuR expc:rimentJ en CDW 
samples with dilute impurities or irradiation·induccd de~ 
fccts. wbich aet. u dilute, strong piruilitg sita. II - 14 The 
switchinø and bysterclil pmlicted by tho model depend 
cruciaUy OD th. periodie coupting iD Eq. Cia); ncither 
switching nor hystcresiJ are predictcd for quadratic cou­
pling.6-I 

The model exhibitJ delayed conduaion above the de­
pinning thrcsbold Er when E < I. Numerical solutions 
of Eq. (S) wcre used to study tbe evolution of tbc system 
from a random initial statc. The system first rapidly 
reacbes ao incoherenl coo6guration with 9, A:S a, 
+sm -lE. lhc:n graduaUy develops cobcRnce, and fioally 
depins suddenly WbCD , bccomes appreciable. 2 ( Thc de~ 
lay before depinniog iDcreascs near tbe thresbold ET. as 
observed experimentally.II·'4 Ir E> l, switching occurs 
immediatoly. 

Numerical solutions af Eq. (5) show tbat tbe iDdjvidu~ 
al phases do not move with a constant velocity in tbe 
sliding state, altbougb tbt oollcctive vclocity d_ldr is 
constanl Neal tbresbold, tbe motion of caeh pbase is 
periodic, alteraaling betWCCD rapid advanees by ncarly 
21r. and sia.,.. creep about its pinning phase. In this 
respect, Eq. (5) and other mean·field models6--t agree 
witb rcsults from more rcalistic shon·range models,lO 
and witb recent experimcnts ll.20 whicb SBuest a spatiaJ. 
ly nonuniform. rate of CDW phase advance nea.r thrcsh· 
oId. An aritfact af the mean-field approximation is that 
all the pbua 9, execute identical preriodic motions shift­
cd in time and phase. 

Wo bave also aDalyzcd tho dynamits af Eq. (S) far 
abovc tbe depinning tbreshold. For E'> Eli perturbation 
theory" yields (d.ldtlIE-I-(!/2E')+O(E-'). 
Thus, tbe deviation from the limiting de conductivity as 
E- 00 is pmponional to E -" witb n-2, in agreement 
witb same CDW models,·J.22 and in coDtrast to tbc value 
" - t predictcd by others. 5 Tbc available data for 
bigb~field conductivity in CDW's2) SUucst" All: I - 2. 

SimplificatioD of approQmations in tbc model are 
iofinite sample size N and infinite~range coupling, Solu· 

0.8 o ifocr'llSInq E 
• øea,asmg E 

0.6 

f 0.4 
K. 

0.2 t 
0.0 / 

0.4 E 0.6 , 
E 

\ 
0.8 E, 1.0 

FIG. 3. Hysteresia and switching betwoen pinncd and slid­
io, statcs. Data poi.n.U obtained for N - 300 phascs by ollmeri~ 
cal integration ot E.q. (S) witb K-I, for whw:b ET-cf )111. 
The eurve is. pide for tbe eye. 
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tions of tbe infinite·tange model are telatively insensitive 
to N, and clOlely approximate tbe rcsvlts preseotcd hete. 
To auea tbe dfccts øf ininite-range couphng. we have 
numerically integrated Eq. (1) 00 a cubic latuoc in tbree 
dimensions witb ncarat-neighbor coupling. Tbe Dumen­
caJ solutioM show hysteresU and switching. 21 though 
over a reduc::ed range in E. For N-216 and N-IOOO 
sites. tbe width of the hysteresis is approximately 20% 
and IS%. rtspectively. of tbo widtb predieted by tho 
infi.aite-raDge model for tbe urne values of N. Thus tbe 
qualitative bebavior is similar to the mean-field theot)', 
at leas. for finite sample sizcs. bUl the tbresbolds are 
quantitatively differenl. 

In surnmary. we have analyzed a dynamical system of 
many driven phues with r andom pinning and infinitc­
range coupling. The pcriodic coupling io tbe model gives 
rise to a fint-order depinning tramition. hysteresis. and 
switching bctwlCen pinned and sliding sutes, and a time 
dela)' before the onse( of slidiag. These results dernon­
strate that some of tbe complex phenomena obscrved ex­
perimcntally in strongly pinned cbarge-density-wave sys­
tems can bc accounted for by a simple dynamicai model. 
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Wc anal yu tht dyn.mlcs af (hl' dcpinning traruition In • many-body model af ch.rsc-density­
wave (CDW) transpon in switching samples. The model consists af driven rn&$$less phases with 
random pinDIng and a coupling term thal is periodie in tbl' phase difference, tbus aJlowmg phast: 
slip. When [ht applicd tield in our model e.lceed.s tbt dcpinning threshold by a small amount. there 
is a delay before tht appearance of a caherent maving solution. This delay is .lso seen cxperimen­
tally in switching CDW materiais. Wc lind dat clase to threshold the switching delay is approx:i­
matdy proportional ro rhc invcrse distance above threshold. AnaJytical resuh:5 agree with numeri· 
cal integration af rhe modd equarions. ResuIts are also oompared Io avaliable experimental data on 
deLayed switching. 

I. INTRODUcnO:S 

The nonIinear conduclian in charge-density·wave 
(CDW) materials has been extensively studied in a variety 
a f quasi-<>ne-dimensional metals and semiconductors. and 
a large number af theoreticai models have been present. 
ed. e3ch expJaining same of Ibe phenomena ob~rved in 
these matenals. J.l ClassieaJ models af CDW dynam­
iCS 3 - 6 which cansider anly the ph3$ degrees af freedom 
af tbe CDW candensate have: been quite successful at 
descnbing the behavior af both pin ned and sliding 
CDW's in a regime where pinning forces are wea"-, phase 
dislOrtions are smal!. and higher-cnergy amplitude modes 
are not excited. While many aspects af CDW dynamics 
are \.\.'ell descnbed by a rigid ph3se model with onlyane 
degree of freedom,~ dynamies near the depinning thre-sh· 
o ld are best trealed by a model with many degrees of free­
dom. whlch allows for loea] dislortion af the CDW in 
response to random pinning forces. For example, a 
mean·field discrete-site model af man y coupled phases 
analyzed by Fisher~ gives a continuous depinning transi. 
tion with a concave·upward [- V curve at depinning, in 
agreement with experimental data, and in contrast to de~ 
pinning af the corresponding single.ph~ model. 

Recently, experimental and theoreticaI interest has 
turned to a class of CDW systems which have discontinu­
OUS depinning transit ions and hysteresis belween tbe 
pinned and sliding states.' - H This discontinuous derin. 
ning bas been tenned "switching." Several authors ] - 11 

(though not aU U - 1]) have attributed switching to pha.sc: 
slip between coherent CDW domains occurring at ultra· 
strong pinning sites. Experimentally, it is known that 
switching can be induced by irradiating the sample. 
'"Ihich creates strong pinning sites. 

A very interesting phenomenon associated with switch· 
ing. first reported by Zeul and Gruner i for switching 
samples øf NbSe3• and subsequently !Oeen in oeher maleri· 
als.' - Io is a delayed anset af CDW conduetion near 
threshold . When an e1ectric fjeld slightly larger than [he 
depinning threshold is applied to a switching s.ample, 
tbere is a time delay before the pinned CDW begins to 
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slide. The dday grows as threshold is approached from 
above and varies over .severalorders af magni tude from 
tenths to hundreds of microseconds. 

In this paper, we analyze the dynamies af depinning 
for a many-body modelof CDW transport in whicb 
phase slip is allowed. We show that, for an applied driv­
ing field sligbtly above the depinning Ibreshold. switching 
from the pinned state 10 the coherent moving state is de· 
layed, and that tbe delay grows roughly as the inverse af 
tbe dist.ance above threshotd. In See. Il the øhase·slip 
model is described and brieHy eompared to other models 
of CDW transpon. The dynami.cs of the depinning tra.n· 
sition in tbe model are then analyzed and an expression 
for the switching clelay is deri ved. These results are 
shawn to agTee with direct numerical integration of the 
model. In Sec. III our results are compared with the 
avaHable expcrimental data an switching delay. 

II. PHASE·SLlP MODEL OF DELAYED SWITCHING 

A. Mean·field modelof lI"itchiaK CDW'! 

The dynamical system we wil! sludy is given by Eq. (I): 

de . K N . 
:::...:..L=E+sm(a -9.)+-.I sm(8 -O· l 

dt l I N, _ I ' J ' 

j~I,2, ... ,N . (l J 

The syslem O) is formally very similar to the model 
studied by Fisher3 and Sneddon,4 with the exception af 
tbe final term: the coupling between phases in (1) is 
periodic in the phase difference, rather than linear. Also, 
the physical interpretation of the phases O) is somewhat 
different than in these elastic-coupling models, as dis· 
cussed below. 

The pha.ses Bj in Eq. (I) represent the phases of CDW 
domains; E > O represents the applied de field and K > O 
is Ihe strength af coupJing between domains. The a , 
represent tbe preferred phase of each damain, taken IO bt 
randamly distributed on (O,21TJ. The strength of pinning 
is assumed to be constant for each domain, and has been 
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normalized to ane. Tht valuts E and K Ihus represenl 
the strengths af the caupling and applicd fidd relative to 
pinning. The time scale similarly reftects Ihis normaliza­
lian. For all-to-all coupling in the large-N limit. a ran­
dom distribution of pinning phases is equivalent to an 
evenly spaced distribution a j = 1fT} I N.} = 1.2 •...• N-

In the phase-slip model (1), the B) represent tbe pbases 
of entire CDW domains, ar subdomains, l1 sc:parated by 
ultrastrong pinning sites. In this stnse. aur phase vari­
ables have a similar interpretation to those in the model 
af Tua and Zawadowski.14 Physically, the dynamics of 
Eq. (}) represent a competition between tbe energy in the 
applied fjeld, the large pinning energy, and tbe energy of 
CDW amplitude collapse at the pinnang sites. Pha~ dis­
tortions within a single domain due to weak pinning are 
not included in this model. 

By describing a pbase-sLip process at the pinning siles 
by a pha.se-<lnly model, we have neglecled the dynamics 
af amplitude collapse, e:lcept as it is reftected by a period­
ie coupling lerm. Inui er al. 16 recently presented a de· 
tailed analysis showing how phase slip (with amplitude 
collapsel ean be implicitly included in a phasc:-only model 
oC switching CDW's in tbe limit af fast amplitude-mode 
dynamics, Zenl and Gruner7 suggested that phase slip in 
switching CDW's could be accounted for by a sinusoidal 
coupling term. The model pre:sc:nted here is a discrete­
site mean-lleJd version af the phase-slip process, in the 
~piri[ of Fisher's treatment . s By chocsing .at panicularly 
simple form for the periodic coupling functton-bul one 
with the right overall behavior-we are able to analyze 
much af the model 's dynamics. 

Previously,U,23 wc: have shown [hat the large-N, 
mean-Ildd version af (J) has a discontinuous and bys~ 
teretic depinning transitton as the applied tield E is 
varied. Tbe switching seen in tbis model is in contrast to 
the smooth, reversible depinning wbicb occurs in tbe cor­
respondiog equations witb elastic pbase coupling. 4.5 The 
tbreshold l1eJd Er(K) wbere tbe pinncd solution, 
8j =aJ+ sin - I(E), becomes unstablc: to tbe formation af 
a coberenl movin, solution WIS shown22,21 to be 
E r (Kl=(I-K l /4 1112 for K < 2 and ET(K l=O for 
K > 2. At this tbresbold. the pinned solution bifurcates 
from a stable node Io a saddIe point in configuralion 
space.2l 

Wc: now consider tbe lime evolution af the syslem (I I 
during depinning. In order to simulate the experimental 
procedure where delayed switching is 5«n, we "appiy" a 
superthreshold fjeld E > ErCK> at t =0 to che system (I) 
starting in the E ""O pinned stale 8(=aj • The response 
or tbe system depends an (he vaJuc af E: for E > I (he 
phases quickly leave the E =0 pinned 5tate and organize 
inlo a coh~rent moving solution. There is no delayed 
switching in this case. For ErIK) < E < I the phases 
leave the pinned state quickly , but come Io a near 
standstill at the saddle point (J, =aj+ sin-I(EI, wheTe 
they linger for a long time before finally leaving-again, 
very quickly-along the unstable manifold af the saddle 
point to fonn a coherent moving solution. Clase to 
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threshold. the time s~nl in the vicinitv of th~ saddle 
point is much long~r than any ot her part ~fthc: depinning 
process. resulting in a lang delay befare a rapid switch to 
the movlng stale. In Ih is subsection we analyze the dy­
namics af (l) near the saddle point and den ve an e"pres­
sion for tbe switching delay. 

To characterize the collective state af the phases, we 
define the com plc,; order parameter re' ~ =( I iN)!. , e dJ1. 

In the limit N--- «'. the distnbution af pinning phases a, 
becomes contmuous on [O,2iT] and the phase 8 , ean be 
wrillen as a conlinuous funcl ion tJt] paramelrized by Ihe 
pinn ing phase G . In this limit the orde r parameter lS 

given by 

,. I I h' ;6 re = - e " da . 
l" O 

111 

We find numerically that for even ly spaced pinning site~ 
tbe model is quile insensitive to the choiee of N for all 
N ?: 3. In the infinitc:-N limit, an evenly spaced distribu­
tion of pinning sites becomes equivalent to a random dis­
tribution, but at finite N, simulations with a random dis­
tribution of pinning sites showed a much stronger fini le­
siu etreet than those with evenJy spaced pinning sites. 
The insensitivity to N for evenly spaced pinning provides 
a useful trick allowing us to numerically investigate lhe 
large·N behav;or af Eq. (I) using r~lalively smal! simula­
tions (typieally N = 3001. Simulations with evenly spaced 
pinning sites did show a slight size dependenee. especially 
at very small inilial coherenec (ro < IO-al, and care was 
taken in usi ng a sufficiently large system to diminate any 
meuurable dependencc: an N. The e,;cellenl agreernent 
between tbc simulations and the analysis !'ohows that tbe 
dynamics of Eq. (1) are well approximated by tbe 
infinite-N limit. Analysis of Eq. (I) will henceforth Ireal 
the case N _ co . Justification for applying [he large-N 
limil to real CDW sysIems will be discussed in Sec. III. 

Physically, the magni tude af the arder parameter r 
(O~ 1'< 1) characterizes phase coherence between CDW 
domains. In a pinned configuralion, for example, where 
the phases af the domains are determined by a random 
localJy preferred phase, thece is no coherenee among the 
domains; accordingly, all stable pinned solutions af (Il 
have r =0. lo the steady sliding stale Id II' / dl > Ol tbe 
model shows a large coherence between domains; all 
stable s!iding solutions of (l) have r -I. The rate of 
change of Ihe order-parameter phase. d't I dl , caTTe­
spands to the cuTtent carried by the CDW. The delayed 
switching observed expenmentaUy corresponds to a delay 
in the CUrTent carricd by the CDW. In our model, the 
onset of a ··current" ld'41 i dt > Ol and the onset af coher­
enee (r -I) occur simul(aneously, as seen in Fig. I, 

The slowest step in the depinning process for 
ETIK ) < E < l is the evolution near the saddle point 
8,,=a+ sin - I(E). As we have shawn eJsewhere,11 an in­
teresting feature of the dynamies of (1) is that any initial­
ly ineoherent (r-O) contiguration will be funneiled to­
wards tbis saddie, and from there coherence and steady 
rotation will evolve. Thus tbe delay befare switching 
for any incoherent initial state IS approxirnately given by 
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FIG. I. De[ay~d anset of coherence r and euerent 
d'JIldt for thre!': normalized distances above thresnold, 
[.=olE -Erl/Er=O.l. 0.01, and 0.0001. Note the logarithmie 
lical!': for the (dimensionll$S) time axis. Curves arc from numeri­
cal integration of Eq. {I) wilh N = 300, ro'" 5 X IO - ~, and K = l, 
giving E r = l i)1 r!. Th!': initial state: af the system was the E =0 
pinned state Wilh a small amount af random jill!':r: 8: =a, +1/} 
wilh fI, -Ol 10-' I. The large ... alues af dlll Id! at t < IO show 
the rapid evolutIOn from tbe initial state IO the saddle pomt 
e,=a.+ sin"(El. Note that for a given E theorder parameter 
,'and the rotation rale dl.Jl/dl switch after the same delay. 

the time fOT coherence to develop starting near (Ja 

=a~sin~I(El. 

Because the depinning proeess with E > O changesan 
initially statie configuration (d Ilt Id, =0) into a uniform­
ly rotating configuration Id'!' Idl > Ol, the analysis is 
greatly simplified by working in a coordinate system that 
is corotatmg with q.t. In terms af the corotating phase 
variables defined as 41=(9-'41) and y=(a-'I'l, the de­
pinning transit ion appears as a Landau-type symmetry­
breaking transition from the unstable equilibrium at r =0 
to a stable. static equilibrium at r-t. Recastmg the 
dynamical system (Il in terms af r and øv and writing the 
coupling term in (l) in terms af the arder parameter gives 
the folIowing mean-field equation: 

d'l' [ a,;, I d, a,;. . ]--- +--=E+sm1r-ø l-Krsm(q,). 
dt ar dl ar r r 

(31 

In deriving Eq. (3) we have assumed that øy only de­
pends an r and r. Assuming this dependenee is 
equivalent to assuming that as the system leaves the sad­
dIe point øy=Y+ sin-IIEl it will not be free to visit all 
af state space, but is eonstrained to lie only in the unsta­
ble manifold af the saddIe. Within the unstable manifold, 
two quantities are sufficient to characterize the state af 
the entire system: r, whieh reftects the direction in 
which rotational symmetry has broken, and r, which 

reftects the position along the unstabIe manifold. 
We now expand 4J y about the saddle point 

4J y =y + sin -1(El in a Fourier series: 

4tr =r+ sin-I(El+ I. Ak sin{kyl+ .I Bl: cos(ky), 
k '"'1 k. - O 

(41 

where the Fourier coefficients Ak and Bic only depend an 
r. We assume (hat for small r eaeh Ak and B~ can be ex­
panded as a power series in r. We then salve Eq. (3l using 
a solution af the fonn af Eq. (4) with Ak.. Bt. dr /dt, and 
dlJlldt expanded in powers af r. This procedure gives a 
solution for øy at eacb ordl!:r af r. For self-consistency, 
these solutions must also S8usfy the definition of the ar­
der parameter, which requires 

I f" ] f"· ~ cos(.prldy=r. - sm(øyldy=O. 
2rr o 2rr o 

(li 

Retaining tenns to third order in r for k -::: 2 uniquely 
determines (af ter much algebra) the evolution equation 
for the coherence: 

d, ~ [K-K T 1,+ [6-KJ.I,J+OI"I, 
dl 2 2Kr 

161 

where K r ==2(1-E 2 )11l. The form af the O(r J
) 

eoefficient in Eq. (6) was derived assuming that the sys­
tem is dase to threshold, that is. assuming K - K T «K r. 

The value af r where the twO terms an the right-hand 
side af Eq. (6) are equal, defined as 
r-:= [Kr(K - Kr l!(6-K}l]]12, marks a crossover point 
in the evolution af eoherence. For r Ct) < r·, the cubic 
term is negligibie and r grows as a sIow exponential: 
r(t)~roexp(at), where u=.(K -Kr l!2. Note that 
a -O as E-Er. After r( t} reaches the value r· , the cu­
bic term IR Eq. (6) dominates the linear term and r grows 
very rapidly. The rapid anset af coherence is accom­
panied by the simultaneaus rapid growth af d\IJ Idt, as 
seen in Fig. 1. We identify the switching delay T~"'lIch as 
the time the system takes to evolve from ro to r· by slow 
exponential growth: r· == ro exp(aT,wlII:h l. Solving for 
TSWllch gives 

1" . =---]n I IKTIK-KTII 
' .... tch K -Kr (6-K;')r~ 

(71 

The switching delay given by Eq. (7) agrees very well 
with numerical integration data for all values of 
Er < E < l and ro < r·. Figure 2 compares numerical 
data with Eq. (7) as a function of the normalized distance 
above threshold E:(E -Er)/Er . Numerical data were 
obtained wing fourth-order Runge-Kutta numerical in­
tegra.tion af Eq. (Il. The pinning phases were evenly 
spaced an r 0,217] and the initial phase configuration was 
the E = O pinned state plus a repeatable random jitter: 
9j =a j +1'1) with '1j-01l0-2), giving rol:illXIO-4 at 
each E. The random jitter 'TIj is introduced to break the 
symmetry af the unstable equilibrium at r =0, which is 
present for infinite N and also for Mite N with evenly 
spaced pinning. In the absence of any initial jitter, ro is 
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10000 
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-rswitch 

0.0001 0.001 O.Q! 0.1 

~ 
FIG. 2. Depende:nce: af Ihe dday (in dLmensionless units) on 

Ihe: nonnalized distance above thresbold E =.IE - ET l/ET for 
K = I. Curwe shows Iht theory fro m Eq. 171; ci rcles are from 
numenealmlegration af Eq. (IJ wllh :Ii =300. Tbe mirial stale 
W3S Ihe E = 0 pmned SIOlte with random Jitter: e .. =L'lJ +1JJ with 
1) 1 - o ( 10 - "). The ~me initial stat e was used for all values of t. 
The value o; rn used IO calculate (he theoretica l c urve was taken 
direclly from the numeneal data as the smaJlesl value of , dur­
log lis evolutIOn; tht minimum r depcnded Vtry shghtly on t, 
and .l single \·alue of ' 0 = I X 10-· was uSt:d in Eq. 17l. TIle 
dl~gr~mem betwe(>n (hen ry and numenes at c > O. I is due to 
tht ~mail but finite time taken for the olher pan s a f Ihe dep.n. 
ntog process besid!::s the time spc=ot lingenng ncar Ihe saddle 
pnllll. 

lero and the predicted switching time is infinit e from E.q . 
17) . An interesting detail is th at during the very early 
evolution, as Ihe system evoh'es from Ihe initial 
con figur at ion ej =Uj + 7J

J 
lowards the saddle poi nt (bt· 

fore the delay), r actually decreases-that is, the system 
becomes less coherenl as it approaches the saddie. Be· 
cause a f this effect, the appropriate value of ro Io use in 
Eq. (7) - and Ihe vaJue used fo r the Iheory in Fig . 2- is 
not the initial r. but the minimum r, which is slightly less 
than the initial value. The switching even! for the nu­
merical data was defined as Ihe lime where r t l ) reached 
0.75. Because a f tht rapidity of the switch. any Ol her 
reasonable definition of the switch time would have given 
nea rly identical results. 

III. DlSU·SSIOS OF THE :\IODEL 
A~D ITS PREDlc no:"liS 

The phase-slip model a f dela yed switching presented 
here is a high ly simplilied trealment of CDW dynamics. 
Several approximations made in the interest a f keeping 
the model analyticaHy tractable are known to be pbysi · 
ca Ily unrealistic. including the all-to-all caupling of 
domains and Ihe uniform coupling and pinning strengths. 
PassIbie justificaI ions for these assumptions have been 
disc ussed elst:where.s.l~ 
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An unphysical aspecl a f [he model is the absence af 
multiple pinned configurations. Metastable pinned states 
are s~ experimentally in both switching and nonswitdl· 
ing systems,B as well as in models wilh eJastic eau· 
pling .~· ZI:l The absenc~ of multiple pinned stat~ in our 
model is a direct result a f the periodic coupling, which 
does not ailow large phase differences belween domams 
to bUI Id up. Our assumplion is nOl a necessary (cam re in 
modeling phase sli p: an alternative phase-slip model that 
does allowalarge buildup af phase difference befa re 
phase slip begins has been proposed by Hall el al. 12, U. lb 

A subclass af switching samples. termed ·'type Il " by 
Hundley and Zenl, p shows multiple depinning transi­
tions as Ihe applied field is swept. In conlrast. type·l 
switching samples:7 show a single, hysteretic swit ch. Be· 
cauS(: the parameters in o ur model are uniform. we do 
not see multiple switching; OUT model always behaves hk e 
a type-I sample. The effects af distributed parameters in 
our model remai ns an interesting open problem. 

Because we inlerpret phases as enlire domains. ou r use 
af a large number af phases might be questioned in ligh t 
af recent experiments identifying a small number af 
coherent domains separated by pbase.slip centers. ll.13. 17 
We btlieve the large·'" treatment is juslified: Several ex­
periments an SWItching samples indicate that even when 
a smaU number af cohertnt domains ean be identified. 
these large domains have betn fonnet! by tbe collecti .. ·e 
depinoing of many subdomains. The relevant d ynamical 
process leading to switching and delayed conduct ion in 
this case is the simultal/eous dep/nl/ing o/ marty sub. 
domOirts within a single large domain. Experiments by 
Hundley and Ze ttl ,17 for example, show Ihat a switching 
sample will depm smoothly when subdomains a re farced 
to depin indiv idually rathc:r than collectively by applymg 
a temperature gradient across tbe sample. 

In spile af these limitat ions and the moder s slmplici ly. 
we find that several aspectS af delayed swnchlOg seen ex · 
perimentally are produeed by the mean-field phase-slip 
modeJ. These similarilies incJude Ihe follo\\'ing. 

Ol For ( ;;;:(E - E T)/Et« l and r Q <,·, the switch. 
ing delay in the model is approximat ely related to E by 
the power law 

:"."UCII :r E - 8, {3- I tSi 

This behavior is cJearly seen at small E in Fig. 2. This 
dependence is different from that predicted by other 
models af delayed switching,Il· lb - :1 as will be discussed 
elsewhere."1 Experimencally. power ·law behavior with ex.­
ponent (3-1 at small E is consiSlent with tbe data of 
Maeda el al. IF ig. 5 of Ref. 9). 

(2) Aba Ye a certain value a f E . defined as f o• the depin­
niog transition in our model is not delayed. The value af 
EO is dc:fined by the condition E = L Similar behavior was 
seen e;r;perimc:ntally by Zettl and Griiner,' who repart 
thaI, for a bias curtent exceeding L2S times the threshold 
current, switching occurred without measurable dela y. 
Measuring EO in a switching sample will uniquely deter­
mine the appropriate value af K to be used in our model 
according to the fonnula K =2{ l-j EO + 11- 1 ]1 / 2. 

(3) For values of E slightly below EOo the switching de­
la)' in the model decreases more rapidly than the power 
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law (8), giving a. concave-downward shape to a log-log 
plot af is.,,,"!: ... ersus t. as seen in Fig. 2. This feature IS 

30150 seen in tht: e:o.perimental data af Maeda et al. (Fig 5. 
R,r. 91. 

(4) The switching dda)' in our model de~nds an an in· 
itial coherence. In Eq. m this dependenee appears as the 
'0 term in (bt: logarithm. mdicating that a siuble initial 
coherence wiU shorten tht: delay. For a sufficient!y large 
initial coherence 'o> r·, Eq. (7) is not applicable because 
the cubic lcnn in Eq. 161 will dominale throughout tbt: 
evolution. leading to an cxtremely shon switching delay. 
A reduelion af tht: switching delay duc to an organized 
initial state has been observed indirectly in tbe cxperi· 
m~nts af Kriza et al.! Using two dose!y spaced su­
~rthleshold pulses, Kriu et al. a were able to reduce the 
switching delay for tbe depinning wh.ich occurred during 
the second pulse: the shorter the spacing bctween tbe 
pulses, Ihe shorter Ibe observed SWitching delay. 

(,5) The delay in our model is a detenninistic funclion 
ol' E. K, and "0; we do not predicl a scatler In Ibe ol>­
served switching delay near threshold. Probabilistic 
models of depinning, for example. Ihe modelof Joa!> and 
Murray,21 predict ascaller of dday limes. A sizable 
scalter was repoTted by Zettl and Gruner:' more recent ly, 

IChorxt! Denslry Wa"es in Solids. Vol. 217 of L ('efure NoftS in 
Ph}'SICl . edi led by G. HUliray and 1. S61)'om ISpnnger. Berlm. 
1985\ 

~ For a recent feview nf charge·dcn~i t y-wa\le dynamics. see G. 
Gruncr. Re~· ..... 1od. Phys. 60. 112911988:. 

JH. Fukuyama :lnd P. A. Lt:c. Phys. Re~·. B 17. ~J5 [197111; P. A. 
Lee and. T. ~f. Rice. Ibid. 19. J9iO \19791; L. Sncddon. M. C. 
eross. and D. S. Fisher, Phys. Rev. Lelt. 49. 292 11982l. 

~L Sneddon. Phys. Re\' . 8 30, 2974 iI98~1. 
~D. S. Fisher, Phys. Rev. Len. SO. 1486 1\9831; Ph~'S. Rev. B Jl. 

1.39611985). 
liG. Gruoer. A. Zaw3dowslr::i. and P. M . Chaikm. Phys. Re~. 

Len. 46. 511 (1981), 
'TA. Zettland G. Grliner. Ph ys. Rc~-. B 26. 2:~98 11982 1. 
~G . Kriu. A . JanDSSY. and G . Mihaly. in Charge D.'n~jry WQL't'S 

In SQ/id5. Ref. 1. p. 426. 
~A. ~iaeda. T. FuruY:lma. and S. Tanaka. SoILd S[ale Commun. 

SS. 95 t (19851. NOle [haIIhe graph ior Fig. 5 is mcorrect ly 
printed as Fig. 3 in thi ~ paper. 

[oJ. Dumas. C. Schlenker. J . ~arcus. and R. Buder. Phys. Re\'. 
Lelt. SO. 757 (]98] ): H. \futka. S. Bouffard. J . Dumas, and C. 
Schlcnker. J. Phys. IParisl Lell . 45. l i~9 (19841; S. &)uffard. 
M. Sanquer. H. Mutka. J. Dumas. and C. Schlenhr, in 
Charge DCrls/ry WaL't's In Solids . Rd. l, p. ~9 . 

li R. P. Hall. M. F. Hundley. and A. Zeftl. Ph}'~. Re ~ . lell. S6. 
2J9Q ( '9R6J. 

12R. P. Hall. M. F. Hund1ey . and A. Ze1l1. Physlca B+C 14.38. 
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K riza et al. ~ attribuled all seatter in rhe measured dday 
to " instrumental instabllity ." It IS not cleaT whether Ihe 
seaner seen experimenlally is an artifacI ar an inlrinsic 
feature af delayed switching. 

In conclusion. we have analyzed a very simple model af 
CDW domain dynamlcs with phase slip. and have found 
several features seen experimentaJly in switching samples. 
The resuhs sugges{ that switching, hysleresis. and de­
layed anset af conductlon are dasely related phenomena 
which appear together when phase sHp betwcen dom3.ins 
occurs. Further expenmentS an delayed switching wouJd 
lH= very useful IO lest in greater detail thc predictive 
power of such a simple model. 
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