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ABSTRACT

This thesis explores a variety of topics concerning the dynamics, stability and
performance of analog neural networks. Techniques used to study these systems include
global and local stability analysis, statistical methods originally developed for Ising-
model spin glasses and neural networks, numerical simulation, and experiments on a
small (8-neuron) electronic neural network. Attention is focused mostly on networks
with symmetric connections. The analog neurons are taken to have a smooth and
monotonic transfer function, characterized by a gain (i.e. maximum slope) £.

The electronic network includes time delay circuitry at each neuron. Additional
circuitry allows measurement of the basins of attraction for fixed points and oscillatory
attractors. Stability criteria for analog networks with time-delayed neuron response are
denived based on local analysis. These results agree well with numerics and experiments
on the electronic network.

A global stability analysis is presented for analog networks with parallel updating of
neuron states. It is shown that symmetric networks satisfying the criterion: 1/8 > -4,
for all neurons, where A,,;, is the minimum eigenvalue of the connection matrix, can be
updated in parallel with guaranteed convergence to a fixed point. Based on this criterion,
and a new analysis of storage capacity, phase diagrams for the Hebb and pseudo-inverse
rule associative memories are derived. Analysis of parallel dynamics is then extended to
2 multistep updating rule that averages over M previous time steps. Multistep updating
allows oscillation-free parallel dynamics for networks that have period-2 limit cycles
under standard parallel updating.

It is shown analyncally and numerically that lowering the neuron gain greatly reduces

the number of local minima in the energy landscapes of analog neural networks and spin
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glasses. Eliminating fixed-point attractors by using analog neurons has beneficial effects
similar to stochastic annealing and can be easily implemented in a deterministic dynamical
system such as an electronic circuit.

Finally, a numerical study of the distribution of basin sizes in the Sherrington-
Kirkpatrick spin glass is presented. It is found that basin sizes are distributed roughly as

a power law and that using analog state vanables selectively eliminates small basins.
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Chapter 1

INTRODUCTION

Our world is filled with complex phenomena which emerge, as if by magic, out of
interactions among many simple elements. Sometimes (rarely) an intellectually satisfying
picture can be painted, allowing us to claim that we understand how the magic comes
about. For certain static phenomena, statistical mechanics provides such a picture, and
makes clear how the interaction of microscopic elements can give a large system a "life of
its own," with well-defined properties that are not obviously present when the system is
observed element by element. Statistical mechanics also provides a justification for the
empirical fact that large systems can be characterized by a few well-chosen quantities; one
does not need to keep track of all 1023 variables. This feature is essential for rendering
large systems understandable.

Extending the principles and techniques of statistical mechanics to include complex,
dynamic phenomena on a macroscopic scale remains an outstanding challenge and a
problem of great current interest in many areas of physics. Ultimately, one would like to
understand the complexity of the real world within a framework linking statistical
mechanics and dynamical systems theory. The hope for such a synthesis, however,
rests on the hypothesis that microscopic processes can be described by simple models. If
the complexity of nature must be accounted for at all size scales, we certainly have no
hope of understanding big systerns.

Neural networks research certainly represents the most extreme test of the hypothesis
that complexity can emerge directly out of the interaction of a large number of simple

elements. It asks the question, “Can the operation of the most complicated object known



be described as an emergent property of maximally simple elements interacting according
to simple rules?” This line of inquiry does not presuppose that the answer is yes, but
rather seeks to discover just how far such a principle can go. Judging from our current
level of knowledge about even the simplest biological systems, we may not learn whether
the approach is justified for some time, let alone reap (and market) the fruits of the
endeavor.

In addition to the role of neural networks as a paradigm for understanding biology,
there is a purely technological motivation for developing highly parallel dynamical
systems that can solve difficult problems. Simply put, the standard computer architecture
is coming to the end of its rope. Many problems of great technological interest cannot be
solved with acceptable speed using the fastest conventional computers, and even allowing
factors of 100 or 1000 in speed, the present technology remains ill-suited to certain
applications. It is interesting to note that many tasks which are routinely performed by
humans with almost trivial ease seem to be the most challenging for computers. Our
ability to quickly recognize a face, or to infer the shapes and distances of objects from
visual information illustrates the astronomical supeniority of biological computation over
current computer technology. What makes this superiority more remarkable still is the
fact that the fundamental time scale in biology is around a millisecond, some four orders
of magnitude slower than standard computer cycle times.

The efficiency of biological computation suggests that perhaps by simply emulating
biology's basic design - without necessarily duplicating it - we may realize revolutionary
. technological advances. Which qualities constitute biology's "basic design" is currently
anybody's guess, though massive parallelism and fault tolerance seem to be two such
basic principles, at least in the cortex. (Neither feature is part of the basic design of
current computers.) If nothing else, biological neural networks serve as working

demonstrations that a vastly superior technology is possible in principle .



We will not review the long and interesting history of neural networks here. Instead,
we refer the reader to several good reviews which have appeared recently (Lippmann,
1987; Grossberg, 1988; Amit, 1989; Hirsch, 1989; Abbott, 1990; reprints of many of the
classic articles can be found in Shaw and Palm, 1988]. The various accounts of neural
networks are remarkably disparate, especially in their historical perspective, so it is
necessary to read several versions in order to appreciate the breadth of the subject.

A common feature of nearly all neural network models, dating back to their modern
origin in the work of McCulloch and Pitts [1943], is the sum-and-threshold device
known as a formal neuron or simply a neuron for shortl. The basic neuron we consider
is shown in Fig. 1.1 (many variations will appear later). The output of the formal neuron
can be binary ( {0,1} or (-1,1} ) or continuous, but the sigmoidal (s-shaped)
nonlinearity of the input-output transfer function is standard. Much more will be said
later regarding the shape of the neuron transfer function. A neural network is typically a
collection of these formal neurons arranged in some architecture, with neuron inputs
connected to external signals and to the outputs of other neurons. Connections between
neurons are characterized by a set of connection weights, which may be negative,
positive, or zero. In addition, one must specify a dynamic rule defining how the states of
the neurons change in time.

The hard part of the problem, of course, is figuring out how to connect the neurons to
each other so that the resulting dynamical system will do something interesting or useful.
The idea, however, is not to set the connections "by hand," but rather to develop learning
algorithms so that the network can respond to external stimuli by modifying its own
connections in an effective way. Loosely speaking, we would like the network to learn
from its own experience. Considerable progress in this area has been made, particularly

for the task of associative memory, beginning with the work of Hebb [1949], and

lHenceforth, the word "neuron” will be taken to mean a formal neuron; any references to real
(biological) neurons will be explicitly stated as such.
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continuing through to the recent work of the PDP Group [Rumelhart er al., 1986], E.
Gardner [1988], and others. Hebb's primary contribution was to postulate a remarkably
simple, yet effective mechanism for modifying connections which will store a particular
neural state as a memorized pattern. The rule is the following: Impose a pattern of
stimulus onto the network, and incrementally increase the connection weight between
neurons with coincident activity. This modification will eventually cause the imposed
pattern of neuronal activity to become a stable configuration of the system after the
stimulus is removed. There is evidence that Hebb's mechanism is realized in biological
systems, though at present this is an issue of considerable debate [Lynch, 1986].

An important milestone in the understanding of neural network models was the recent
work of Hopfield [1982; 1984; Hopfield and Tank, 1985; 1986]. Hopfield (and later,
Hopfield and Tank) emphasized four ideas, all of which have proven extremely fertile.
Those ideas were: (1) there is a close analogy between neural network models with
extensive feedback and random magnetic systems known as spin glasses; (2) the
dynamical aspects of networks can be analyzed in terms of an energy function; (3) simple
neural networks can be mapped onto traditionally difficult computational problems,
yielding good, fast results; and (4) neural network models can be naturally realized in
analog electronics. It could be argned that, in fact, none of these ideas was new. The
connection between neural networks and magnetism, for example, dates back to the
1950s [Cragg and Temperley, 1954], and the energy function idea had also been used by
Cohen and Grossberg [1983; Carpenter ez al., 1987]. The combination of ideas,
~ however, along with tangible results and a clear exposition in a style familiar to
physicists, managed to generate an excitement within the physics community which has
proven to be both contagious and self-sustaining.

Many of the topics addressed in this thesis spring directly from the four ideas of

Hopfield mentioned above. Most of the thesis will focus on various dynamical



properties of analog neural networks of the type described by Hopfield (see Fig. 1.1),
with an empbhasis on the practical, rather than the biological. The goal throughout will be
to discover useful - and whenever possible, simple - results which can serve as
guidelines for the design of fast, parallel computing devices. Occasionally, the relevance
of a result to biology will be mentioned, but we stress at the outset that such insights are
of secondary importance in this work.

The main conclusion of the thesis is that the input/output transfer function of the
individual neurons greatly influences the collective dynamics of the whole network.
Furthermore, for the restricted class of models considered, the nature of this influence
can be analyzed and described quantitatively. From a practical point of view, this thesis
demonstrates that analog neural networks have important computational advantages over
corresponding models constructed from binary neurons. Thus, in emulating biology to
make fast parallel computing machines, one is likely to find that the analog character of

the neuron is an important aspect of the computational power of the system as a whole.

Chapter 2 gives a more detailed overview of the topics presented in this thesis,

chapter by chapter.
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Fig. 1.1. The basic elements of the neural network mode! discussed in this thesis. Many
variations will appear later. The formal neuron (or just “neuron”) has an input 4; which
is a weighted sum of the outputs from other neurons. The connection weight from
neuron j to neuron i is given by the matrix element Tij- The neuron output is a
nonlinear function F(h;) of the input. This function is typically either binary or a
continuous sigmoid (s-shaped) function. The network architecture we consider has
extensive feedback, and we will frequently impose the symmetry condition (T‘-j = Tﬁ).



Chapter 2

OVERVIEW OF THESIS'

This thesis addresses a variety of topics, mostly involving the dynamics, stability,
and performance of analog neural networks. There are, however, many sections and
even whole chapters (Ch. 8 and Ch. 10, for example) which depart from this subject. A
consistent theme throughout the work concerns the dynamical behavior of nonlinear
systems with many degrees of freedom. A variety of techniques will be used to explore
these systems, including experiments, numerical investigations, and mathematical
analysis.

In chapter 3, we describe an electronic analog neural network consisting of eight
neurons built using operational amplifiers with nonlinear feedback, and accompanying
circuitry to allow fast measurements of the basins of attraction for fixed points and
oscillatory modes. After providing construction details, we present several
measurements of the shapes of the basins of attraction in an analog associative memory.
A notable feature of the network is the inclusion of charge-coupled device delay lines in
each neuron. Delays are adjustable over nearly two orders of magnitude, allowing
delay-induced instabilities to be studied experimentally, and critical values of delay to be
measured in a variety of network configurations, and as other network parameters are
| varied.

In chapter 4, we consider the effect of time delay on the stability of symmetrically-

connected analog neural networks from a more mathematical point of view. We present

! References have been stripped from this chapter to keep it short and easy to read. See subsequent
chapters for references.



two stability criteria, based on local stability analysis, that give critical values of delay
above which sustained collective oscillation appears. The surprising result is that the
critical delay depends on only a few network parameters: the characteristic time of the
network, the neuron gain, and the extremal eigenvalues of the connection matrix. Results
are applied to several network configurations, including symmetrically connected rings,
two-dimensional lattices of neurons, randomly connected networks, and associative
memory networks. Results are found to be in good agreement with numerics and
experiments performed on the electronic network. Finally we discuss chaotic dynamics
in time-delay networks, and give an example of a three-neuron circuit with delay-induced
chaos.

In chapter § we study the stability and associative-memory capabilities of a discrete-
ume, analog neural network with parallel updating of neuron states. Parallel operation is
crucial to the design of fast neural networks. The usual practice for discrete-time systems
with binary neurons, however, is to update sequentially in order to prevent unwanted
oscillation. We show that all oscillatory modes can be eliminated from a parallel-update
analog neural network with symmetric connections by lowenng the neuron gain below a
certain critical value. The result is stated as a simple, global stability criterion relating the
maximum neuron gain and the minimum eigenvalue of the connection matrix. This
criterion allows "safe" parallel dynamics, with guaranteed convergence to a fixed point.
Following this, we apply the analog network to the problem of associative memory, and
present novel phase diagrams (in terms of neuron gain and the ratio of stored patterns to
. neurons) for the Hebb and pseudo-inverse learning rules. To our knowledge, these are
the first reported analytical results of storage capacity for analog neural networks. Within
the "recall” regions of the phase diagrams, where memory patterns are stable and have
large basins, we find numerically that the performance of the associative memory
improves as the neuron gain is lowered. This important observation, also noted by

Hopfield and Tank and others, suggests the possibility of deterministic analog annealing.
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In chapter 6 we generalize the stability analysis of chapter S to include analog
networks with an update rule based on an average over M previous time steps, for
arbitrary M. Standard paralle] updating corresponds to M = 1. The important result is
that the critical value of neuron gain is increased for the multiple-time-step update rule by
a factor of M, compared to standard parallel updating. Some applications to associative
memories are then given. We also present a simple analysis of the convergence rate of
the multiple-time-step network as a function of M.

In chapter 7 we study the number of local minima in the dynamical (energy)
landscape of the analog spin glass and the analog associative memory. We show that the
expected number of local minima <N fp> for both systems increases exponentially with the
size of the system M, as <Nﬁ,>= exp(aN). The scaling exponent a depends on the
neuron gain for the case of the analog spin glass, and depends on both the neuron gain
and the ratio of patterns to neurons for the analog associative memory. Analytical values
for a are given for both systems. As neuron gain decreases, the value of a (for both
systems) also decreases, which has the effect of dramatically reducing the number of
local minima. These results provide an analytical framework for understanding how
lowering the neuron gain can lead to improved performance in analog associative
memories. Numerical observations of this effect are also presented in Ch. 5. Theoretical
values for the scaling exponent @ agree reasonably well with numerical values found by
directly counting the fixed points in a large sample of computer-generated realizations.

In chapter 8 we explore the basin structure of the deterministic (zero-temperature)
' SK spin glass. This model has been studied extensively and is known to possess an
extremely rich energy landscape. The main result of this chapter is that the numerically
measured distribution of basin sizes, averaged over realizations, obeys a power law with
exponent near -3/2 over a wide range of basin sizes. The exponent of the power law

appears to be independent of N. Some consequences of this power law are then



considered. The distribution of basin sizes in the deterministic SK model is qualitatively
different from other closely related distributions which, among themselves, show certain
universal features. Apparently, and perhaps surprisingly, the universality seen in these
other distributions is not shared by the distribution observed here. We end this chapter
by showing (again, numerically) that the distribution of basin sizes is strongly affected by
the use of analog state variables. We find that reducing the gain in an analog spin glass
selectively eliminates fixed points with small basins of attraction.

In chapter 9, we give some brief conclusions and remarks concerning unsolved
problems and interesting future directions.

Chapter 10 is an appendix containing two papers on the dynamics of charge-density
waves (CDWs). This work is essentially unrelated to neural networks, though it shares
with the previous chapters a general theme of collective dynamics in nonlinear, many-
body systems. The main idea in these papers is that a simple modification to allow phase
slip in a previously-studied mean-field model of CDW dynamics causes the smooth
depinning transition to become discontinuous and hysteretic. The behavior of the phase-
slip model is very suggestive of switching, which is observed experimentally in certain
CDW systems. The way that phase slip is introduced in this model has the added virtue

of making the system analytically tractable.
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Chapter 3

THE ELECTRONIC ANALOG NEURAL NETWORK

3.1. INTRODUCTION: WHY BUILD ELECTRONIC HARDWARE?

Soldering gives a person lots of time to think. One particularly deep question to think
about while soldering together an electronic neural network is what disinguishes an
experiment from a simulation, or, in other words, why build this circuit? Among neural
networks researchers, there is a large camp of non-apologists who view the mathematical
system as the neural network, rather than considering the equations to be a simplified
description of some physical reality [see the discussion of Maddox, 1987]. From this
perspective, an electronic neural network serves as a fast analog computer for simulating
the "real" (mathematical) system. A more engineering-minded line of thought emphasizes
the potential for building powerful computatonal devices. Because microelectronics, and
particularly VLSI, is the likely medium for implementing these devices [Mead, 1989], it
is important (the argument goes) to learm as much as possible about real circuits and the
behavior of large, interconnected electronic networks. By this reasoning, building an
electronic network from discrete components is progress toward the ultimate goal of
» building a “real” neural network (i.e. a large, fast and truly useful piece of electronic
hardware).

Apart from these bigger questions of motivation is the simple fact that many important
problems in neural networks (especially analog neural networks) are difficult to treat

analytically or by conventional numerical simulation. Occasionally, such problems can
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be studied easily and directly in a small electronic network. After presenting the details of
our circuit in §3.2, we will consider two problems of this sort. They are:

(1) What are the shapes - not just the volumes - of the basins of artraction for the
recall states of an associative memory? In a well-designed associative memory, the
basins of attraction for recall states should be large, but that is not sufficient: the basins
must also be roughly spherical (by some appropriate measure) and centered about the
recall states. If the basins of attraction are diffuse or disconnected in state space, the
memory will not be useful. In § 3.4 we show that the shapes of the basins for recall
states are in fact somewhat irregular when the network is overloaded with memonies.

(2) How does time delay affect the transients, attractors and basins of attraction in a
neural network? This problem is of particular interest to the engineering-minded camp,
as the operating speed of VLSI circuitry will likely be limited by switching-delay-induced
instabilities (for a discussion of delays in VLS, see [Mukherjee, 1985, Ch. 6]). Much
of the mathematical analysis of networks with time delay that appears in chapter 4 was
suggested by or confirmed using the electronic network.

Electronic circuits have also been used to find and characterize chaotic behavior in
analog neural networks [Marcus and Westervelt, 1989b; Kepler er al., 1989]. This

application will be discussed in § 4.6.

3.2. CIRCUITRY

In this section we provide a detailed description of the electronic neural network
circuit. First, though, we give a quick overview of the circuit's main features:

The electronic network consists of eight analog neurons (nonlinear amplifiers)
connected via 128 manual switches and resistors. Connections between pairs of neurons

can be noninverting, inverting, or open, depending on the positions of these 128
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switches. Each neuron has an independently adjustable gain and saturation level, and has
a nme delay section based on a charge coupled device (CCD) analog delay line. (The
reader may wish to glance ahead at Fig. 3.4 at this point.)

The dynamical equations for the voltages u,(1) on the input capacitors of the neurons

(nonlingar amplifiers) are
1 N
Cu(t) =~ (1) + Y Hiflu(r-1))  i=t. N G
{ Jj=1

where C; is the neuron input capacitance and R; = (ZjIT’,-jD'] is the resistance to the
rest of the circuit at the input of neuron i, and f; is a smooth sigmoid function describing
the transfer function of the i neuron. Equation (3.1) is identical to the analog system
described by Hopfield [1984], with the inclusion of time delay. It is not equivalent,
however, to some other hardware implementations which have the input capacitor across,
rather than in front of, the nonlinear amplifier [Denker, 1986¢; Amit, 1989; Kepler ez al.,
1989].

Digital timing circuitry and voltage-controlled analog switches are used to periodically
open the feedback path from the resistor matrix to the neuron input and load initial
conditions onto the neurons' input capacitors. The initial conditions are determined by
eight independent voltages, any two of which can be raster-scanned using independent
function generators. At the same time, the two function generators are used to position

~the beam of a storage oscilloscope (Conographic 611). When the state of the network
matches some reference state (which has been set with manual switches), the beam of the
storage oscilloscope is turned on, and the resulting pattern on the storage oscilloscope
shows an image of the basin of attraction for the reference state in a two-dimensional slice
of initial condition space. Alternately, the oscilloscope beam can be set to go on only

when the circuit enters an oscillatory state, thus illuminating a slice of a basin of attraction
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for oscillation. Neuron outputs can also be displayed directly (as X vs. Y, for any pair of
neurons) using a second storage oscilloscope (Tektronix 611). The time scale for a
complete load/run cycle is adjustable, and is typically ~10-40 ms.

The following three subsections provide the details of the various parts of the circuit.

3.2.1. Neurons

The schematic for an individual analog neuron is shown in Fig. 3.1. Each neuron
uses four JFET operational amplifiers (op-amps), all on a single 14-pin integrated circuit
(National Semiconductor LF374N). Starting at the input side of the neuron, the first op-
amp serves as a unity gain buffer, giving the neuron a high input impedance. The second
op-amp, with diodes in the feedback, is the nonlinear part of the circuit, giving the
neuron its sigmoidal or saturating transfer function, as discussed below. The third op-
amp serves as a variable gain amplifier and sets the overall amplitude of the output. Next
in the signal path is the CCD delay (see: § 3.2.2 below), which can be switched in or out
independently for each neuron. Finally, the fourth op-amp inverts the output to allow
inhibitory as well as excitatory connections.

The neuron mansfer function f (dropping the subscript i) is defined by the relation
finput) = output, where output refers to the neuron's noninverting output. The
function fis made interesting by the diodes in the feedback path of the second op-amp.
To derive an expression for f, we start with a simple form for the current-voltage (I-V)

- characteristic of a diode [see: Sze, 1981, § 2.4]

I= [S[exp(v—‘;J—l} . (3.2)

The parameters /= 2.9 % 107 mA and Vi =59 x 1072V were determined by a least-
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Fig. 3.1. Schematic diagram of analog neuron.

-15 -

OoUTPUT

INVERTING
OUTPUT



square fit to data in the manufacturer's data sheet for the diode used, which was the
IN914. Equation (3.2) and standard op-amp circuit analysis (i.e., the principle of virtual

null) give the following implicit expression for f,

input = [Skﬂ][-l:—l +21; sinh[LD; (3.3a)

Vr

_ [m]]
V—[ 2 output , (3.3b)

where the resistance values from Fig. 3.1 are shown in square brackets. Figure 3.2
shows the neuron output as a function of its input as given by Eq. (3.3) for different
values of R1, with R2 held fixed at 2 k{2 and numerical values for I, and V,

inserted. For large and small signals, Eq. (3.3) can be expanded to leading order to give

R1 R2
output = | —— |input  (for small signals, linear regime), (3.4a)
[10(!(.())2] £

R2 input
output = l [ inpu

[2kQ] n [Sk.Q]IS ] (for large signals, saturated regime). (3.4b)

The crossover from the linear to the saturated regime occurs when

input ~ [[SI‘Q]JVT. (3.5)

The maximum slope of the neuron transfer function, defined as the neuron gain f3, will

be very important for all sorts of analysis in later chapters. From (3.4a), we can
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Fig. 3.2. The nonlinear neuron transfer function. (a) Theoretical transfer functions based

on Eq. (3.4) for different values of R1, with R2 = 2k (see Fig. 3.1). (b) Transfer
function measured in the electronic neuron for different values of R1.
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immediately identify the neuron gain,

[ RIR2
- (22

Notice from Eq. (3.4b) that for large signals, the neuron output saturates to a logarithmic
function of the input. This behavior is different than the tanh function - the canonical
sigmoid - which saturates to a hard limit at large argument. In practice this difference

does not appear to be significant.
3.2.2. Analog delay

The schematic for the analog delay circuit is shown in Fig. 3.3. Each neuron has its
own independent delay circuit, which can be switched in or out manually. The heart of
the circuit is a charge-coupled device (CCD) analog delay line, RD5106A, manufactured
by EG&G-Reticon. The RD5106A chip is a so-called "bucket-brigade” device. The
device operates by charging an input capacitor to the instantaneous (analog) input voltage,
and then passing that charge along a brigade of 256 subsequent capacitors, with each
transfer of charge triggered by a pair of pulses from an external clock. At the end of the
brigade of capacitors, the charge is converted back to an analog voltage which constitutes
the output signal. The time 7 taken to traverse the entire brigade (i.e. the delay time) is

. related to the clock frequency f ;.. by:

0.512

T ]

(3.7

The shortest delay available from this chip is nominally 300us (f,;, ., = 1.7 MHz),
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Fig. 3.3. Schematic for analog delay circuit. The entire circuit (excluding the voltage

regulator section) is duplicated for each neuron. The heart of the circuit is the EG&G
Reticon RD5106A charge coupled device analog delay line.
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although the appearance of dc offsets limits the usable range to 7° > ~450 us
(etock < 1.2 MHz). On the long-delay end, the chip itself is good up to delays
exceeding one second, but in practice the delay is limited by a "bucket discretization

noise" at a frequency f, ..,

[kHz] = 256/(t'[ms]). The network itself will filter out

this noise as long as f, ., is well above the network's bandwidth, which is in the range

oise
1 - 8kHz depending on the connection matrix (see next subsection). This gives a range

of delay covering nearly two orders of magnitude:

450us < 7 < ~30ms. (3.8)

Because all delay circuits are clocked using the same functon generator, all delays (when
switched in) are identical. It would be very simple to construct individual on-board
trigger circuits using LM555's to allow independent delays.

The rest of the delay circuitry is mostly used to get around one unfortunate aspect of
the CCD delay line, which is that input voltages must be positive. The first op-amp is
used to add an adjustable dc offset to the input signal, and the second op-amp 1is used to
remove that offset. The second op-amp also has adjustable gain to compensate for the
RD5106A not being exactly unity gain. All offsets and gains are independently
adjustable via three trim-pots per delay circuit. There is also a 10 kHz low pass filter
section between the delay line and the second op-amp, to remove bucket discretization
noise. Finally, a single voltage regulator (National Semiconductor LM317L) is used to

~ supply the required 12.3 V to all eight RDS106A's.
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3.2.3. Network, measurement and timing circuitry

A. The nerwork

Figure 3.4 shows the layout of the entire network. A single circuit element in a box
represent multiple identical components: 8 delay-neurons, 8 initial condition loaders, 8
output buffers (LM741's), and 64 resistor-switch interconnect circuits. The characteristic
relaxation time of the network (without delay) is determined by the interconnect
resistances and neuron input capacitance. For interconnect resistances (T‘l-j)‘I =
100442 and input capacitances C; = 10nf, the network relaxation time is 1/n [ms],
where n is the number of neurons connected to the input of any given neuron. The
characteristic relaxation time for the electronic network can easily be varied over a few
orders of magnitude by replacing the input capacitors, which are installed using plug-in
connectors. Indeed, the entire circuit could be sped up considerably, with characteristic
times in the tens of microseconds, without pushing the bandwidth of any of the integrated
circuits; the limiting factor is the delay, which cannot be less than 450 ps. The

characteristic time to load initial conditions is (10 ££2)(10 nF) = 100 ps.
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Fig. 3.4. Schematic diagram of the entire network. Single devices in boxes represent
multiple devices: § each of the neurons, run/load sections, and LM741 buffer; 64 of the
resistor-switch pairs. Storage oscilloscope #1 is used to plot slices of basins of attraction;
storage oscilloscope #2 is used to plot the outputs of any pair of neurons as X vs. Y.
The source of the various timing signals is shown in Fig. 3.6.
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B. Antractor Identifier

The box marked "attractor identifier” in Fig. 3.4 is shown in detail in Fig. 3.5. This
circuit is used to test if the network has settled onto a specified fixed point attractor or,
alternately, to determine if the network is in an oscillatory mode.

The part of the attractor identifier circuit marked "fixed-point attractor identifier” (the
larger dashed box in Fig. 3.5) works as follows: First, eight comparators (LM311's) are
used to convert the analog state of the network into eight thresholded digital (TTL)
signals. This eight-bit digital state is then compared bit by bit to a reference state, which
has been selected by positioning eight manual switches. The reference state might be, for

example, a programmed memory pattern. If all eight bits of the network state match the
reference state, then the line leaving the fixed-point section is set high, otherwise, it 1s set
low.

The part of the attractor identifier marked "oscillation detector” (the smaller dashed
box in Fig. 3.5) uses a retriggerable 1-shot (96L.S02) with a high-time that is set to be
longer than the period of oscillation under investigation. If the comparator undergoes a
state transition within the high-time of the 1-shot, the output of the 1-shot remains in a
high state. If the output of the comparator remains fixed - because the neuron being
observed has stopped oscillating - the 1-shot goes low at the end of its current high-time.
The high-time of the 1-shot can be continuously varied from 4.3 ms to 8.6 ms via an
external potentiometer. Note that an oscillating neuron must cross zero output in its
excursion to trigger the oscillation detector.

Where the fixed-point and oscillation detectors come together there is a bit more
digital logic, and another manual switch. Depending on the position of this switch, the
TTL output which goes to a sample/hold (AD583KD) indicates one of the two following

conditions:
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Switch up: [selected neuron is oscillating]

Switch down: ([network state matches reference state]
AND
[selected neuron is not oscillating]}.

The combined logic for the Switch down position insures that all matches to the

reference state are actual fixed points, not oscillatory modes or transients.

C. Timing

The timing signals appearing in Figs. 3.4 and 3.5 are supplied by the digital (TTL)
circuit shown in Fig. 3.6. Also shown in Fig. 3.6 are TTL logic states
(low = 0V, high = 5 V) as a function of time at several points in the timing circuit,
labeled (A) - (E). Trace (B) is the run/load signal sent to the voltage-controlled analog
switches; trace (E) is the "sample now" signal sent to the sample/hold in the attractor
identifier circuit. The time between when (B) goes low (network feedback path
reconnected) and when (E) goes low (state of the system sampled by sample/hold)
defines the allowed settling time of the network. This value is adjusted to be ~5-10 times
the network relaxation time, so that nearly all transients have died out by the time a new
"sample now" signal is sent. When delays are used, the allowed settling time must be
quite long, as indicated in the table of Fig. 3.6.

Examples of network dynamics are shown in Figs. 3.7 and 3.8. Figure 3.8 shows
| that in addition to creating sustained oscillatory modes, delay can induce extremely long
and complicated transients when the circuit converges to a fixed point. Long, delay-

induced transients were also investigated by Babcock and Westervelt [ 1986b].
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Fig. 3.8. A delayed neuron response function can induce long, complicated transients,
as illustrated here, in addition to inducing sustained oscillation.
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3.3. BASINS OF ATTRACTION IN 2-D SLICES

A neural network consists of more than a just set of attractors embedded into the state
space of a dynamical system. To design a well-behaved network, one must also consider
the structure of the basins of attraction. Indeed, one standard figure of merit for an
associative memory network is the average size of the basins of attraction for the
embedded memories [Forrest, 1988]. Size, in this context, means the volume of state
space which flows to a particular attractor. One also speaks of a basin's radius, which is
the distance from an attractor (in some appropriate metric, for example the number of
differing bits in a binary network) at which the probability of flowing to that attractor
drops off quickly. It has been demonstrated that the radius of a basin of attraction is
intimately related to the strength with which a pattern is embedded by a learning rule
[Kepler and Abbott, 1988].

Figure 3.9 shows a highly schematic view of different basins of attraction to illustrate
how radius alone does not fully characterize the quality of a basin of attraction for
producing good associative recall. Aside from having a large radius, a good basin should
also be compact, spherical (roughly equal radii in all directions), centered on the attractor,
and smooth.

The shapes of basins of attraction for Hebb-rule associative memories have been
investigated by Keeler [1986] for large (N = 200) networks of binary neurons with
sequential dynamics. Keeler used a clever scheme to reduce the high-dimensional state
~ space to only two dimensions by projectin g distances from a reference state (e.g. the
locus of an attractor) onto a random direction and its complement. This projection
scheme preserves topology such that neighboring points in the full N-dimensional space
are also neighbors in this projection. Keeler found that as the number of stored patterns

approaches the storage capacity of the network, the basins of attraction for the recall
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EFig. 3.9 A highly schematic representation of two basins of attraction having roughly
the same volume, but different shapes. Designing a network to have large basins is not
sufficient: basins must also be smooth, regular in shape, and centered on the attractor in
order to yield reliable performance. The basin on the right fails to meet these criteria.
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states - as seen in this representation - become highly irregular, disconnected and filled
with "large crevices and holes,” in his words. It is unclear whether Keeler's findings are
an artifact of his algorithm for compressing a 200-dimensional space into a 2-dimensional
slice, or if they indicate an important and previously unsuspected shortcoming of Hebb-
rule associative memories.

In analog networks, where the state space is continuous, one faces the additional
complication of having to consider dynamics on the interior of the hypercubic state space.
What is the basin structure for analog networks wirhin the hypercube? Is the space
cleanly cleaved and parcelled evenly among the memories, or is the inside of the
hypercube a tangled knot of intersecting hypersurfaces?

A final question concerns the effect of delay on the basin structure. Certain nonlinear
delay-differential systems are known to possess fractal basins of attraction
[Aguirregabiria and Etxebarria, 1987]; one might suspect that neural networks with delay
could show similar behavior. A fractal basin structure would be highly undesirable in an
associative memory.

To address these questions, we have measured the basins of attraction in two
dimensional slices of state space for both fixed-point and oscillatory attractors using the
electronic network and basin identification circuitry. The present method of slicing up
state space is simpler than the one used by Keeler - slices are viewed directly on the
storage oscilloscope - and is designed to probe the basin structure on the interior of the
hypercube. Each slice is generated by holding fixed all but two of the initial voltages sent
o the neurons, while ininal voltages sent 10 the remaining two neurons are raster-scanned
using a pair of function generators with triangle-wave output, The raster periods (~1 s)
are chosen to be much longer than the run/load cycle time (see Fig 3.6), so that roughly
100 data points (beam on or off) are generated each time the beam crosses the screen.

Changing one of the non-rastered initial voltages moves the location of the slice in the
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direction in state space associated with the neuron receiving that initial condition. There
are (N - 2) directions perpendicular to the plane of the slice - one for each of the
neurons receiving non-rastered initial voltages. From a series of slices, one can infer the
basin structure in higher dimensions. This is illustrated in Fig. 3.10 for the simple case
of three neurons with symmetric positive (ferromagnetic) coupling. Notice that the
basins of attraction for the two ferromagnetic states - all neurons saturated positive or all

saturated negative - divide state space in a smooth, symmetric way.

3.4. MEASUREMENTS WITHOUT DELAY

We have investigated the basin structure for an eight-neuron associative memory

using a clipped form of the Hebb rule [Denker, 1986],

T = IOOIk.Q Sgn élz;f‘éf , §,j=1,.8. (3.9)
Figure 3.11 shows a series of slices through the 8-D state space for an associative
memory storing three patterns (thus six programmed attractors, including the inverses of
the memories). The slices shown are in the plane defined by rastering on neurons 1 and
2. In each of the four pictures, the initial condition on neuron 5 was set to a different dc
value, while the initial conditions of the other neurons (3,4,6,7,8) were fixed at O V.
~ Different basins in a single picture were distinguished by a using a different raster
pattern, as determined by the relative frequencies of the two function generators. Several
basins were imaged in the same picture by manually disconnecting the attractor identifier
(Fig. 3.5) from the oscilloscope after generating the first basin image, then resetting the

switches on the attractor identifier to the next memory state, changing one of the function
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generator frequencies to make a new raster pattern, and then reconnecting the attractor
identifier to the oscilloscope to generate the next basin image. By repeating this process,
many basins could be shown in a single picture, although usually no more than four
basins were present in any one slice (six was the most observed for any network
configuration).

Figure 3.11 suggests that the electronic network works extremely well as an
associative memory, despite the fact that with three memories and eight neurons, it is
loaded well above the nominal storage capacity for the clipped Hebb rule, p/N = 0.1
[Sompolinsky, 1986]. When initial conditions lie outside the hypercube (defined by the
saturation voltages of the neurons), the basin shapes become more distorted. This is
illustrated in Fig. 3.12 for the same connection matrix as in Fig. 3.11, only now the slice
is in the place defined by rastering on neurons 2 and 4. To the extent that this distortion
is a problem, it can easily be avoided by limiting initial conditions to lie within the range
of the neuron outputs.

The take-home message of this subsection is that the electronic associative memory
works extremely well, despite clipping and overloading. So well, in fact, that the results
are somewhat uninteresting: the network did just what one might guess (or hope) that it
would do. Grossly distorted basins or attraction were not observed, even when the
connection matrix was deliberately corrupted by randomly altering several matrix
elements. In all cases, basin boundaries appear smooth, and, within the hypercube, they
are also quite straight. Far outside the bounds of the hypercube, basin shapes become
 somewhat irregular, but not very much so; certainly they do not appear to be
disconnected or fractal.

We emphasize the difference between our measurements and those of Keeler [1986].
In Keeler's 2-D slices, each point in the slices represents a corner of the hypercube, and

the interior of the hypercube is not part of the state space. Therefore, our results do not
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Fig. 3.11. Basin structure for eight-neuron circuit storing three memory patterns with a
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contradict those of Keeler, as the spaces represented in the two studies are entirely
different. Furthermore, it may be that the complicated basin structure is only seen for

systems considerably larger than N = 8.

3.5. MEASUREMENTS WITH DELAY

The basin structure becomes more interesting when delay is introduced into the
response of the neurons. We concentrate here on symmetrically connected networks,
which possess only fixed points and simple periodic attractors. Chaotic behavior is
observed when connections are nonsymmetric, as discussed in §4.6. We have not
studied the basins of attraction in chaotic networks; this would certainly be an interesting
area to investigate.

The simplest symmetric network that shows delay-induced sustained oscillation (in
the absence of self-coupling) is the all-inhibitory triangle: three delayed neurons all

connected to each other via inverting, or inhibitory, connections:

(3.10)

The network defined by (3.1) and (3.10) is analyzed in detail in Ch. 4, and a phase
diagram is given in Fig. 4.8. The analysis shows that for sufficient delay,
7= T'/R,C; > In(2)= 0.693.., the all-inhibitory triangle has an oscillatory attractor along
the (1,1,1) direction - that is, with all neurons oscillating in phase. For sufficient gain
(see Fig. 4.8) the oscillatory mode is not the only attractor; there are also several fixed-
point attractors, each with its own basin of attraction.

Figure 3.13 shows two slices of the basin of attraction for the oscillatory mode of
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Fig. 3.13. Basin of attraction for coherent oscillatory mode (hatched region) for three
delayed-output neurons with symmetric inhibitory (i.e. negative or antiferromagnetic)
coupling. Black region indicates initial conditions leading to a fixed point. As the delay
is increased, the basin for the oscillatory mode expands to fill more of the state space.
The delay 7’ should be compared to the network characteristic time R,C; = 0.5 ms.
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the all-inhibitory triangle in the regime where both fixed-point attractors and the in-phase
oscillatory attractor exist. The two slices shown are for different values of normalized
delay 7= 17/R,C; = 7//[0.5ms]|. The slices are in the plane defined by the initial
condition u4(0) = OV, with initial conditions on neurons 1 and 2 raster scanned as
described above.! The first thing to notice in Fig. 3.13 is that a larger delay yields a
larger basin of attraction for the oscillatory mode. As the normalized delay is reduced
towards 0.693, the basin shrinks and finally disappears. At that point, the oscillatory
mode itself goes unstable, in accordance with the analysis of Ch. 4. The second thing to
notice in Fig. 3.13 is the two-lobed shape of the basin as seen in these slices. The basin
structure leading to this interesting shape is revealed by shifting the position of the slice,
which is done by changing the dc initial condition on us , as shown in Fig. 3.14.
From the three images in Fig. 3.14, and the symmetry of the state space, we can deduce
that the basin of attraction for the oscillatory mode forms a cylinder centered about the
(1,1,1) direction that pinches together at the origin (u; = 0 for all i). This structure is
shown schematically in Fig. 3.15. This figure explains the two-lobed pattern seen in
Figs. 3.13 and 3.14: the pattern marks the intersection of the pinched-cylindrical basin
with the planes of the slices uy = constant. From these pictures, we can deduce the
curvature of the basins near the origin basin from the shape of the lobes. We infer that
near the origin, the basin looks like two paraboloids back to back, aligned along the
(1,1,1) direction, as illustrated in Fig. 3.15.

An analysis of the all-inhibitory network, which will be presented in § 4.3, explains

the basin structure described above. We briefly mention some relevant features here.

In delay systems, the initial state of each neuron must be specificd over the entire interval of time
[-7",0]. We took care that the initial condition load time (see Fig. 3.6) was much longer than the neuron
delay, so that initial functions were nearly constant over this time interval. Of course, this particular
choice is arbitrary, and is itself only a “slice” of an infinite-dimensional space of possible initial
conditions. One might wonder if other choices - say, for example, wildly oscillating initial functions over
the interval [-7',0} - would not lead to undiscovered dynamics. It appears, based on tests of just this
sort, that nothing interesting happens when non-constant initial functions are used.
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Uq (O) =0.04

u3(0) = 000

u3(0) =-0.05

Fig. 3.14. The overall shape of the basin for sustained oscillation (hatched region) in the
all-inhibitory triangle (same circuit as in Fig. 3.13) is revealed by shifting the slice in the
direction of neuron 3.



AN
basin boundary ] coherent (1,1,1) direction

u3(0)= 0 plane

- (1,1,1) direction

| A43

Fig. 3.15. The characteristic two-lobed basin shape seen in Figs. 3.13 and 3.14 is
explained by a cylindrical basin oriented along the (1,1,1) direction, and pinched at the
intersection with the plane L, u; = 0 (see text).
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(These features apply for any N, not only N = 3.) In the regime where multiple fixed
points and a coherent oscillatory mode coexist, dynamics in the vicinity of the origin is
characterized by N-1 eigenvectors spanning the hyperplane ), u; =0. The eigenvalues
associated with these eigenvectors are degenerate and greater than one, so the entire
hyperplane Y. u; = 0 is a degenerate outset of the origin. The remaining eigenvector is
in the (1,1,...,1) direction and has a large negarive eigenvalue. This negative eigenvalue
makes the (1,1,...,1) direction an outset of the origin as well, but in this direction the
instability is oscillatory. Initial conditions near the (1,1,...,1) direction will be pulled
onto the oscillatory attractor, giving rise to a cylindrical basin of attraction about the
(1,1,...,1) direction. Initial conditions near the hyperplane »,; ¥; =0 are pulled away
from the origin and onto this plane towards fixed points. As a result of the centrifugal
dynamics within the hyperplane, the cylindrical basin for oscillation is pinched as the
(1,1,...,1) vector crosses the hyperplane at the origin. As delay is reduced, the relative
strength of the centrifugal dynamics in the hyperplane become sufficient to even np apart
the oscillatory attractor. Analyzing this event yields a value for the critical delay for
sustained oscillation (see § 4.4).

To further check the inferred basin structure for the general all-inhibitory network, we
have constructed a special circuit which allows the basin of attraction for the oscillatory
mode to be sliced along the (1,1,...,1) direction. This circuit, shown in Fig. 3.16,
supplies the initial conditions to the analog switches. It replaces the independent
(Cartesian) initial condition rastering scheme shown in Fig. 3.4. In the present scheme
' the Y coordinate gives the component of the initial condition vector along the (1,1,...,1)
direction; the X coordinate gives the component of the initial condition vector
perpendicular to this direction - into the .. #; =0 byperplane. This excursion into the
hyperplane is chosen to be in a direction in which only two of the possible N

components deviate from (1,1,...,1). The slice generated can be thought of as an axial
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cut down the cylindrical basin, as shown in Fig. 3.17(a). Images generated using this
initial condition circuit are shown in Fig. 3.17(b). The network configuration used to
produce these images was the ¥ = 5 all-inhibitory network; the two images are for
different values of delay. These images confirm the inferred shape of the basin of

attraction for oscillation, and reveal the pinched cylinder in its natural coordinate system.
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Fig. 3.16. Schematic of circuit to provide rastering in the coherent direction (measured by
Y) and perpendicular to the coherent direction (measured by X). All initial conditions
contain an equal amount of Y, and two others have added voltages X and -X,
respectively. Note that the direction u;(0) = X and u j(O) = -X for any i and j
constitutes a particularly simple excursion into the plane X;u; = 0, which is
perpendicular to the coherent direction (1,1, ..., 1).



(b)

Fig, 3.17. (a) The plane swept out by the rastering circuit of Fig. 3.16 is shown in
relation to the proposed basin structure for the coherent oscillatory mode. (b) For the
five-neuron all-inhibitory (antiferromagnetic) network, the observed basin of attraction
for sustained oscillation (hatched region) confirms the general shape inferred from the
standard rastering scheme. Left: £ = 0.73 ms, Right: v/ = 0.51 ms. Characteristic
time: R;C; = 0.5 ms.
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Chapter 4

ANALOG NEURAL NETWORKS WITH TIME DELAY

4.1 INTRODUCTION

It is well known that symmetrically connected networks of analog neurons operating
in continuous time will always settle onto a fixed-point attractor [ Cohen and Grossberg,
1983; Hopfield 1984]. This important result assumes, however, that neurons
communicate and respond instantaneously. As demonstrated in the previous chapter, all
bets are off regarding network stability once time delay is introduced into the response of
the neurons. Designing an electronic neural network to operate as quickly as possible
will increase the relative size of the intrinsic delay and can eventually lead to oscillation or
chaos. In the world of microelectronics, delays due to the finite switching speed of
amplifiers are well characterized, and constitute an important aspect of analog and digital
VLSI circuit design [Mukherjee, 1985). In biological neural networks, it is known that
time delay can cause an otherwise stable system to oscillate [Coleman and Renninger,
1975; Coleman and Renninger, 1976; Hadeler and Tomiuk, 1977; an der Heiden, 1979;
an der Heiden,1980; Glass and Mackey, 1988]. Instabilities introduced by delays have
~ also been analyzed in the context of control theory and electrical engineering
[Kolmanovskii and Nosov, 1986].

The goal of this chapter is to develop an understanding of how a delay in the
response of the neurons in a network can induce sustained oscillation and chaos. For the

case of symmetrically connected networks, we find that for some connection topologies,
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delays much less than the network relaxation time can lead to sustained oscillation, while
for other topologies even very long delays will not induce oscillation. Furthermore, for
those network configurations which can oscillate at small delay, there is a critical value of
delay below which the network will not support sustained oscillation.

The results reported in this chapter show that the existence of oscillatory modes in
symmetric networks with delay has a surprisingly simple dependence on the neuron gain
and delay, and on the size and connection topology of the network. These results are
stated as stability criteria which extend the famous result: "symmetric connections implies
no oscillation” to the case of time delay networks. Results derived in this chapter are
based on local rather than global stability analysis and therefore do not provide a rigorous
guarantee that all initial states will converge to fixed points. Rather, we support our
results with extensive numerical and experimental evidence suggesting that the stability
criteria presented here are valid under the conditions investigated. In addition to using
standard numerical integration to test the theoretical results, we have measured critical
delays for sustained oscillation in the electronic network described in Ch. 3.

In the chapter following this one, Ch. 5, we consider a network with discrete-time
parallel dynamics. This network is equivalent to the long-delay limit of the continuous-
time network considered here. In the discrete-time limit, we are able 1o analyze the
dynamics globally and thus provide a rigorous stability criterion guaranteeing that all
attractors are fixed points. It is reassuring that the local results presented here limit
properly at long delay to the global results derived in Ch. 5.

The rest of the chapter is organized as follows: In § 4.2, we write down a general
system of delay-differential equations starting from the circuit equations for an electronic
network and describe the simplifying assumptions of our model. In § 4.3 we present a
linear stability analysis about the point where all neurons have zero input and steepest

transfer function. This point is defined as the origin of an N dimensional space where
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each direction represents the input voltage of a neuron. For sufficiently large neuron
gain, the origin loses stability in either a pitchfork bifurcation, which creates fixed points
away from the origin, or in a Hopf bifurcation [Chaffee, 1971], which creates an attractor
for sustained oscillation. Which sort of bifurcation occurs first depends on the largest
and smallest eigenvalues of the connection matrix and on the normalized delay.
Experimentally, we find that the Hopf bifurcation marks the appearance of sustained
oscillation in symmetric networks. The analysis in § 4.3 1s formulated as a design
criterion that will yield fixed-point dynamics in a delay network as long as the ratio of
delay to relaxation time is kept below a critical value.

In § 4.4, we consider networks operating in a large-gain regime where fixed point
attractors away from the origin and oscillatory attractors coexist, each with large basins of
attraction. We restrict our attention in this regime to networks which oscillate coherently
(defined below), and present a novel nonlinear stability analysis of the coherent
oscillatory attractor which yields a critical delay for sustained oscillation in these
networks. The results of the linear and nonlinear stability analyses presented in § 4.3 and
§ 4.4 are compared with numerical integration of the delay-differential equations and
experiments in the electronic delay network; good agreement is found between theory,
experiment and numerics.

In § 4.5, we discuss stability for several specific network topologies: symmetric rings
of neurons, two-dimensional lateral inhibition networks, random symmetric networks,
and associative memory networks based on the Hebb rule [Hebb, 1949; Hopfield, 1582].
. A particularly important result is that Hebb rule networks are stable for long delays, but
that clipping algorithms which limit the connection strengths to a few values can yield an

connection matrix with large negative eigenvalues which can lead to sustained oscillation.
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In § 4.6, we discuss chaotic dynamics in asymmetric neural networks, and give an
example of a small (three neuron) network which shows delay-induced chaos. Finally, a

summary of useful results is given in § 4.7.

4.2. DYNAMICAL EQUATIONS FOR ANALOG NETWORKS WITH
DELAY

In this section we derive a general system of delay-differential equations, Eq. (4.3),
starting from the circuit equations for the electronic network discussed in Ch. 3. The
network consists of N saturating voltage amplifiers with delayed output coupled via a
resistive interconnection matrix, and is identical with the analog network described by

Hopfield [1984], with the addition of a delay 7’ it

w(r') = ——u i filw{r =) - (4.1)

J=1

The variable u;(¢") in (4.1) represents the voltage on the input of the ith neuron. Each
neuron is characterized by an input capacitance C;, a delay 7’;, and a nonlinear transfer
function f;. The transfer function f; is taken to be sigmoidal, saturating at ] with
maximum slope at u = 0. The connection matrix element T"; has a value +1/R;; when

the noninverting output of j is connected to the input of i through a resistance R;;, and a

tj’
- value -1/R;; when the inverting output of j is connected to the input of i through a
resistance Rij‘ The parallel resistance at the input of each neuron is defined as
R;= (ZJ-IT’,-jI)'l. We consider the case of identical neurons, C; = C, f;=f,

7’; = 7, and also assume each neuron is connected to the same total input resistance,

defining R = R; for all i. With these assumptions, the equations of motion become
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N
RCu(t) = —u(t') + RY, T flu(r - 7)) . (4.2)
=1

Rescaling time, delay and T’U gives the following new variables: =1t"/RC,;
t=1T/RC; Tij = RT'U. This definition of T,-j has a normalization Zj ITU—I =1 1In

terms of these scaled variables the delay system takes on the simple form

=
~
p——

1]

|
X
~
j

+
M=

Ty f(u;(t—1)). (4.3)

J=1

All imes in Eq. (4.3) are in units of the characteristic network relaxation time RC.

As mentioned in Ch. 3, the initial conditions for a delay-differential system must be
specified as a function on the time interval [-7,0]. All experimental and numerical
results presented take all initial functions to be constant on this interval, though not
necessarily the same for different i. A cursory numerical investigation suggests that the

stability results presented below do not depend on the particulars of the initial function.

4.3. LINEAR STABILITY ANALYSIS

We consider the stability of Eq.(4.3) near the origin (#; = O for all i). Linearizing

fi(u) about the origin gives
N
5(1) = —w() + Y B T u{t—1), (4.4)
Jj=1

where the gain f is defined as slope of f;(u) at u = 0. It is convenient to represent the

linearized system of N delay equations as amplitudes ¢; (i = 1, ..., N) along the N
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eigenvectors of the connection matrix T,

;1) = —gi(t) + B A; @i(t— 1), (4.5)

where A; (i = 1, .., N) are the eigenvalues of the connection matrix Tij- The A; will
be referred to as the connection eigenvalues to avoid confusion with the roots of the
characteristic equation that will be derived from Eq. (4.5). In general, these connection
eigenvalues are complex; when T}; is a symmetric matrix, the 4; are real. Assuming
exponential time evolution of the ¢;, we introduce the complex characteristic exponents
s; and define @;(r) = ¢;(0)e’¥. Substituting this form of ¢,(¢) into Eq. (4.5) gives

the characteristic equation

(si+1)e" = B2, . (4.6)

The origin is asymptotically stable when Re(s;) < O for all i {Bellman and Cooke,
1963]. When Re(sy) > 0 for some k, the origin is unstable to perturbations in the

direction of the eigenvector associated with s.

4.3.1 Linear stability analysis with 7 =10

When the neurons have zero delay (t = 0), Eq. (4.6) reduces to (s; + 1) = fA;. In
~ this case, the origin is the unique attractor as long as all connection eigenvalues A; have
real part less than 1/8 as shown in Fig. 4.1. For a symmetric connection matrix, the
A; are real and the bifurcation is of the pitchfork type: For 8> 1/A, the origin becomes
a saddle and a pair of stable fixed points appears on opposite sides of the origin in the

direction of the kth eigenvector of T, ;- In neural networks language, this new pair of
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STABLE | 2 |UNSTABLE

Fig. 4 1. The stability of the origin for zero delay is determined by the condition Re(4;)
< 1/ for all i, where A; are the eigenvalues of the connection matrix T;; which

appears in Eq. (4.3). The border of the stability region is shown as a vertical line in the
complex A plane.
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fixed points away from the origin is a memory.
As an example of linear stability analysis with 7 = 0, consider the N x N all-

excitatory - or ferromagnetic - interaction matrix (I';; =+1/R ; T7; = 0)

0 1 - 1

1 1 0 -1
A i ERE R @1

1 1 0

The connection eigenvalues for this matrix are

1 [once]

A = 1 (4.8)
—ﬁ [(N-1)-fold degenerate] .

Notice that because T;; is symmetric the A; are real. When f3 < 1/4,,,,, where 4,4,

is the maximum connection eigenvalue, the origin is the only attractor. When

B> 1/A,,,, the origin is unstable, and two fixed points appear on either side of the

origin along the eigenvector associated with A,,,, . In the present example, A,,,,, = 1

from Eq. (4.8) and the eigenvector associated with A,,,,, is the ferromagnetic direction
(u; = 1 for all ).

A second example is the N X N all-inhibitory or antiferromagnetic connection

matrix

0 -1 -1
T. = _1 -1 0 e - (4.9)
Y N-1| P 1 ot '
-1 -1 0
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This network configuration is important in neural networks as a model of lateral
inhibition (see § 4.5.2) and as a so-called winner-take-all circuit. The eigenvalues for the

all-inhibitory network are

— N -1)-fold deg t
A = N1 (( ) egenerate) (4.10)

-1 [once] .

For this network configuration, the origin does not become unstable and fixed points
away from the origin do not appear until 8 > 1/4,,,, = N-1. Thus the origin for a
large all-inhibitory network is very stable for zero delay. The eigenvector associated the
minimum eigenvector A,,;, is in the in-phase, or ferromagnetic, direction (#; =1 for all
i). The N-1 eigenvectors associated with the degenerate A,,,, all satisfy the condition

Y, u; = 0 which defines a hyperplane perpendicular to the ferromagnetic direction.

4.3.2. Frustration and equivalent networks

A symmetric matrix with connection strengths limited to three values - positive,
negative and zero - can be represented as an undirected signed graph with a neuron at
each vertex. An important property of the all-inhibitory network discussed above is that
every loop formed from three neurons in the connection graph has an odd number of
negative (inhibitory) edges. A connection graph containing loops with an odd number of
negative edges is said to be frustrated. Frustration is important in systems with
competing interactions [Toulouse, 1977], and is considered essential in the formation of
a spin-glass state in magnetic systems [Binder and Young, 1986; Mezard et al., 1987].
We suspect, though have not proven, that frustration is also essential for delay-induced

oscillation when there is no self connection, i.e. Tj;; = 0. Because every triangular loop
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in the all-inhibitory network has an odd number of negative edges, this configuration is
said to be fully frustrated. There are 2¥-1 other networks that are also fully frustrated;
these other configurations are related by the Mattis transformation [Mattis, 1976]: For
any ilet & — -u; and Tj; - -Tyj for all j. All 2N-1 fully frustrated networks have
identical dynamics, up to changes of sign. Similarly, there are 2V-1 networks equivalent

to the ferromagnetic network, Eq. (4.7), all of which are nonfrustrated.
4.3.3. Linear stability analysis with delay

In this section, we show that for 7> 0 the stability region, defined by the condition
Re(s;) < 0, is no longer a simple vertical line at 1/8 in the complex A-plane as in
Fig. 4.1, but forms a closed teardrop-shaped region that becomes smaller and more
circular as the delay is increased as shown in Fig. 4.2. This idea is also discussed by
May [1974]. As 7 — 0, the region of stability expands to fill the half plane
Re(A) < 1/B, recovering Fig. 4.1; as T — oo the stability region becomes a circle
centered at A = 0 with radius 1/f8. A circular stability region is characteristic of iterated-
map dynamics just as a half-plane stability region is characteristic of differential equation
dynamics; thus as delay is increased from 7 << 1to T>> 1 the local stability condition
of the delay-differential system goes from that of continuous-time, differential equation
dynamics to iterated-map or parallel-update dynamics [May, 1974]. The dynamics of the
iterated-map analog network: u;(t+1) = Zj T,-jf(uj(:)), where ¢ is the index of
. discrete time, corresponds to the long delay limit of Eq. (3.1). A global stability
criterion for the iterated-map network will be given in Ch. 5. The iterated-map stability
criterion agrees with the local analysis presented here in the long-delay limit T — oo.

The exact shape of the stability region at any value of delay can be found by
substituting ;= 0j+ ia)j (i=+/—-1) into Eg. (4.6) and finding the condition oj = 0.

J

The loci of points on the border of the stability region can be written in polar coordinates
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as

Avorger = A(B) €, (4.11)
where A(8) > 0 is the radial distance from the point A = 0 to the border of the stability
region at an angle 6 from the positive Re(A) axis. Putting Eq. (4.11) and the condition
g; =0 into Eq. (3.3) gives

(i + 1) = BA(B)” . 4.12)

Solving for A(6) gives the border of the stability region as an implicit function of

delay:

A(B) =% o+ 1, (4.13a)
~0; = tan(w;z-96), (4.13b)

where ; is in the range (6 - #/2) £ w;7 <6 modulo 2w. We are interested in
the smallest root w; of Eq. (4.13b) for a given value of 6 and 7. Large roots of
Eq. (4.13b) produce large values of A(6) by Eq. (4.13a), which lie outside of the
stability region defined by the smaller roots. Only the part of the A-plane inside the
smallest stability region is actually stable. The stability region for the origin is plotted
for several values of delay in Fig. 4.2.

Because the stability region closes in the negative half-plane for 7> 0, it is possible
for the origin to lose stability due to large negative connection eigenvalues - even purely

real ones. The intersection of the stability region border and the Re(A) axis in the

negative half-plane is given by the solution to Eq. (4.132) at 6 = 7. We define this
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~ Fig. 4.2. The stability of the origin in the delay network lies within a closed region in the
complex plane of eigenvalues of the connection matrix T;;. Regions of stability are
plotted for different values of delay: For 7 = 0, the border is a vertical line at Re(1) =
1/B as in Fig. 4.1 ; For 7 = o, the stability region is a circle of radius 1/f centered at
the origin of the A plane. At finite delay, the stability region is teardrop shaped,
crossing the real axis in the positive half-plane at 1/8 and crossing the real axis in the
negative half-plane at a delay-dependent value A. The tick marks along both axes are in
units of 1/8.
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Fig. 4,3, The border of the stability region crosses the Re(A) axis in the negative half
plane at A for 7 > 0. The product A, where B is the neuron gain, is plotted as a
function of normalized delay 7. The value of A is particularly important for symmetric
networks where the eigenvalues are confined to the Re(A) axis.
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solution as A, dropping the argument for the special case & = 7. The value of A is
inversely proportional to the gain of the neurons and is a transcendental function of delay
defined implicitly by Eq. (4.13). A plot of the product A, which depends only on
delay, is shown in Fig. 4.3. For large and small delay, A can be approximated as an

explicit function of delay and gain:

% g—] re<l, (4.142)
T
A = <
2
% 1+ [——TZ J 7>> 1 (4.14b)
|

For a symmetric connection matrix (A; real) the origin will be unstable when
Amax > VB or Ay, <-A. The bifurcation at A,,,, = 1/B is a pitchfork (as it is
for T =0) corresponding to a single real root 5; of Eq. (4.6) passing into the half plane
Re(s) > 0. The bifurcation at A,;;, = -A corresponds to a Hopf bifurcation [Chaffee,
1971] of the origin, with a complex pair of roots s; passing into the half-plane
Re(s;) >0 at ;. The imaginary component ®; = (8A - 1)!/2 at the bifurcation

gives the approximate frequency of the oscillatory mode that results from this bifurcation.

4.3.4. Symmetric networks with delay

Figure 4.4 shows the evolution of the stability region of the origin for a delay
network at three different values of gain. Each frame also shows schematically a
distribution of eigenvalues for one of two types of symmetric networks: The eigenvalues
on the left side of Fig. 4.4 are skewed negative, that is [A,,,,/A il < 1, while the

eigenvalues on the right side are skewed positive, with I4,,,,/4,,;xl > 1. At low gain
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Fig, 4.4. The stability region of the origin and two different types of eigenvalue
distributions (filled circles) are shown schematically. On the left (a,c,e), the eigenvalues
satisfy 1A,,,/Amin) < 1; on the right (b,d,f), the eigenvalues satisfy [A,q0/Aminl > 1.
As the gain is increased, the stability region decreases in size and the origin loses
stability. The bifurcations for each type of distibution are explained in the text.



(Figs. 4.4(a) and (b)) all eigenvalues lie within the large stability region and the ongin is
the unique fixed point and is stable. As the gain is increased, the size of the stability
region decreases as 1/83. The first eigenvalue to leave the stability region will either be
the most negative, A,,;,, as in Fig. 4.4(c), or the most positive, 4,,,,, as in Fig.
4.4(d). For the case in Fig. 4.4(d), a pair of attracting fixed points appear on either side

of the origin along the eigenvector associated with A,,,, and the origin becomes a
saddle. For the case in Fig. 4.4(c), an oscillatory attractor exists along the eigenvector
associated with the eigenvalue A,;,. The value of gain at which 4,,;, leaves the

stability region in Fig. 4.4(c) is given by

g =Y+l (4.15a)
'lmin
where
w=-wun(wt) , F<or<r. (4.15b)

In the limit of small delay, this value of gain is

_ V.9
2T A n

B = (r<<1), (4.16)
and the period of oscillation is approximately 27/@ ( = 47 for T<< 1).

For an eigenvalue distribution which satisfies 14,,,,/4,,;,| < 1, the first bifurcation
to occur as the gain is increased can be either a pitchfork bifurcation, as A,,,, leaves the
stability region, or a Hopf bifurcation as A,,;, leaves the stability region, depending on

the value of delay. For an eigenvalue distribution which satisfies I4,,,/2,,;, > 1,

min
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Amax Will always leave the stability region before 4,,;, regardless of delay.
A stability criterion for symmetric networks based on linear stability analysis can be

formulated by requiring that 4,,,,, the minimum eigenvalue of 7;;, remain inside of the

i
negative border of the stability region of the origin. In terms of the notation we have
defined, this criterion requires -A < A,,;,. The condition can be simplified by noting
that A is always larger than its small-delay limit of #/(27f). The stability criterion for

symmetric networks with delay can thus be stated:

T

T € — ———e
2ﬁlmin

= no sustained oscillation. 4.17)

This criterion lacks the rigor of a global stability condition, which exists for 7= 0
[Cohen and Grossberg, 1983; Hopfield, 1984] and T — o [Marcus and Westervelt,
1989¢] but is supported by considerable numerical and experimental evidence.

Figs. 4.4(e) and 4.4(f) show the sitnation when the gain is sufficiently large that
eigenvalues have left the stability region through both negative and positive borders,
indicating that Eq. (4.17) is violated and that fixed points exist away from the origin. In
this regime the system possesses multiple basins of attraction for coexisting fixed-point
and oscillatory attractors.

We find experimentally and numerically that delay networks in the large-gain regime
may or may not show sustained oscillation, depending on the value of delay and the
eigenvalue distribution. The observed behavior at large gain can be classified according
to the ratio 14,5 /Amin): Networks with A,/ > 1, as in Fig. 4.4(f), either do
not oscillate at all or will oscillate only when the delay is much larger than the relaxation
time. We have never observed sustained oscillation at 7 < 1 in any network satisfying
1A max/Amin) > 1 experimentally or numerically. This result remains empirical, but is

consistent with the analysis in § 4.4 for delay networks that oscillate coherently.
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In contrast, all networks investigated that satisfy |4,,,5,/A ;] < 1 Will oscillate for
sufficient delay. At large gain, as in Fig. 4.4(e), these networks show coexisting fixed-
point and oscillatory attractors. The basins of attraction for the oscillatory attractors are
large for large delay but shrink as the delay s decreased, as seen in Ch. 3. For delay less
than a critical value 7, the oscillatory attractors disappear and only fixed-point
dynamics are observed. A value for 7. cannot be found by the linear stability analysis
described in this section because of the importance of the nonlinearity in the large-gain
regime. An expression for 7., for networks that oscillate coherently is derived in
§ 4.4. The critical delay 7., found in this case diverges as A, ;,/Apin! = 1, in

agreement with the empirical results mentioned above.

4.3.5. Self connection in delay networks

Including a delayed self connection affects the dynamics by shifting the distribution
of connection eigenvalues and by decreasing the relaxation time of the network. As an
example, consider the effect of adding a delayed self-connection term ¥ to the all-
inhibitory network.l With the self-connection, the properly normalized connection

matrix and eigenvalues are

y -1 -1
-1 cee 1
y = 1 . ?/ M ¢ > (418)
N=1+y| ¢ ¢ "
-1 -1 Y

VA different normalization for the self connection is introduced in Ch. 5. Notice that in the present
usage 7 is the relative strength of the self connection compared to the strength of interneuron
connections.
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1+y
_— N -1)-fold degenerate
NoTeT [(N-D) generate]
2,; = A (419)
.I_M [oncc] .
N-1+]y

The connection eigenvalues A, and A,,;,, for the all-inhibitory network are shown as
functions of the self-connection ¥ in Fig. 4.5. Notice that adding a negative self
connection (¥ < 0) does not change A,,;,,, thus the value of delay where the Hopf

bifurcation occurs in the all-inhibitory network is not changed by a negative self-
connection. Adding a positive self-connection (y > 0) will bring 4,,;, closer to zero
and will increase the delay necessary for the Hopf bifurcation to occur. The condition

| Amax! Aminl > 1 is satisfied in (4.19) when ¥ exceeds (N/2 - 1).

4.4. CRITICAL DELAY IN THE LARGE-GAIN LIMIT

In this section, we find a critical delay for sustained oscillation in the large-gain
regime, where fixed point attractors away from the origin coexist with a single coherent
oscillatory attractor. The main result, Eq. (4.23), applies to networks in which the
oscillatory attractor is along a coherent direction. Coherence is defined by the condition
that all lu;l are equal. Equivalently, a coherent oscillatory attractor lies along a vector
extending from the origin to any corner of an N dimensional hypercube centered at the
~ origin. When the eigenvector associated with A, is in a coherent direction, then the
most robust oscillatory mode - that is, the one that will exist at the smallest delay - will be
coherent. In this case, the network will not oscillate when the delay is smaller than the
critical delay derived below. Connection topologies which have a coherent direction

associated with A,,;, include all fully frustrated networks: the all-to-all, one- and two-



-1 1 y
] a1
nun
-1
Fig. 4.5, The largest and smallest eigenvalues for the all-inhibitory network, Eq. (4.18),

plotted as a function of the diagonal element 7. The values indicated at the axis
crossings are for a general N, but the scale of the drawing is correct for the case N = 3.
The asymptotic value for all eigenvalues as Yy 2 F eo s +1.
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dimensional inhibitory networks treated in § 4.5, as well as all Mattis transformations
[Mattis, 1976] of these networks. For other networks discussed in § 4.5, including the
diluted inhibitory network and the negative-only clipped Hebb rule, the eigenvector
associated with A,,, appears numerically to approach coherence at large N, though this
has not been proven rigorously.

The stability criterion of § 4.3.4, stated as Eq. (4.17), applies at all values of gain but
becomes useless in the large-gain limit. In particular, Eq. (4.17) requires that the delay
g0 to zero as the gain diverges in order to prevent oscillation. Expertmental and
numerical investigation suggest that this requirement is too severe, and that there is a
gain-independent critical delay 7., such that for T < 7.;, sustained oscillation
disappears. Apparently, this critical delay results from an instability of the oscillatory
attractor itself. Below, we derive a value for the critical delay T for coherent
oscillation in the large-gain limit by considering the stability of the oscillatory attractor.

This novel stability criterion agrees very well with experimental and numerical data.
4.4.1. Effective gain along the coherent oscillatory attractor

The basic idea of the derivation is that neurons with saturating output can be regarded
as having an effective gain :Beﬁ which 1is not constant as the state moves along the
oscillatory attractor, and can be finite even when f(u) is infinitely steep at u = 0. The
effective gain is defined as ﬁeﬁc= flu())/u(r). Note that Beff is defined as the ratio
~ of the neuron output f(u(?)) divided by the input u(z) which gave rise to rhat
particular output; this is a significant distinction for delay network, since the oﬁtput
fu(t)) due to the input u(r) does not appear at the output until a delay time 7 has
elapsed. This definition of ﬁeﬁr reduces to the usual gain S when f(u) is linear (with

or without delay). We assume that the oscillatory attractor loses stability when the
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effective gain is sufficiently large at all points on along the attractor that perpendicular
perturbations will always lead the system off of the attractor. This instability occurs
when the minimum value of ﬁeﬁ along the attractor exceeds a critical value related to
flow perpendicular to the oscillation direction.

When the large-gain network is oscillating coherently, neuron outputs swing between
*+1 in the form of a square wave, while the inputs alternately charge and discharge
exponentially with a time constant equal to the relaxation time of the network as shown in
Fig. 4.6(a). The smallest value of ﬁeff occurs when the input amplitude is at an
extremum of its charge-discharge oscillation and the corresponding output is saturated at
+1. At this point, ﬁeff is the reciprocal of this input amplitude. The maximum

amplitude A; at the ith input depends on the delay and is given by

A = (1-€7). (4.20)

N
2. Ty sen{u;)
j=1

For coherent oscillation along the direction associated with 4,,;, all of the 4; in Eq.
(4.20) will be the same (defined as A, with no subscript) and the term in the absolute
value of (4.20) will equal -4, (> 0). In this case 4 will be bounded below by 1/4,
as shown in Fig. 4.6(c):

> e— 4.21)

B 1
% A Amin(l—e_l)

Flow perpendicular to the oscillatory attractor is described by Eq. (4.5) with the 4;
(i =1, .., (N-1)) equal to the N-1 eigenvalues of T;; excluding Amin and with
B = Begr. The least stable of the N-1 directions perpendicular to the oscillatory

attractor is along the eigenvector associated with 4,,,,,. Thus the oscillatory attractor will
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(a)

A‘ <« (u(t-1))
) N <t
t
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-1 I
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< (1)
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(c)
<« f(u(1)
Bert u(y)
- — — e
| A
oL

Fig. 4.6. (a) The input u(t) (triangular wave) and output f(u(z-7)) (square wave) for
- a sarurating infinite-gain neuron with delay in an oscillatory state. The value A, given by
Eq. (4.20), is the maximum amplitude of the input. (b) The same input and output
waveforms as above with the offset between input and output due to delay suppressed.
(c) The effective gain ﬁeff, defined as the ratio of f(u(f))/u(t), takes on finite values
even when f(u) is infinitely steep at ¥ = 0. The minimum value of ﬁeﬁis where the
input is an extremum,; at this point ﬁeﬁ-a- 1/A. (d) The input and output of a delayed
neuron from the electronic circuit (Ch. 3) in a state of sustained coherent oscillation.
Compare this to the idealized form in used in (a).
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lose stability when A48, > 1 at all points along the trajectory. From Eq. (4.21), this
condition is satisfied when 4,,,,/A > 1. The critical delay 7., defined by the

condition A,,,,/A = 1, is thus given by

A = 1 (4.22)

Solving (4.22) for 7,4, gives the main result of § 4.4:

T = —In [1+lm]; (0 < Apay <= Apin) - (4.23)

min

To illustrate this result we again consider the N x N all-inhibitory network (4.9) in
the large-gain limit. This network has connection eigenvalues A, = 1/(N-1),

Amin = -1, giving a large-gain critical delay

N-1
N-2

Tt = ln[ j [~ 1/N for large N]. (4.24)
Fig. 4.7 shows 7.4, for the all-inhibitory networks as a function of the size of the
network N. The solid line is from Eq. (4.24), the circles are data from numerical
integration with 8 = 40 indicating the smallest delay that would support sustained
_oscillation. The rapid decrease in 7y, as the size of the network increases indicates that

the all-inhibitory network is very prone to oscillation for large N.
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Fig. 47. Large-gain critical delay 7., for the all-inhibitory network plotted against N,
the size of the network. Solid curve is the theory from Eq. (4.23), the filled circles are
from numerical integration of the delay equations at 8 = 40. Numerical integration data
were obtained by starting the system with initial functions ¢;:[-7,0] along the
eigenvector associated with 4,,;, and constant over the time interval [-7,0]. The delay-
. differential equations were integrated using a modified Euler method: A stack of 10 - 40
previous states was maintained for each neuron. Upon each Euler step, the elements in
the stack were moved down one position and a new state was added to the top of the
stack. The step size and size of the stack were chosen so that a state reached the bottom
of the stack at precisely the specified delay, and could then be used as the neuron's
delayed output. The system was checked for oscillation after many (up to 10%) time
constants. The critical delay was found by repeating the integration using a 10-split
binary search in the value of delay.
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4.4.2. Crossover from low gain to high gain regime

We have now found two critical values of delay: For small gain (8 < 4,,,,) the
network does not oscillate for ¢ < 7y, where 7y is the value of delay where the Hopf

bifurcation occurs. For small delay,

T
Ty = ——— . (4.25)
i 2 ﬁ ‘;Lmin

At large gain, the delay network does not oscillate for 7 < 7., where T is given
by Eq. (4.23). We now consider the crossover from the small-gain regime to the large-

gain regime for the specific example of an all-inhibitory triangle of neurons. For this

network,

. 0 -1 -1
Ty=5|=1 0 =1} A=} Apu= —1. (4.26)
-1 -1 0

Fig. 4.8(a) shows the two theoretical curves for each of the two regimes. The data
points are the values of delay where the oscillatory attractor disappears as measured in the
analog circuit (open circles) and by numerically integrating the delay equations (filled
circles). Fig. 4.8(b) shows four regions of the S - T plane, each with distinct
- dynamical properties. For f# < 2 and 7 < 7y, where 7y is found by setting 4,,;, = -1
in Eq. (4.15), there is a single fixed point attractor at the origin. For <2, 7> 7y,
the fixed point at the origin is unstable and there is a single oscillatory attractor. At 8=
2 fixed points away from the origin appear. At this crossover point, 7y = 1.209. For

B> 2, the Hopf bifurcation line no longer marks the critical delay for sustained
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Fig. 4.8. Phase diagram for the all-inhibitory (or frustrated) triangle of delay neurons.
(a) Two theoretical curves are shown. The curve labelled 7y indicates the value of delay
and gain where the origin undergoes a Hopf bifurcation, from Eq. (4.17); the line
labelled 7., indicates the large-gain critical delay where the oscillatory mode loses
stability. For 7 < 7., only fixed-point attractors are stable. The data points are critical
delays measured in the electronic network (open circles) and by numerical integration
(filled circles) with f=40. Numerical integration data were obtained as described in the
caption of Fig. 4.7. (b) The four regions in the f§ — 7 plane with qualitatively different
dynamics are: S;: Single fixed point attractor at the origin; Oy: Single coherent oscillatory
attractor; Spy: Multiple fixed point attractors away from the origin, all fixed points; Op:
Multiple attractors away from the origin, including fixed points and a coherent oscillatory
attractor.
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oscillation. As [ becomes large, the cridcal delay for sustained oscillation approaches
the gain-independent theoretical value of 7., From Eq. (4.24), 7.;,(N=3) = In(2)

= 0.693.
4.5. STABILITY OF PARTICULAR NETWORK CONFIGURATIONS

In this section we consider sustained oscillation in four symmetric delay networks:
(1) symmetrically connected inhibitory rings; (2) large two-dimensional arrays of nearest-
neighbor lateral inhibition networks on square and hexagonal lattices; (3) spin-glass-like
random symmetric networks; and (4) Hebb rule and clipped Hebb rule associative

memones.
4.5.1. Symmetrically connected rings

A ring of neurons with symmetric connections, all of equal strength but of either

sign, inhibitory or excitatory, has a spectrum of connection eigenvalues given by
2r
Ay = cos(—N—(k+ (o)] ; k=0,1, ..., (N-1). (4.27)
where ¢ = 1/2 for a frustrated ring, i.e. Sgr:(l’l,,-,,‘g Tij)=-1,and ¢ =0 for a
nonfrustrated ring [Reger and Binder, 1985). (The normalized matrix has elements

T,-j = Tjiz +1/2.) The ratio of maximum to minimum eigenvalues can be found

directly from Eq. (4.27):
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(cos(n/N)  [<1] N odd; frustrated,
A _ sec(m/N) [>1] N odd; nonfrustrated, (4.28)
2'm‘in
1 N even; frustrated or nonfrustrated.

Notice that only frustrated rings with odd N satisfy the condition 14,5,/ Al < 1,
suggesting that only these configurations will show sustained oscillation. This
conclusion is confirmed experimentally and numerically. The large-gain critical delay for

the frustrated ring with odd N is found from Eq. (4.23),
Ty = — In(l - cos(%j) ; (N odd, frustrated). (4.29)

Notice also that 7. increases with increasing N for the symmetric ring, while for the
all-inhibitory network 7., decreases with increasing N. Inhibitory rings are thus much
less prone to oscillation than fully-connected inhibitory networks. The critical delays

from numerical integration are compared to Eq. (4.29) in Fig. 4.9.

-74 -



3.0
| O large-gain theory v
e numerical integration .
20 |
_ @
T
1.0 r
i )
0.0 | 1 { { | L I ) I\
c 1 2 3 4 5 6 7 8 9 10
N
- Fig. 4.9. 1 arge-gain critical delay 7., for symmetrically connected frustrated rings with

N = 3,5,7,9 from Eq. (4.23) (open squares) is plotted along with critical delay from
numerical integration (filled circles) with § = 40. Numerical integration data were
obtained as described in the caption of Fig. 4.7. Frustrated symmetric rings with even
N do not satisfy |14,,,,/A,,;,! < 1 and therefore are not expected to oscillate for any
delay within the large-gain theory. Numerically, frustrated rings with even N showed
sustained oscillation only for very large delay (7 > 10), though this is possibly a
numerical artifact.
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4.5.2 Two-dimensional lateral-inhibition nefworks

An important network configuration, especially to the study of real and artificial
visual systems, is one in which each neuron inhibits the activity of its neighbors. This
configuration, called lateral inhibition, is ubiquitous in vertebrate and invertebrate vision
systems [Dowling, 1987], and is widely used in artificial vision systems for edge and
feature detection. Lateral inhibition has also been incorporated into an electronic VLSI
model of the retina [Mead, 1989]. The function of lateral inhibition is to enhance the
contrast of edges in a visual scene [Ratliff, 1965; Dowling, 1987] and to broaden the
dynamic range of a visual system by setting a local rather than global reference point for
measuring relative intensity variations [Mead, 1989].

A case of lateral inhibition in which time delay is significant is in the compound eye
of the horseshoe crab, Limulus [for a collection of papers see: Ratliff, 1974]. It is found
experimentally that the individual eyelets (ornmatidia) that form the compound eye of
Limulus are mutually inhibitory, and that there is a significant time delay (~ 0.1 sec.)
before lateral inhibition is activated between any pair of ommatidia. It is also found that
under certain experimental conditions, a spatially uniform illumination over the entire eye
will induce sustained coherent oscillation, with all ommatidia showing an in-phase
periodic modulation in their output firing rate, with a period of ~ 0.3 sec. [Barlow and
Fraioli, 1978].

Such experiments have stimulated several mathematical analyses addressing
~ oscillation in delayed lateral inhibition systems [Coleman and Renninger, 1974, 1975,
1978; Hadeler and Tomiuk, 1977, an der Heiden, 1980]. These analyses have assumed
uniform, all-to-all coupling between ommatidia, and further have assumed a coherent
form for the oscillatory solution, which allows the problem to be reduced to a one-

dimensional delay-differential equation for motion along the in-phase (1,1, ...,1)
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direction. This second assumption does not allow an instability of the oscillatory mode to
broken-symmetry states, and thus previous treatments have not predicted the instability of
the coherent oscillatory solution which lead to our large-gain critical delay 7_;, in § 4.4,
Already in Ch. 4 we have considered two extremes of lateral inhibition networks: the
all-to-all inhibitory network (Eq. (4.9) and (4.24)) and the one-dimensional laterally
inhibiting ring, which is covered by the analysis in § 4.5.1. These two networks are
seen to behave quite differently as the number of neurons becomes large. Specifically, as

N — oo the critical delay 7, from (4.23) tends to zero for the all-to-all inhibitory
network and tends to infinity for the one-dimensional ring with nearest-neighbor

inhibition (for now, we set the self-connection y=0):

T, >0 as Noeo  (all-to-all), (4.30)

Ty —> o0 a8 N oo (1-D ring). (4.31)

Of course, the case of most direct application to vision is neither of these extremes, but
rather a large 2-D network. In this subsection, we show that the stability of large 2-D
networks with delayed nearest-neighbor lateral inhibition depends crucially on the form

of the lattice. With the neurons on a square lattice (Fig.4.10(a)), we find

Tyt —>°° a8 N — oo (2-D square lattice). 4.31)
* That is, this configuration will not show sustained oscillation in the large-N limit. In
contrast, when the neurons are placed on a triangular lattice (Fig. 4.10(b)) the critical

delay for sustained oscillation is finire in the large-N limit, approaching the limit

Tens = In(2)=0.693... as N 5 oo (2-D miangular lattice). (4.32)
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(b)

Fig. 4.1Q. Two-dimensional lattices with lateral inhibition. (a) Square lattice, (b)
triangular lattice.
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For generality, we introduce a diagonal element ¥ in the connection matrix (before
normalization), corresponding to a delayed self-inhibition (y< 0) or self-excitation
(y> 0). The value of y indicates relative strength of the delayed self-connection
compared to the strength of the delayed lateral inhibition (as used in Eq. (4.18)). With

the delayed self-connection ¥, the critical delay for the 2-D triangular lattice becomes

Tt = ’"Uy_ﬁ as N — oo, (4.33)
We restrict the ¥ to the range -3 < y< 6 to insure 0 <A, <—24,;,, which was
assumed in the analysis of § 4.4. Equation (4.33) indicates that the tnangular lattice can
oscillate even when there is an overall self-excitation, as long as y< 1.5.

It may seem surprising at first that the type of lattice can so greatly affect the network
dynamics. The key to understanding the difference is realizing that on the tmangular
lattice, lateral inhibition (or, equivalently, antiferromagnetism) 1s frustrated, but on the
square lattice it is not. On the square lattice, in fact, lateral inhibition is exactly equivalent
to lateral excitation via a Mattis transformation [Mattis, 1976]. This difference is also
seen in 2-D magnetic models: While ferromagnets on square and triangular lattices behave
nearly identically (both are nonfrustrated), the corresponding 2-D antiferromagnets are
quite different, due to the presence of frustration in the triangular lattice, but not the
square lattice [Wannier, 1950]. As discussed in § 4.3.2, the presence of frustration
- seems to be essential for a delay network to support sustéincd oscillation.

To derive the above results, Eqgs. (4.31)-(4.33), we need the extremal eigenvalues of
the connection matrix for nearest-neighbor inhibition on these 2-D lattices. The value of

T

rir €an then be found immediately from Eq. (4.23). This sort of eigenvalue problem

is frequently encountered in condensed matter physics, for example to describe the
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vibrational modes of a 2-D larttice2. Therefore, the eigenvalue spectra will be presented
without derivation (see, for example [Ashcroft and Mermin, 1976, Ch. 22]). We assume
periodic boundary conditions and take N; and N, as the number of neurons along each
of the two lattice vectors. (The total number of neurons is the product ¥\N,.) As

usual, the connection matrix obeys the normalization %; IT;l = 1. The eigenvalues

Ak, i, Of T}, for the 2-D square lattice are given by

y—2|cos(2mky /Ny )+ cos(2 1tk /N3)
A (T) = | 7+a L (434

where the indices range over the values kl,z =0,1,., (Nu—l). From (4.34), we find

that for the square lattice, the ratio appearing in (4.23) limits to

, (4.35)

To apply the analysis of § 4.4.1, which assumed 0 <A4,, <—A4,,, we require
~4 < y< 4, From (4.35) and (4.23) we conclude that for y20, 7 — = for large
2-D square lattices, as Ny, Ny — eo.

The eigenvalues for the triangular lattice are given by

v —2[cos(2k /N,) + cos(2ky [Ny ) + cos(2m(ky /Ny = ky /Ny ) )]

M1 (T) = o (4.36)
where, again k12 =0, 1,..., (Nu—l). In this case, the ratio in (4.23) limits to
. Y+3
L A Apin) = —— . 437
N,,Nl:lao( ] Amin) —; (4.37)

24 very helpful discussion with R. D. Meade regarding this point is gratefully acknowledged.
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and we require -3 < ¥< 6 to insure 0 <A, <—A4,,,. Notice that for the triangular

lattice,

Li A Ao ) > -1 438
Nl,leni)oo( max/ mm) ( )

for ¥ < 1.5. Equations (4.38) and (4.23) indicate that a nearest-neighbor lateral
inhibition network on a large triangular lattice has a finite value for 7., as long as the
(delayed) self-excitation strength remains less than 1.5 times the lateral-inhibition
strength. From (4.37) and (4.23), we can find the value of 7 given above in Eqs.
(4.32) and (4.33).

The eigenmode associated with the most negative eigenvalue of (4.36) is k| =0,
ky =0. This O-wavevector mode is the in-phase (coherent) direction in state space, as
shown in Fig. 4.11(a), which justifies the application of the large gain analysis and Eq.
(4.23). Further consideration reveals that the mode associated with the roost positive
eigenvalue - the mode which first goes unstable to break the symmetry of the coherent
oscillation - is the /3 x4/3 mode shown in Fig. 4.11(b).
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lateral inhibition network, from Eq. (4.36). (a) The mode associated with 4_ . is the
coherent, in-phase mode, k| = k,= 0. This is the oscillatory mode which appears for
the smallest value of delay. (b) The mode associated with 4, is a /3 x4/3 structure.
The wave vectors for this mode are at the vertices of the hexagonal Brillouin zone. This
is the first mode to break the symmetry of the coherent oscillatory mode, giving the value

for TCl'll

-82-



4.5.3. Random networks

Sustained oscillations in randomly connected neural networks have been considered
previously for symmetric networks with parallel dynamics [Cabasino er al.,1988],
which show at most period-2 oscillations [Peretto, 1984; Goles-Chacc er al., 1985;
Goles and Vichniac, 1986; Grinstein er al., 1985; Frumkin and Moses, 1986; Marcus
and Westervelt, 1989¢] and for asymmetric networks with parallel dynamics [Amari,
1971; Shinomoto, 1986; Gutfreund et al., 1988; Kiirten, 1988], sequential dynamics
[Shinomoto, 1986; Gutfreund er al., 1988], and continuous-time dynamics [Amari,
1972; Kiirten and Clark, 1986]. Periodic as well as chaotic dynamics in a mean field
spin-glass model with delayed interaction have also been described [Choi and Huberman,
1983b].

We will only consider the effect of delay in symmetric random networks, and we
find only simple (non-chaotic) oscillation above a critical delay. The absence of chaos in
the symmetric continuous-time delay network (with monotonic nonlinearity) is not
surprising, as the two limits of short and long delay are known to possess only fixed
points and period-2 oscillations: A rigorous proof of this conjecture for the general delay-
differential system has not been presented to our knowledge.

We consider a delay network with symmetric connection matrices whose elements
Tij (= Tj,-) are independently fixed at one of three values (+,-,0). Any two neurons are
connected by a positive connection with probability p, and by a negative connection
- with probability p.. The connectance p is defined as p = (p, + p.); the bias q is

defined as g = (p,. - p.). The normalized matrix Tijs has elements

+_- with probability p,

0 with probability 1- p.
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The eigenvalue spectrum of a random symmetric matrix is described by the famous

Wigner semicircular law [Wigner, 1958; Edwards and Jones, 1976] (For a generalization

of the semicircular law to random asymmetric matrices, see [Sommers et al.,1988]).

The notation used here follows Edwards and Jones [1976]. For an ¥ x N random

symmetric matrix whose elements have a mean My/N and a variance 0'2/N, the

spectrum of eigenvalues p(4) converges for large N to a continuous semicircular

distribution. For MO =0,

(407 -2%) <2
R <
po(A)=1 270° ?
0 |A|>20
and for My # 0,
Po(i) |M0| <C
p(1)=

po(1)+%6(l—Mo+cl/M0) |Mo| > o

For the (+,-,0) matrix, Eq. (4.39), we identify
My & L,
p

o ;;W(p-qz).

(4.40a)

(4.40b)

(4.41a)

(441b)

From Eq. (4.40) and Eq. (4.41), we can find the maximum and minimum eigenvalues of
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T;. Setting Tj; = 0 adds a term of O(1/N) to all of the eigenvalues; we will neglect
this and all terms O(1/N). These results are therefore valid only for large N, where

N2 <<« N,

A = 9 (4.423)
q 1
= + Ol% >, (=
2+ oy fora» (2
2 2
—; qu + O(%) for —q<1‘%
q 1 14
- + Ol —q > .=
? . of3) or =a> 2

The condition 14,,,/A,! < 1 is only satisfied when -g > (p/N)172, suggesting that a
symmetric random network must be biased sufficiently negative before it will oscillate for
small delay (<~ 1).
4.5.4. Random symmetric dilution of the all-inhibitory network

An example of a random symmetric network that will oscillate for small delay is the

randomly diluted inhibitory network. For this network p, =0and p=-¢g=p.. To

. O(1/N), the maximum and minimum eigenvalues are
12
2 1
A= —|——-1]| , 443
max \/ﬁ (p_ ] ( a)
A’nu'n = -1 (443b)
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Fig, 4.12. The range of connection eigenvalues for a symmetrically diluted inhibitory
network with N=100 from Eqs. (4.40) and (4.41) is plotted as a function of the
connectance p_ (solid curves). The line at A = -1 indicates a single eigenvalue A,,;,
lying outside of the quasi-continuous distribution. The small crosses are eigenvalues

computed for randomly generated symmetric 100 x 100 matrices with p_ = 0.4, 0.7, and
0.9.
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Fig. 4.12 shows the theoretical range of eigenvalues for a 100 x 100 randomly diluted
inhibitory matrix as a function of connectance p.. The small crosses are the eigenvalues
of computer-generated random (-,0) matrices with p. = 0.4, 0.7 and 0.9.

For the randomly diluted inhibitory network, with or without delay, the neuron gain
at which the origin becomes unstable via a pitchfork bifurcation, creating fixed points

away from the origin, is given by

1 ~1/2
= — [— - I] (pitchfork). (4.44)
D_

Because A,,;, is independent of connectance, the delay at which the origin loses stability
by a Hopf bifurcation is also independent of connectance. Inserting A,,;, = -1 into
Eq. (4.25) gives Ty = n/23, the small-delay limit being appropriate for large N and
therefore large .

The large-gain analysis of § 4.4 can be applied to the diluted inhibitory network when
N is large. Atlarge N the eigenvector associated with A4,,;, is nearly coherent, that is,
the differences in lu;| along the eigenvector associated with A,;, are small compared to
lu;l and appear numerically to vanish as N — «. Applying Eq. (4.23) gives a gain-
independent critical delay which depends on the connectance. From Eq. (4.23) and Eq.
(4.43), the randomly diluted inhibitory network will not oscillate in the large-gain limit

for 7< 7, where

2 (1 Y?
oy = -In[l - 7_5{—;—1] ] (4.45)

Fig. 4.13 shows 7. as a function of connectance p_for N = 1000. (At p_= 1, the
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result from Eq. (4.24) is used instead of Eq. (4.45) which neglects terms of O(1/N) and
is therefore not valid precisely at p_ = 1.) Figure 4.13 shows that for a very mild dilution
of connections, T is greatly increased, but additional dilution does little to increase
7.1 further. When the dilution d = (1- p_) is mild (d << 1), the right hand side of
Eq. (4.45) can be expanded to yield

4d -
Terit = N (N << d << 1). (4.46)
Eq. (4.46) can be compared to the critical delay for the undiluted all-inhibitory network,
Eq. (4.24), to give a simple expression for the increase in critical delay due to random
symmetric dilution:

p{diluted)

indoegy = VAaN (N Te<d < 1)' (4.47)

Tcril

This result demonstrates how small random dilution of a large inhibitory network can be

used to stabilize a network by increasing the critical delay for sustained oscillation.
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Fig. 4.13. Plot of the large-gain critical delay 7., as a function of connectance p_ for
the diluted inhibitory network with N = 1000. Note that very mild dilution greatly
increases 7.r;. At the point p_ = 1 the result of Eq. (4.24) is used instead of Eq. (4.45)
which neglects terms of O(1/N), and is not correct at p_ = 1.
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4.5.5. Associative memory networks

Associative memory networks are designed to converge to one of a set of specified
fixed points away from the origin. Which memory pattern is retrieved depends on the
inirial state of the network. The existence of many attractors with large basins of
attraction is essential to the dynamics of an associative memory.

A variety of algorithms for adjusting the interconnections to efficiently store
memories have been developed [see, for example, Denker, 19862; Amit, 1989] The
simplest and most well studied scheme for storing a set of memory states §H

(i=1,..,N;,u=1,..p)is the Hebb rule [Hebb, 1949; Hopfield, 1982],
1 P
T; = F 2 = 0, (4.48)

where p is the number of stored memory patterns. The storage capacity and dynamic
properties of an analog Hebb-rule network are discussed extensively in § 5.4; we only
mention a few relevant facts here. For random uncorrelated patterns, the maximum
number of patterns that the Hebb rule can store is ~ 0.14 N in the limit of p, N >> 1.
This capacity is for large neuron gain; at lower gain the capacity is less [Marcus et al.,
1990]. For all p/N < 1, the Hebb rule matrix always satisfies |4,,,,/Aminl > 1,
suggesting that the Hebb network with delay will not oscillate for any finite delay.
~ (However, we will show in Ch. § that sustained oscillation 1s present in the infinite-delay
limit - that is, in the analog iterated-map network with Hebb-rule connections.)

A variation of the Hebb rule that is important for hardware implementation is the
clipped Hebb rule [Denker, 1986a; Sompolinsky, 1986; van Hemmen, 1987], which

restricts the interconnection matrix to a few values. The distribution of eigenvalues for a
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clipped Hebb matrix T,-j" is greatly affected by the details of the clipping algorithm as
seen in the numerical data of Fig. 4.14. Fig. 4.14(a) shows the distinct eigenvalues
A(T ;") for the clipping algorithm T;* = (1/Z)Sgn(T;), where Z is the
normalization Z = £;ISgn(T;)l. This clipping algorithm introduces large negative
eigenvalues but still satisfies 14,54/ pin! > 1 for all values observed of p. We
conclude that networks built with this clipping algorithm will not oscillate as long as the
delay is not much longer than the relaxation time - to be safe, when 7 < ~ 1.
Experimentally (in the electronic circuit) and numerically, we find that this clipping
algorithm does not produce sustained oscillation until the delay is much longer than the
relaxation time (7 >> 1). Fig. 4.14(b) shows the distinct eigenvalues for the negative-
only clipping algorithm: 'TU“ = (1/2)6(-T}), where 6 is the Heaviside function and
Z =X; 6(-Ty). This clipping algorithm, which sets all positive elements of the
unclipped matrix T to 0 and all negative elements to -1/Z, has the hardware advantage
of only requiring a single inverting output from each neuron, as pointed out by Denker
[1986b]. As seen in Fig. 4.14(b), this algorithm unfortunately introduces a large
negative eigenvalue which can lead to sustained oscillation for a neuron delay of the order

of the relaxation time (7 <~ 1).

4.6. CHAOS IN TIME-DELAY NEURAL NETWORKS

4.6.1. Chaos in neural network models

Relaxing the constraint of symmetric connections greatly enriches the repertoire of
neural network dynamics and provides powerful computational properties that are not
available in symmetric networks. The most important novel feature of asymmetric
networks (with or without delay) is that attractors need not be fixed points. Depending

on the details of the connection matrix and the network dynamics, the attractors in
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(a)

(b)

Fig. 4.14. Connection eigenvalues A for clipped Hebb matrices plotted as a function of
the number of stored random memories p, using two clipping algorithms discussed in
- the text. (a) Hebb matrix T; clipped according to T,-j" = (1/Z)sgn(T}), with
normalization Z = E,-ISgn(T‘-j)l, gives an unbiased matrix and an eigenvalue
distribution which satisfies (4,,,,/A,,;,! > 1 for all observed values of p. (b) Clipping
algorithm which sets all positive T;; to zero and all negative T;; to -1/Z, with
normalization Z = ¥; 6(-T ;j)» has the advantage of only requiring a single output from
each neuron, but produces a large negative eigenvalue that can lead 1o sustained
oscillation. The data were obtained numerically for a 100 x 100 Hebb matrix T}; with
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random memories as in Eq. (4.48).
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asymmetric networks may be periodic or chaotic.

Chaos is usually taken to mean quasi-random behavior in a deterministic dynamical
system [Guckenheimer and Holmes, 1983; Bergé et al., 1984]. Typically, though not
always, the dynamical system of interest is low dimensional. This is, of course, not the
case for delay systems [see, for example: Farmer, 1982] or for neural networks with
large N. The term "chaotic” is used both to describe a dynamical system (perhaps with a
particular set of parameter values) or to describe an attractor of a dynamical system. The
distinction is a crucial one, however, since a chaotic attractor may occupy only a small
volume of the system's state space. Chaotic and non-chaotic attractors'oftcn coexist in
state space, each attractor having its own basin of attraction. This can make the presence
of chaos in a high-dimensional system (such as a neural network) difficult to detect, since
a particular set of initial conditions may, for example, lead to a fixed point, while a
nearby chaotic attractor remains undetected.

A definitive signature of a chaotic attractor is sensitivity to initial conditions, which
means that close-lying points on the attractor move away from each other as time evolves
(for short times). In large random dynamical systems the corresponding signature of
chaos is the vanishing of an average autocorrelation function [Sompolinsky et al.,

1988].

A. Chaos in large asymmetric networks

Chaos in large deterministic neural networks with random asymmetric connections
" has been studied extensively in several network models [Kiirten and Clark, 1986;
Shinomoto, 1986; Derrida, 1988a; Kiirten, 1988; Sompolinsky, et al., 1988; Gutfreund,
et al. , 1988; Bauer and Martienssen, 1989; Spitzner and Kinzel, 1989; Renals and
Rohwer, 1990]. Unfortunately, a consistent picture of when and how chaos arises from

random connections has not yet emerged.
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Sompolinsky et al. |1988] considered the large-N behavior of a network of analog
neurons with continnous-time dynamics. They found that when the connection matrix
elements are independent random variables with zero mean, and with zero correlations
between Tij and Tﬁ, the only attractors (in the large-N limit) are: (1) the fixed point at
the origin for low neuron gain; and (2) a chaotic state above a critical value of gain.
Numerical evidence in support of this claim is given by Bauer and Martienssen [1989],
who also describe a transition to chaos via quasi-periodicity (see also {Renals and
Rohwer, 1990]). However, Gutfreund er al.[1988], in an investigation of small random
networks of binary neurons with discrete-time dynamics, found that long-period
attractors exist only when the connection matrix is completely asymmetric, but that

whenever there is a correlation between Tij and 7T;, short-period attractors predominate.

e
This result suggests that the presence of chaos in large random networks is not so
common, being present only in fully asymmetric networks. Spitzner and Kinzel [1989]
present numerical evidence to the contrary: They find that random networks of binary
neurons with parallel updating show a sharp transition from a so-called frozen state to a
chaotic state as a function of the correlation between Tx-j and T i and that the transition
to the chaotic state occurs at a non-zero value of the correlation. At the opposite extreme,
analytical and numerical work of Crisanti and Sompolinsky [1987] for the asymmetric
spherical model (an approximation to analog neurons) suggests that as N — oo all frozen
states disappear, leaving only chaos, as soon as an infinitesimal amount of asymmetry is
introduced into the connections .

Shinomoto [1986], extending early work by Amari [1971], considered the effect of
random connections for distributions of connection strengths with non-zero mean. He
presents a numerically derived phase diagram showing that randomly connected binary

neurons with parallel updating are chaotic only when the mean of the distribution is

within a narrow range. For a large negative mean, only period-2 attractors are observed;
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for 4 positive mean, only fixed point attractors are observed.

An alternative approach to identifying chaos in large random asymmetric networks is
based on the sensitivity to initial conditions described above [Derrida, 1988a]. The idea
here is to follow the evolution of a statistically averaged distance between two initial
states and observe whether this distance converges or diverges under the dynamics of the
network. Derrida [1988a) treated a highly dilute asymmetric spin glass model in this
manner and identified a transition to a chaotic phase, where pairs of initial conditions
always diverge, as the connectivity of the network is decreased. Kiirten [1988] showed
that for dilute networks of binary neurons, Derrida's transition also marks a transition to
a phase in which the mean length of limit cycles grows exponentially with the size of the

system.

B. Chaos in small networks

Large system size is not necessary for the existence of chaos in neural networks.
This fact has been demonstrated for continuous-time analog networks by Kepler et
al.[1989] who used a 6-neuron electronic network with computer-controlled
Interconnections to rapidly test many random matrices for chaotic dynamics. They found
that chaos was rare but present. They also identified some general characteristics of the
connection matrices that result in chaotic networks. Matrices leading to chaos tend to have
average loop correlations that obey the following trends: (T,‘jTﬁ> <0; <f1}jTjkTh-> ~0;
(ﬂjﬂkTmeJ > 0. Babcock and Westervelt [1986a ;1986b] have shown that a simple

- analog network of two neurons with an inductive component in the coupling can become

chaotic when driven by an oscillating external current.

C. Chaos in time delay networks

Neural networks with nonsymmetric connections and time delay can be configured as
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associative memories for the storage and recall of sequences of patterns. These networks
have been described and studied by a number of researchers [Grossberg, 1970;
Kleinfeld, 1986; Somplinsky and Kanter 1986; Gutfreund and Mezard, 1988; Riedel,
etal., 1988; Herz, et al., 1988; Kiihn, et al., 1989]. It has been shown that for certain
parameter values, these large sequence-generating networks can also be chaos-generating

[Riedel, 1988). Chaos in scalar delay-differential systems will be discussed in § 4.6.3.

4.6.2. Chaos in a small network with a single time delay

The electronic analog network described in Ch. 3 shows endogenous chaos for

particular connection configurations and network parameters. We now describe one such

example using three neurons, one with delay. The dynamical equations for the chaotic

network are
1 N
G u(r) = -—Eui(t) + Z‘l T filwlr-7) . i=123 (4.492)
where
. 0 1 -1 T
T;‘j’=10TQ 1 O O s + - (449b)
1 0 O

- R;= (ZjIT'UI)‘l, and Cy = C, = C3 = 10nF. The characteristic relaxation times for
the three neurons (in the absence of any delay) are RC; =0.5ms, RyC, =1.0ms,
RyC3 =1.0ms. The neuron transfer functions are well-approximated by tanh functions

with the following gains and amplitudes:
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fi(u)=3.8tanh(8.0u),
f2(u)=2.0tanh(6.1u), (4.49¢)
f3(u) =3.5tanh(2.5u),

Only neuron 1 is delayed,

T]_ET;

Th= r'3= 0. (4.494d)

The outputs of neurons 1 and 2 are shown in Fig. 4.15 for four values of the delay 7
ranging from 0.64 ms to 0.97 ms. For 1< 0.64 ms the system shows limit cycle
behavior similar to that shown in Fig. 4.15(a). In the range 7= .64 ms - 0.97 ms
the system undergoes a series of period doubling bifurcations leading to chaos. As the

delay is increased beyond 0.97 ms, both chaotic and periodic regimes are found.
4.6.3. Chaos in delay systems with noninvertible feedback

The chaotic circuit described above is closely related to a well-studied class of chaotic
delay-differential systems with noninvertible feedback [see, for example: Mackey and
Glass, 1977; Farmer, 1982]. These systems are defined by a scalar delay-differential
equation of the form

i(r) = —ax(f) + h(x(1 - 7)), (4.50)

where a,7 > 0, and the function 4 is noninvertible (also called "humped" or "mixed").

Equation (4.50) has been studied in the context of white blood-cell production
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1=0.64 ms

Fig. 4.15, Period doubling to chaos in the electronic analog network (described in Ch. 3)
as the delay of neuron one is increased. The dynamical equations for this three-neuron
circuit are given by Eq. (4.49). Pictures are photographs of the oscilloscope screen.
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[Mackey and Glass, 1977; Glass and Mackey, 1988], recurrent inhibition in a three-cell
circuit in the hippocampus [Mackey and an der Heiden, 1984], and other biological and
ecological systems [Glass and Mackey, 1988 (and references therein)]. Analysis of
(4.50) indicates that the noninvertiblity of 4 is crucial for chaos [an der Heiden and
Walther, 1983; Hale and Sternberg, 1988).

The relation between (4.50) and the electronic network, with its three monotonic

neurons, can be seen by plotting the total feedback f,,, to neuron 1,

for(mt =) = H{film(t- 1)) = A(A G4 (- 1)), (4.51)

which is noninvertible, as shown in Fig. 4.16(b). Note that using neurons with different
gains is necessary (in this example) to obtain noninverting feedback. Though the
correspondence between the (4.49) and (4.50) is not perfect, we feel that the
noninvertibility of f,, lies at the heart of the chaotic behavior in the ¢lectronic network.
In the limit 7 — e, Eq. (4.50) and the equation for u; from (4.49) can both be written

as a 1-dimensional iterated map:
x(t+1)= H(x(r)) (4.52)
where the function H ( = h/a or f,,, ) is, again, a noninvertible or humped function.

The logistic map [May, 1976] is a famous case of a noninvertible iterated map (4.52)

- whose behavior has been studied extensively [see Bergé ef al., 1984].
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Fig. 4.16, Illustration of how monotonic nonlinearities can combine to give noninvertible
feedback. (a) The three neuron transfer functions in Eq. (4.49¢). (b) The total feedback to

neuron fo (w(t— 7)) = fo(fi(4 (¢ - 7)) - (i (t = 7))). Note that f,,, is

noninvertible.
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4.7. DISCUSSION AND REVIEW OF RESULTS

This chapter is quite long and contains a number of new results. This final section is
included to provide a summary of its contents.

We have considered the stability of analog neural networks with delayed response.
The aim has been to extend the stability condition: "symmetric connection implies no
oscillation" - which is valid when the neurons have instantaneous response - to a more
realistic model of neural networks where time delay is included. We find that
symmetrically connected networks can show sustained oscillation when the neurons have
delayed output, but only when the ratio of delay to relaxation time exceeds a critical
value.

At low neuron gain, linear stability analysis about the origin suggests that for
T < —71/(2BA,ip) @ symmetric network will not oscillate. In this inequality, 7 is the
neuron delay in units of the network relaxation time, S is the gain (maximum slope) of
the neuron transfer function at the origin and A,;, is the minimum eigenvalue of the
connection matrix 7; as defined in Eq. (4.3).

The stability criterion based on linear stability analysis is valid at all values of gain but
becomes overly conservative in the large-gain limit. We find experimentally and
numerically that symmetric networks with extremal eigenvalues satisfying
1A max/ Amin! > 1 do not oscillate as long as the delay is comparable to or less than the
network relaxation time. In contrast, symmetric networks satisfying I14,,,,,/Amin! < 1 do
- show coexisting fixed point and oscillatory attractors at large gain. There exists a critical
delay 7. in the large-gain limit below which oscillatory attractors vanish and only fixed
points attractors are observed. For symmetric networks in which the oscillatory mode
present for the smallest delay is coherent (as defined in § 4.4.1), sustained oscillation

vanishes for 7 < .4, = —n(1+ A,,,,/A,,;). This result is independent of gain and
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is useful as 8 — oo, unlike the linear stability result (Eq. (4.17)).

The stability criteria have been tested numerically and in the electronic neural network
described in Ch. 3. Agreement between theory, experiment and numerics is very good.

Some results for particular network topologies:

(a) The all-inhibitory network is the most oscillation-prone configuration of the delay
network. For this configuration, the critical delay in the large-gain limit is given by
Terit = In((N-2)/(N-1)) ~ 1/N, where N is the size of the network. Diluting the all-
inhibitory network by randomly - but symmetrically - setting a small fraction d << 1 of
the interconnections (7;; and 7};) to zero will increase the critical delay by a factor of
(4dNH1/2,

(b) Rings of symmetrically connected delay neurons will oscillate only when the ring
is frustrated (Sgn(Hn-,,g T;))= -1) and when there is an odd number of neurons in the
ring.

(¢) The critical delay for large two-dimensional networks with nearest-neighbor
lateral inhibition can be either finite or infinite, depending on the type of lattice. For zero
self-connection, 7, — e as N — oo for a square lattice, and 7_;, — In(2)=0.693... as
N — oo for a triangular lattice.

(d) The Hebb rule, Eq. (5.13), satisfies IA,,,,/4,,;,| > 1 and, as expected, does not
show sustained oscillation numerically or in the electronic network for any observed
(finite) delay. Clipping algorithms, which limit the interconnections to a few strengths,
can introduce large negative connection eigenvalues and produce sustained oscillation in
- networks with delay smaller than the network relaxation time.

Finally, we have discussed chaotic dynamics in asymmetric neural networks. An
example of a chaotic three-nenron network with a single time delay was presented. A
connection was made between asymmetric networks of monotonic analog neurons and a

well-studied chaotic system that has noninvertible or "mixed" delayed feedback.
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Chapter 5

THE ANALOG ITERATED-MAP NEURAL NETWORK

5.1. INTRODUCTION

In this chapter, we analyze in detail the dynamics of an analog neural network with
discrete-time parallel dynamics. Because the network's dynamical equations form a set
of coupled iterated maps, we will refer to the system as an iferated-map neural network.
The main purpose of this chapter is to show that the notorious problem of sustained
oscillations associated with paralle] dynamics can be eliminated by using analog neurons.
Specifically, we present a global stability criterion that places an upper limit on the gain
(maximum slope) of the neuron transfer function. When satisfied, this criterion
guarantees that a symmetrically connected iterated-map network will always converge to a
fixed point [Marcus and Westervelt, 1989¢c]. As an application, we treat the problem of
associative memory, and present novel phase diagrams for analog associative memories
based on the Hebb rule and the pseudo-inverse rule [Marcus et al., 1990]. These results
show that analog associative memories can be updated in parallel over a broad range of
neuron gains and storage ratios while maintaining good recall and guaranteed
convergence to a fixed point. This feature distinguishes analog networks from the
standard Ising-spin networks (with or without temperature) which, in general, must be
updated sequentially to prevent oscillation.

We will also discuss a second important advantage of analog associative memories,

which is that lowering the neuron gain can greatly increase the chances that an initial state
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far from all memories will correctly flow to a recall state without getting trapped in a
spurious attractor.

The subsections of Ch. 5 are organized as follows. In § 5.2 we define the iterated-
map neural network and prove that for a broad class of transfer functions and symmetric
connections, the only attractors are period-2 limit cycles and fixed points. In § 5.3, we
then show that all limit cycles can be eliminated by lowering the neuron gain below a
critical value. In § 5.4, we investigate analog associative memories based on the Hebb
rule [Hebb, 1949; Hopfield, 1982} and the pseudo-inverse rule [Personnaz et al.,1985;
Kanter and Sompolinsky, 1987], and present phase diagrams in the parameter space of
neuron gain B and memory storage ratio a. In § 5.5, numerical results for the
associative memory networks are presented. These results agree well with the analytical
results of § 5.4. The numerical results in § 5.5 also show that the probability of retrieval
is increased at low analog gain, suggesting the use of analog annealing to enhance recall.
Applications of these results and conclusions are presented in § 5.6. Some lengthy - but
important! - details are presented in two appendices: In appendix SA, the storage capacity
of the Hebb rule for the analog iterated-map network is derived. This analysis
generalizes the cavity method approach of Domany er al. [1989]. In appendix 5B,

storage and recall properties of the pseudo-inverse rule are derived.

5.2. ITERATED-MAP NETWORK DYNAMICS

The dynamical system investigated in this chapter is an iterated-map neural network in
which all neurons have continuous input-output transfer functions and updating is done
in parallel [Marcus and Westervelt, 1989¢]. The network is defined by the set of coupled

nonlinear maps,
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x,-(t+l)=P}[ZTij(t)+li] , i=1,..,N (5.1)
j

where the real variables x;(¢) describe the state of the system at time ¢. Time, in its
present usage, is a discrete index: ¢ = 0,1,2,..., and can equivalently be thought of as a
layer index in a feed-forward network with identical coupling between each layer (cf.
[Meir and Domany, 1987; 1988]). The interconnection matrix Tij is assumed real and
symmetric. We also assume that the neuron transfer functions F; are all single-valued
and monotonic (without loss of generality, we take all F; to be monotonically
increasing) and may be different for each i. Notice that the functions F; can be
concave-up or concave-down at any finite argument and do not need to saturate to a finite
value. However, to insure that the Liapunov functions presented below and in § 5.3 are
bounded below, we require that all F; increase in magnitude slower than linear for large
negative and positive argument. An example of a neuron transfer function that satisfies
these conditions is illustrated in Fig. 5.1(a). The maximum slope of each F; is defined
as the gain B, for that neuron, as shown in Fig. 5.1(a).

There is a completely equivalent form of Eq. (5.1) that has the neuron transfer

functions inside of the sum:

w(e+ )R = 2 Tf(w;(0) +1; - (5.2)
j

' Equation (5.2) describes the evolution of the neuron inputs u,(#) rather than the outputs

x£1), and is related to (5.1) by the change of vanables:

w ()R =Y, ; Tyx;(t)+1;; fi(2) =Fy(z/R;). (5.3)
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(a)

(b) F(x) ' B

~Fig. 5.1. (a) An example of a nonlinear neuron transfer function which meets the
conditions for the dynamic properties given in § 5.2 and § 5.3. Those conditions are:
Each function must be single valued and monotonic, and must grow in magnitude slower
than linear in the limit of large positive or negative argument. The maximum slope f§;
that appears in the stability criterion (5.11) is also indicated. (b) An example of a
nonlinear function F (identical for all {) which meets the less general conditions
assumed for the associative memory phase diagrams, Figs. 5.3 and 5.4. These
conditions are given at the beginning of § 5.4.
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The continuous-tme version of Eq. (5.1), given by

dxi(t)/dt: —xx'(r)+E[Eijj(t)+1)'] ) (5.4)
J

has the same fixed points as the iterated-map system (5.1), but not the same stability
properties: For 7;; symmetric and all F; monotonic, Eq. (5.4) will always converge to a
fixed point, regardless of neuron gain. Finally, we note that the continuous-time system

(5.4) is equivalent to the electronic circuit equations used in chapters 3 and 4,

C; du,(1')/dr' = — u,(¢')/R; +2 @)+ (5.5)

when the time constants R,C; are equal for all i. Equation (5.4) can be transformed into
(5.5) by the change of variables (5.3), plus the rescaling of time, t' = (R,C;) 1.

We will now prove that all attractors of the iterated-map network (5.1) - or,
equivalently, all attractors of (5.2) - are either fixed points or period-2 limit cycles

[Marcus and Westervelt, 1989¢c]. The proof consists of showing that a function E(r),

defined as
E(t) = 2 Cx(0) x;(1=1) zli[x;(z)+x,-(t-—l)]
+2[ t)+Gz(x(:—l))] (5.6a)
where
Ej;‘ Fl(2)dz (5.6b)
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1s a Liapunov function for the iterated-map network, Eq. (5.1), and that the minima of
E(r) are at either fixed points or period-2 limit cycles of Eq. (5.1).
The change in E(7) between times ¢ and t+1, defined as AE(r) = E(r+1) - E(1),

can be found from (5.6a) and (5.1) and the symmetry Tj;=T};, and is given by

AE(t) = =Y F(x(t+1)Ax,(t) + Y, [Gi(xi(t+ 1) = Gilxi (e =1))] (5.7)

i i

where 4,x;(¢) = x;(r+1)—x;(r—~1) is the change in x;(r) over two time steps. For
G(x) concave up at all values of its argument x, we can write the following inequality

(see Fig. 5.2):
Gi{x;(t+1))=G;(x;(t=1) < G/{x;(t+1))Ayx; (1) (5.8)

where G;(x;(r+1)) is the derivative of G,(x) at the point x = x;(r+1). The case of
equality in (5.8) only occurs when A,x;(r) = 0. The requirement that Gy(x) be concave
up is not very restrictive: it is satisfied as long as F; is a single-valued, invertible, and

increasing function. Inserting the inequality (5.8) into (5.7) gives

AE(t) £ 3 [Glx(t+1) = F (x(e+ )] A1) (5.9)

' The difference in the square bracket equals zero by Eq. (5.6b) giving the result:

AE(1) €0 (5.10a)
AE([) =0 = Azx‘-(r)=0 (5103)
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Thus E(2) is a Liapunov function for the iterated-map network (5.1) and all attractors of
(5.1) - where AE(1) =0 - satisfy A,x;(r)=0, or x;(t++1) = x;(z-1) for all i.

Therefore all attractors of (5.1) are either fixed points or period-2 limit cycles.
5.3. A GLOBAL STABILITY CRITERION

In this section we show that all period-2 limit cycles of the iterated-map network (5.1)
can be eliminated, leaving only fixed points, by lowering the neuron gains f3; to satisfy
the stability criterion:

i>—A,

B min foralli, (5.11)
§

where f; (> 0) is the maximum slope of F; and A,,;, is the minimum eigenvalue of the
connection matrix Tz‘j (Marcus and Westervelt, 1989¢]. This criterion applies for any
distribution of the (real) eigenvalues of Tl-}-. When Tij has negative eigenvalues,
Aonin (7}) refers to the most negative eigenvalue. Assumptions made about the network
in proving this result are the same as already used in § 5.2. As a reminder: The
connection matrix Tij is symmetric and the neuron transfer functions F; are single-
valued, monotonic and increase in magnitude slower than linear at large positive or

negative argument.

The stability criterion (5.11) is derived by showing that the function L(t), defined as
1
L(t) = - EZT}jxi(t)x}-(t) =Y Ix() + Y. G(x). (5.12)
ij i i

with G, given by Eq. (5.6b), is a Liapunov function of (5.1) when the stability criterion

- 109 -



is obeyed, and that the minima of L(r) are at fixed points of (5.1).
From (5.1), (5.12) and the symmetry T ﬂ, the change in L(r) between times

t and t+1, defined as AL(t) = L(¢+1) - L(¢), can be written

AL(r) = Z Ax(1) Axj(r) =Y, FH(x(t+1)Ax()

{

+E[G xi(t+1))=G(x ()], (5.13)

where Ax;(f) = x;(t+1) - x;(r). Note that Ax;(¢) is the change in x;(¢) in one
time step.

We now construct an inequality similar to (5.8), but including a quadratic term along
with the linear term. Choosing the coefficient of the quadratic term to be the minimum

curvature of G;(x)),
niz;n(dQG‘- Jdx*) =gt (5.14)
yields the following inequality, as illustrated in Fig. 5.2:
G(x:(t+1))-Gi(x(1) < Gi(x(e+1)) Ax;(r) ~ 5 B! (Ax,-(r))2 ) (5.15)
Equations (5.13) and (5.15), and the equality G'j(x)) = F i‘l(x,-) from (5.6b) yield

ALY € =53 [Ty +6;87 |axi(e) Ax; (0) (5.16)
ij

where 6,-,- =1fori=jand 6‘]- =0 fori#j. As long as the matrix (T + B-1) - which
appears in component form in the square brackets of Eq. (5.16) - is positive definite, then

the right side of (5.16) is negative, and, in thar case, we can immediately write
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Fig. 5.2. Graphical representation of inequalities (5.8) and (5.15) for a typical sigmoid
nonlinearity F;(z) with maximum slope f3; (inset). The concave-up function G; (x; )
is defined in Eq. (5.6b). A line and a parabola with second derivative ;-1 = min,
[d2G(x)/dx?) are tangent to the curve G; (x; ) at the point [x;(t+1), G (x;(t+1))].
Eq. (5.15) is represented by the inequality C < B; Equation (5.8) is represented by the
inequality C < A where the case of equality, C = A, implies A,x;(r) = 0.
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AL <0, (5.17a)
AL(t) =0 = Ax;()=0. (5.17b)

Thus, as long as (T + B-1) is a positive definite matrix, L(¢) is a Liapunov function for
the iterated-map system (5.1). At the minima of L(f) the condition Ax;(r) = 0 holds
for all i, thus all attractors are fixed points. A sufficient condition for (T + B-1) to be
positive definite is B;1 > -A,,;, for all i. This condition is therefore sufficient to
guarantee that L(f) is a Liapunov function and that all minima of (5.1) are fixed points,

which gives the stability criterion (5.11).
5.4. ANALOG ASSOCIATIVE MEMORY

We now apply the iterated-map neural network to the problem of éssocian've memory
{Marcus et al., 1990]. In this section we assume a less general form for the network,
one in which I; = 0 for all i and the nonlinear functions F; are single-valued, odd
functions and are the same for all i, We also assume the function F (now dropping the
index {) has its maximum slope at zero input, F'(0) = 3, and that the slope of F is a
non-increasing function of the magnitude of the argument. As before, the maximum
slope S will be referred to as the gain of the neurons. Possible forms for F include,
but are not limited to, tanh-like functions including the transfer function for the electronic
network, Eq. (3.3). As in § 5.3, we do not require that F saturate at large argument
~ though it must increase in magnitude slower than linear at large positive or negative
argument. We nommalize the amplitude of F so that the accessible state space ("the
hypercube") is of length O(1) on a side; that is, nonzero solutions of m* = F(m") are
typically O(1). Fig. 5.1(b) shows a function which meets the conditions assumed 1n this

section. Under these assumptions, the associative memory network is given by the set of
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coupled maps

x(t+1)= [Z ]:)] . i=1,..,N (5.18)

We will consider connection matrices Tij for two learning rules, the Hebb rule and
the pseudo-inverse rule, storing random unbiased memory patterns, &M = +1. For the

Hebb rule,

aN
T, = #25 g T;=0 (5.19)

where aV is the number of stored memory patterns. For the pseudo-inverse rule
1 « u 1 v
w8 Tamo (5:208)
Hov=
where C ! is the inverse of the correlation matrix,
1 ¥
Cpy = — D ! (5.20b)
"N P

Notice that we are considering the modified pseudo-inverse rule with 7;; = 0 studied by
- Kanter and Sompolinsky [1987]. These authors showed that this modification increases
the basins of attraction for the memories without sacrificing error-free recall. The
analysis in the following two subsections assumes 8>0, O<a <1 and

N >> 1.
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5.4.1. Hebb rule

A phase diagram for the Hebb rule, showing four distinct regions in the parameter
space of analog gain 8 and the storage ratio «, is presented in Fig. 5.3. The four
regions are characterized as follows: In the region marked 'origin’ a fixed point at the
origin, x; = 0 for all /, is the global attractor. In the region marked 'spin glass' the
origin is no longer an attractor, but neither are the memory recall states. In this region,
the network converges to a fixed point with small [O(N- 1/2)] overlap with all memories.
In the region marked ‘recall’, fixed points having large overlaps with memory patterns
exist and have large basins of attraction. In the 'recall’ region the iterated-map network
operates well as an associative memory. The boundary separating 'recall' from 'spin
glass' is shown in Fig. 5.3 for the particular choice F(z) = tanh(fz). With this
choice of nonlinearity, this boundary agrees with the ferromagnetic transition curve found
by Amit et al. [1985b; 1987] for the Ising-model associative memory at finite
temperature. The present analysis leading to this curve, however, is not restricted to case
F(z) = tanh(Bz). Details are given in appendix 5A. In the region marked
‘oscillation’ the stability criterion (5.11) is no longer obeyed and convergence to a fixed
point is not guaranteed. Numerically, we find that limit cycles are quite abundant in this
region, especially for larger values of B and a (see § 5.5).

The stability of the origin can be determined by linearizing Eq. (5.18) about the point
xj = 0, which gives N decoupled linear iterated maps: @;(t+1) = BA;;(1) for
~ evolution along the ith eigenvector of the matrix Tij"
Eq. (4.5), the corresponding equation for the delay-differendal system). For IBA; | <1

with associated eigenvalue ;. (cf.
for all i, the origin is stable, and because of the form of F, it is also the global arttractor

of Eq. (5.18). (The proof of this is based on a contraction mapping theorem. See:

Ortega and Rheinboldt [1970], Thm 12.1.2].) Notice that when the eigenvalue spectrum
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Fig, 5.3. Phase diagram for the Hebb rule associative memory with neuron transfer

function F(z) = ranh(fz). The parameter 8 is the neuron gain, and « is the number
of stored patterns divided by the number of neurons N. All borders separating the
regions are based on analysis at large &, as described in the text.
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is "skewed negative" (0 < 4, , <-4,.), the stability condition for the origin is

min
identical to the global stability criterion (5.11).

The minimum and maximum eigenvalues for the Hebb matrix (5.19) with ar< 1 in

the large-N limit are
A pin = —0Q, [N(1— &) -fold degenerate] (5.21a)
Apax =1+ W, [edge of continuous distribution] (5.21b)

[Geman, 1980; Silverstein, 1985; Crisanti and Sompolinsky, 1987], thus for & < 1 the
boundary where the origin loses stability is given by the condition = 1/ (1+ 2Va )
From the value of 4,,;, in (5.21a) we can also identify the border of the oscillatory
region as 3= l/a. Crossing the 'origin'-'spin glass' line corresponds to a forward
pitchfork bifurcation of the origin, analogous to a second order transition in
thermodynamics. Note that this transition occurs along a different curve from the
corresponding paramagnet-spin glass transition in the Ising model associative memory
[Amit et al., 1985b; 1987].

Crossing the border from the 'recall’ region into the 'spin glass' region marks the
disappearance of a fixed point having a large overlap with a single memory. As in the
case of the Ising model network, this transition 1s due to the random overlaps of the state
of the network with patterns other than the one being recalled. These overlaps generate
an effective noise term which destabilizes the fixed point near the recalled pattern.
* Because our system has no reaction field, the analysis is somewhat simpler than either the
replica [Amit et al., 1985b; 1987] or cavity [Mezard et al., 1987; Domany et al., 1988
approaches used to analyze the thermodynamic Ising model network. In appendix 5A we
derive a set of four self-consistent equations that determine the border between the ‘recall’

and 'spin glass' regions assuming random, unbiased memory patterns:
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m' = ﬁfdyexp(—«yzfﬂ F(O'y+m1j (5.22a)

C= #jdyexp(-y2 /2) F'(oy+m1) (5.22b)
=iz [ wen(2) Flov+ ) 229
o= % (5.22d)

where F'(z) = dF(z)/dz. The quantity m! in Eq. (5.22a) is the overlap of the network
state vector with a single memory pattern, arbitrarily chosen to be pattern 1. In the recall
state, these equations have a self-consistent solution with m! ~ 1. For the particular
choice F(z) = tanh(Bz), the quantdties C and ¢ obey the usual Fischer relation

C=f(1—¢q) [Fischer, 1976].

5.4.2. Pseudo-inverse rule

The pseudo-inverse learning rule, Eq. (5.20), offers several advantages over the
Hebb rule, chiefly a greater storage capacity, error-free recall states and the ability to store
correlated patterns [Personnaz er al.,1985; Kanter and Sompolinsky, 1987]. Its primary
disadvantage is that it is nonlocal, meaning that a given element of the connection matrix,
Tij’ cannot be determined from the ith and jth elements of the memory patterns, but
depends on all components of all memories. However, iterative learning algorithms have
- been presented which are local and which converge to the pseudo-inverse rule [Diederich
and Opper, 1987].

A phase diagram for the pseudo-inverse rule showing three distinct regions

depending on analog gain f and storage ratio « is shown in Fig. 5.4. This phase

diagram differs from that of the Hebb rule in three distinctive ways: First, there is no
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Fig. 5.4. Phase diagram for the pseudo-inverse rule (diagonal elements = 0) with
sigmoidal neuron transfer function as described at the beginning of § 5.4. The parameter
B is the neuron gain, and « is the number of stored patterns divided by the number of
neurons N. All borders separating the regions are based on analysis at large N, as
described in the text. Note that the pseudo-inverse rule does not possess a spin glass
phase for a < 1.
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'spin glass' phase. This does not imply that the pseudo-inverse rule does not possess
spurious attractors; just as for the Hebb rule, there are many spurious fixed point
attractors within the recall and oscillatory regions which have small overlap with all
memories. Unlike the Hebb rule, however, there is no region of the pseudo-inverse
phase diagram where only spurious fixed-point attractors are found. The second
difference is that the recall region is much larger, extending to « = 0.5 for § = 2.
Above this point, and for higher gain, recall states still exist, but convergence to a fixed
point is not guaranteed. The third distinctive feature is the adjacency of the ‘origin' and
'oscillation’ regions at larger values of a. Crossing the border between these two
regions, say by increasing 3, constitutes a multiple flip bifurcation [Guckenheimer and
Holmes, 1983] in which N(1-¢x) eigendirections about the origin simultaneously lose
stability giving rise to period-2 limit cycles in the subspace orthogonal to all memories.
As in the Hebb rule phase diagram, the region marked ‘origin' for the pseudo-inverse
phase diagram satisfies 134; | < 1 for all i, where A; are the NV eigenvalues of the
pseudo-inverse matrix (5.20). For T;; =0, the extremal eigenvalues in the limit of large
N are given by
Apin = —Q,, [N(1 - a)- fold degenerate] (5.23a)
Amay =1— 0 . [Na - fold degenerate) (5.23b)

[Kanter and Somplinsky, 1987]. Below a = 0.5 the origin loses stability at gain
B =1/(1—¢). This condition defines the border between the regions marked ‘origin'
~ and 'recall.’ In appendix 5B we show that stable recall states appear as soon as this
bifurcation occurs. From the stability criterion (5.11) and Eq. (5.23a), convergence to a
fixed point is not guaranteed for 8 > 1/, which defines the region marked
'oscillation’ in Fig. 5.4.

Adding a positive diagonal element T;; = ¥ > 0 to the connection matrix shifts the
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Fig. 5.5. The recall region for the pseudo-inverse rule for various values of diagonal
element ¥. Note that the maximum capacity in the recall region is for analog gain
B =2, regardless of y. Although the recall region is expanded for positive diagonal
element, too large a diagonal will greatly reduce the basins of attraction for the recall
states, as discussed by Kanter and Sompolinsky [1987].
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eigenvalues to A, =-a+y and A, =1-a+7y and increases the maximum
storage capacity in the recall regionto ot =1/2+ 7. 1 The recall region for several
values of positive self-coupling are shown in Fig. 5.5. Note that the maximum always
occurs at B=2. Recently, Krauth er al. [1988] have demonstrated that using a small
positive diagonal element with the pseudo-inverse rule in an Ising network (at zero
temperature) increases the radius of attraction for the recall states.? For example, they
find numerically that for & = 0.5, using a diagonal term of ~0.075 instead of zero
increases the basins of attraction by about 50%. Too large of a diagonal term, however,
greatly reduces the basins of attraction for the recall states (Kanter and Sompolinsky,

1987; Krauth er al., 1988].

5.5. NUMERICAL RESULTS

5.5.1. Numerical verification of the phase diagrams

In this section, phase diagrams for the Hebb rule and pseudo-inverse rule are
investigated numerically for networks of size N = 100 with F(z) = ranh(f3z) and
random, unbiased memory patterns. The data in Figs. 5.6 and 5.7 show, as a function
of analog gain f3, the fraction of randomly chosen initial states which converged to a
particular type of attractor - either the origin, a memory pattern (or its inverse), a spurious
fixed point, or a period-2 limit cycle. These attractor types are the only possibilities.
" Each panel in these figures is for a fixed value of «, so each represents a horizontal slice

through the phase diagrams for the Hebb rule (Fig. 5.3) or the pseudo-inverse rule

! This definition of ¥ differs from the one used in chapter 4: Here, the matrix elements T;; are equal
to v. In chapter 4, the value ¥ is the diagonal matrix element before normalization. See, for example,
Eq. (4.18).

2 Xrauth er al. [1988) usc yet another definition of . For them, T;;=A1-a) for large N.
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(Fig. 5.4).

The data in each panel were generated as follows: For each of 38 values of 3,
ranging from B~ 0.3 to 8 ~ 90, twenty T‘-j matrices were generated using random,
unbiased patterns, C,’" ==+1. Foreach matrix, 50 initial states located at random corners
of the state space (x;(0) = %1, i = 1,...,100) were chosen and the attractor for each was
found by iterating the map, Eq. (5.18). The condition for convergence was
|%(r) - %(r - 2)] < 107°, where distances are defined by |7 =(1/2N) Y .|z|. Though
the initial states were located at the corners of the hypercubic state space, all attractors
were real-valued N-vectors located away from the corners of the state space. Plotted in
each panel are the fractions of the 20x50 = 1000 runs for each value of  which
converged to each of the four attractor types. A fixed point X * was counted as a recall

state if, for any g,

sgn(% *) + E# “ < 0.05; similar criteria were used to recognize the
other attractor types.

Along the top of each panel in Figs. 5.6 and 5.7 is a strip marked 'orig.’ , recall’,
etc. These strips show the regions of the theoretical phase diagram (from Figs. 5.3 and
5.4) for the particular value of ¢ in that panel. The appearance of the various attractor
types corresponds very closely to the theoretical regions in these slices, giving strong
numerical support to the phase diagrams. Furthermore, the data indicate that the basins
of attraction for limit cycles in the 'oscillation’ region do occupy a significant part of state
space as soon as the stability criterion is violated. That is, the ‘oscillation’ region is more
than just the region where convergence to a fixed point is not guaranteed by the stability

- criterion, it is in fact the region where oscillatory modes are quite abundant.
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Fig. 5,6. Numerical data for the Hebb rule showing the fraction of random initial states
which lead to the four types of attractors: the origin (circle), a memory pattern or its
inverse (square), a spurious fixed point (triangle), or a period-2 limit cycle (cross), as a
function of neuron gain 5. Each data point represents a total of 1000 initial states from
20 matrices constructed from random, unbiased memory patterns with N = 100. The
three panels are for aN =S, 10 and 20 patterns, and the strip along the top indicates the
regions of the phase diagram, Fig. 5.3, for that value of a.
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Fig. 5.7. Numerical data for the pseudo-inverse rule showing the fraction of random
initial states which lead to the four types of attractors: the origin (circle), a memory
pattern or its inverse (square), a spurious fixed point (triangle), or a period-2 limit cycle
(cross), as a function of neuron gain 8. Each data point represents a total of 1000 initial
states from 20 matrices constructed from random, unbiased memory patterns with N =
100. The three panels are for oN = 10, 25 and 70 patterns, and the strip along the top
indicates the regions of the phase diagram, Fig. 5.4, for that value of o
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5.5.2. Improved recall at low gain: deterministic annealing

Figures 5.6 and 5.7 show that the probability of recall is greater at lower values of
analog gain within the ‘recall’ region. This phenomenon suggests a potentially powerful
technique for annealing a deterministic analog neural network to a good (low energy)
solution [Hopfield and Tank, 1985]. Annealing by varying the analog gain is not only
useful as a fast numerical technique, but can be easily implemented in analog electronics,
eliminating the need for electronic noise generators to perform stochastic annealing.

As with standard simulated annealing [Kirkpatrick et al., 1983], convergence times
at reduced gain can be quite long. To speed convergence, the gain should follow an
annealing schedule, starting at the low-gain border of the 'recall' phase, and ending at the
high gain border. The phase diagrams, Figs. 5.3 and 5.4, can be used to find the range
of gains over which annealing should take place. Note that annealing range depends
strongly on the storage ratio «. The surprising fact that the performance of an
associative memory can be improved by using analog neurons will be considered in more

detail in Ch. 7.

5.6. DISCUSSION

In this chapter we studied the dynamics and associative-recall properties of an analog
network with parallel dynamics. We found that using analog neurons has two important
* benefits: First, analog networks can be updated in parallel with guaranteed convergence
to a fixed point as long as the stability criterion (5.11) is satisfied. For the associative
memories considered, the iterated-map network has rather large regions in the space of
neuron gain f and storage ratio o where recall states exist and the stability criterion is

satisfied. The second benefit, seen numerically in Figs. 5.6 and 5.7, is that using a
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reduced neuron gain improved the chances that a random initial state would make it to a
memory state without getting caught in a spurious attractor.

The usefulness of analog dynamics goes beyond the stability and improved recall
properties studied here. By taking advantage of the generality of the stability results of
§ 5.3, one can design stable networks of neurons having nonsigmoidal transfer
functions with computationally useful properties. As an example, the stability results
apply to three-state (+1,0 ,-1) neurons [Yedidia, 1989; Meunier, et al., 1989]
generalized to a smooth 'staircase’ analog transfer function. Networks of three-state
analog neurons bear a strong resemblance to the mean field spin-1 Ising model at finite
temperature [Blume, 1966; Capel, 1966], with regions of parameter space where both the
origin and recall states are locally stable. Such systems might be used to allow an 'I
don't know' state of the network, such that initial states with insufficient overlap with
any pattern will converge to the origin. In a numerical ‘mvcstigzz\tion3 of networks made
of three-state analog neurons, it was found that the attractors included not only the recall
states and the origin, but also new mixture states in which a pattern was partially recalled,
with some neurons converging to the zero-output state.

Another generalization of the iterated-map associative memory is the deliberate
inclusion of limit cycles as recall states. Several techniques for storing and recalling limit
cycles have been explored in continuous-time systems with delay [Grossberg, 1970;
Kleinfeld, 1986; Sompolinsky and Kanter 1986; Gutfreund and Mezard, 1988; Riedel,
etal., 1988; Herz, et al., 1988; Kiihn, et al., 1989] and in discrete-time systems, both
- for sequential [Buhmann and Schulten, 1987; Nishimon et al., 1990] and parallel
dynamics [Dehaene, er al., 1987; Guyon, et al., 1988]. Because these models use
asymmetric connections, little is known analytically about their stability or the types of

attractors they can produce. On the other hand, it is possible to store 2-cycle attractors in

3 This work was done by Fred Waugh.
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the iterated-map network using a symmetric connection matrix. This can be done most
easily with a generalized Hebb rule in which a weighted Hebb matrix for the oscillatory

directions £ is subtracted from a Hebb marrix for the fixed-point patterns £#;

1 pr Pose vy
Ty = —| 26N -AY LY | (5.24)
N u=1 v=1

The weighting factor A can be used to cause fixed point patterns and 2-cycle patterns to
appear at different values of analog gain. A detailed analysis of such an analog network,
yielding for example the combined storage capacity of limit cycles as well as fixed points,

remains an open problem.
APPENDIX 5A: STORAGE CAPACITY FOR THE HEBB RULE

In this appendix we find the border separating the ‘spin glass’ region from the recall'
region in the phase diagram for the Hebb rule, Fig. 5.3. The derivation is a slight
generalization of a cavity method approach presented by Domany et al. [1989], but is
somewhat simpler because of the absence of the reaction field [Marcus et al.,1990). The
form assumed for the nonlinear function F (taken to be identical for all i) is described at
the beginning of § 5.4, We also assume all memory patterns, £;# = *1, to be
uncorrelated, and we set I; =0 for all i. For the special choice F(z) = tanh(fz), the
~ border we obtain is the same as that obtained for the Ising model network at temperature
1/B8 [Amit et al,, 1985b; Amit er al., 1987, Mezard ef al., 1987; Domany et al.,
1989]. Throughout this appendix and appendix 5B, sums over roman indices
(i, J, k, ...) run from 1 to N; sums over greek indices (u, Vv, p, ...) run from 1
to aN.

A recall state is characterized by the existence of a fixed point of the iterated map,
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which satisfles

xizF[z'I}}»xj] . i=1.N (5A.1)
j

and which has a large (O(1)) overlap with a single memory pattern, where the overlaps

mt are defined
mt = %Z £y, (5A.2)

For the Hebb matrix, Eg. (5.19), the input 4; to neuron i can be written in terms of the

mH as

=3 Tyxj = &lm" (5A.3)
J

m

which gives a set of oV fixed-point equations for the overlaps
1
b= “F(h) =1,..,aN . 5A 4
mt = — Z SFP(h) . m (5A.4)
For F odd and £ = %1, these equations can be written
1 1
- Hp )= — L u

m* = N;F(; K N;F(H, ) (F(H )) (5A.5)

where H‘-“ = £/h; . Borrowing spin glass terminology, HY will be referred to as a local

field for memory u. The brackets in (5A.5) denote an average over the index i:
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(z) =1/N z‘z; . In the large-N limit, this average can be written as an integral over the

distribution of local fields P(HH):
m* = [ dt* P(H* ) F(H*). (5A.6)

We now seck a self-consistent expression for the distribution function P(#4 1y when

m! ~1 and m# ~ O(N"Y2) for >1. The local field for pattern 1,

H =&Y &m", (5A.7)
14
can be split into two parts,
H,-1 =m! + 5} Z EvXmY. (5A.8)
v>1

For ot~ O(1), the second term on the right side of (5A.8) acts as a noise term which we

take to be gaussian distributed with zero mean and variance ¢ given by
2
ot =Y (m*) . (5A.9)

To evaluate the sum of squares in (5A.9) we first write the overlaps mVY with the

- uncondensed patterns using (5A.3) and (5A.4):

m" =+ > 5!1«"(2 éf’mp] . (5A.10)
N4
P
Notice that the right side of (5A.10) is of the form Z‘A,»B,-. A sum of this form with

- 129 -



uncorrelated random variables A; and B; has an expected square of 2 IA,AZB,-z. In
(5A.10) however, the two factors in the sum over i are correlated through the p =v
term in the argument of F, and this term must be treated separately before squaring.

Writing the correlated term separately,

) éi-“F[ S &+ ég“mvj, (5A.1D)

prv

and noting that the single term ( p = v) is small compared to the sum over all the rest

(p #Vv), we expand F to first order in mY giving

e e g et Bt | sai

pEV PV

where F’ is the derivative of the function F. The missing p =V term in the argument
of F’ only affects the value of F’to order O(1/N) which we neglect by taking the

argument to be the whole ;. We now define the quantity C,

C=(F(h)= EF (%) (5A.13)
and write (SA.12) as
mY(1-C)= l2§,—"F[z.§f’mp] (5A.14)
N i p#EV

With the p = v term removed from the argument of F, the two factors in the sum over

! on the right side of (5A.14) are now uncorrelated and can be squared to yield an
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expected value of

([1—6]»:”)2 =-§/—ZF2[Z§{’mP]=%ZF2(h,-) (5A.15)

prV

where, again, the O(1/N) error in the value of F? from the p =v term is ignored.

Next, we define the quantity g in analogy with the Edwards-Anderson order parameter,
1 2
=(F (k) ==Y F%(h), 5A.16
q=(F*(n)) N Z. () (SA.16)
and write (5A.15) as

(m")2 =gq/N(1-C)*. (5A.17)

From (5A.9) and (5A.17), the variance & of the local field distribution is given in terms

of the quantities C and g by

o2 =oq/(1-C)*. (5A.18)

Because F'and F2 are both even functions, we can multiply their arguments by %1
without changing their values. This allows us to write the averages in Egs. (5A.13) and
- (5A.16) in terms of H‘-] rather than 4;, and finally as integrals over the distribution of

local fields P(H!), given by the normalized gaussian distribution

1 1 "(Hl - m )2
P(H') = g o7 — , (5A.19)
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where the variance o? is given by (5A.18). Together with Eq. (5A.6), the self-

consistent equations for quantities m!, C and q are given by the following integrals:

m' = [dH'P(H')F(H") (5A.20a)
C=[dH'P(H')F(H') (5A.20b)
q=[an'P(H")F* (1) (5A.20c)

After a change of variables, y = (H1-m!)/0, Egs. (5A.18) - (5A.20) yield the self-

consistent set of equations (5.22a)-(5.22d) in § 5.4.1.

APPENDIX 5B: RECALL STATES FOR THE PSEUDO-INVERSE RULE

In this appendix we show that for the pseudo-inverse learning rule, stable recall states
exist whenever & < 1 and B > 1/(1-a) (Marcus er al.,1990]. This implies that there
is no spin glass phase for the pseudo-inverse rule in the iterated-map network, in contrast
to the thermodynamic Ising-spin network with the same learning rule [Kanter and
Sompolinsky, 1987]. The analysis below closely follows Kanter and Sompolinsky
(1987].

As described in appendix 5A, a recall state is defined as a fixed point which has a
large overlap with a single pattern (again, taken to be pattern 1). For large N, the single

large overlap m! can be written as an integral over the distribution of local fields

m' =%ZF(H}) LS N jdylp[HI)F(Hl). (5B.1)
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where P(H 1) is a gaussian distribution whose mean and variance must be found self-

consistcnﬂy. The local field for memory pattern 1,

l 1
H =¢; ZT‘-,-XJ- (5B.2)

FE

with the pseudo-inverse matrix

1 - v
- R E ), 8 5

N
Y ErEy (5B.4)

is given by

sl ) ]|

The -ax; term explicitly takes care of setting the diagonals to zero since the Tj; as
defined by (5B.3) are narrowly peaked around o at large N. The state vector x;
i=1,.., Ncan be written as a weighted sum of the pattern vectors, with real-valued
weights g, plus a vector x; , i = 1,..., N, which is perpendicular to the subspace

spanned by the patterns

=y ad'e + . (5B.6)
7!

From (5A.2), (5B.4) and (5B.6), the weights @# are related to the overlaps mH through
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the inverse correlation matrix

a' =% (C) m". (5B.7)

v ad

Writing the local field H} in terms of the a¥,

H' = (1-a)d +§}(1—a)[2§i“a“}—axi , (5B.8)

u>1

reveals a similar structure to the Hebb rule (compare (5B.8) to (5A.8)), with a 'signal’
term proportional to @l and a 'noise' term due to the other patterns. The third term on
the right causes the state to relax towards the subspace spanned by the memories, and
does not add any destabilizing 'noise." Comparing Egs. (5B.8) and (5A.8) also reveals
why the pseudo-inverse rule allows perfect recall with an extensive number of patterns
and the Hebb rule does not: for the pseudo-inverse rule, the variance of the gaussian

noise due to the other patterns is given by

op =(1-a)* Y (a* )2 (5B.9)

u>1

whereas for the Hebb rule, the variance is
2
of = (m*). (5B.10)

When the state of the network is fully aligned with, say, pattern 1, then all a#, u > 1
vanish. On the other hand, the overlaps m#, p > 1 do not vanish, even when the state

is perfectly aligned with a pattern, unless all memories are orthogonal. Therefore the
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‘noise’ term for the Hebb rule is in general always non-zero.
In a recall state (for pattern 1), a' =m! and a#= 0 for u > 1, giving a delta

function distribution for the local fields
P(H")=5(H"-(1- a)ml). (5B.11)

Inserting this distribution into (§B.1) gives the self-consistent solution for the overlap

with pattern 1,
m' = F((1-a)m'). (5B.12)

When the function F is tanh-like with maximum slope 8, there is a non-zero ml given
by (5B.12) whenever ¢ < 1 and 8 > 1/(1-cx). The value of m! grows continuously
from 2ero at the transition. In analogy with thermodynamics, the appearance of recall
states is therefore a second order transition. As mentioned above, the behavior of the
analog network with the pseudo-inverse rule for the particular choice F(z) = tanh(fz)
is not the same as the corresponding Ising-spin network at finite temperature 1/8: as
shown by Kanter and Sompolinsky [1987], the recall states for the Ising model appear at
a value of 8 significantly above 1/(1-c) and the transition to the recall state is first

order. These differences can be attributed to the absence of a reaction field in our system.
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Chapter 6

THE ANALOG MULTISTEP NETWORK

6.1. INTRODUCTION

In Ch. 5, we showed that analog neural networks offer several computational
advantages over networks of binary neurons, including the property that convergence to a
fixed point under parallel dynamics can be assured by a global stability criterion for
networks with symmetric connections. The purpose of this chapter is to extend these
stability results to networks with an updating rule based on multiple previous time steps,
and apply the new stability criterion to the problem of associative memory.

The significant result which emerges from this analysis is that the criterion for
assuring convergence to a fixed point allows a larger neuron gain in proportion to the
number of time steps used in the updating rule, while other properties, including the
storage capacity, are independent of the number of steps used. We emphasize that even
when many previous states are used in the updating rule, parallel is sl parallel: Thinking
in terms of electronic hardware, one can imagine using a tapped analog delay line! at
the input of each neuron; upon each time step, the local states at each neuron are
* simultaneously advanced one position in the delay line. In this scheme, previous time
steps are local and only need to be evaluated once.

A further motivation for studying multiple-time-step networks is to provide a first

1Df:l.';ly-lim: devices are described in Mcad [1989). Commercial tapped delay lines are available, for
example, from EG&G Reticon Corp. (see: EG&G Reticon Application Note 105, A Tapped Analog
Delay for Sampled Data Signal Processing.)
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step in the application of global stability analysis to networks that make explicit use of the
time domain as part of the computation, including recently proposed models for storing
and generating sequences of patterns [Grossberg, 1970; Kleinfeld, 1986; Somplinsky
and Kanter 1986; Dehaene, et al., 1987; Gutfreund and Mezard, 1988; Riedel, er al.,
1988; Herz, et al., 1988; Guyon, et al., 1988; Kiihn, er al., 1989]. Typically,
sequence-generating networks sample multiple previous states - for example by using
time delay - to determine their evolution. Numerical studies [Riedel, er al., 1588;
Babcock and Westervelt, 1986; Aihara et al., 1990] well as experiments using analog
circuits [Marcus and Westervelt, 1988] (see § 4.6) show that the neural networks with
time delay can be chaotic, and very few analytical results on their stability and
convergence are known [Marcus and Westervelt, 1989a] (see § 4.3 and § 4.4). The
analysis presented here is greatly facilitated by considering a relatively simple discrete-
time multistep system with symmetric connections. In this sense, our results apply to
sequence-generating networks when they are configured to retmeve fixed points only.
The dynamical system we will study is defined by a set of N coupled iterated maps
N
x(t+1) =E[27}j z;(r) +I‘] , i=1..,N (6.1a)

J=1

where zj(t) is the output of the j”’ neuron time-averaged over M previous ime steps:

M-1 :
z]-(t) = %{% xj(t-r)} , j=L..N; Me{1,23,..]} (6.1b)

This system will be referred to as a multistep neural network. Updating of the state
variables x;(¢) as well as the z/(#) is done in parallel (i.e. synchronously) and is fully

deterministic. We assume throughout that the connection matrix 7. i is symmetric. The
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(a)

o) F;(input) ,

Fig. 6.]1. The analog multistep neuron. (a) Schematic representation of a multistep
neuron with M = 3. Electronic implementation could use a tapped delay line as part of
the input (or output) circuitry. (b) An example of a neuron transfer function F; (solid
line) that satisfies the conditions required for the analysis: F; is monotonic, single-
valued, and increases in magnitude slower than linear at large argument, The maximum
slope of F; (dashed line) is defined as the neuron gain f;.
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nonlinear neuron transter functions F; must obey the same constraints as in Ch. 5: All
F; are monotonic (Without loss of generality, we can choose all F; to be monotonically
increasing) and single-valued. Also, the F;may be locally concave up or concave
down, and do not need to saturate, but must eventually increase in magnitude slower than
linear for large positive and negative argument. An example of a function F; that
satisfies these conditions is shown in Fig. 6.1(b). The maximum slope of each F; is
defined as the gain f3; for that neuron. Results of § 6.2 and § 6.3 can be applied to
networks of binary (Ising) neurons by letting all §; — eo.

Equation (6.1) with M = 1 is the standard analog iterated-map neural network
discussed in Ch. 5 [Marcus and Westervelt, 1989¢]. The M = 2 case of (6.1) with all
F;= S5gn was investigated numerically by Kanter and Sompolinsky [1987] for an
associative memory neural network based on the pseudo-inverse learning rule. These
authors found that the basins of attraction for the recall states are considerably larger for
M =2 than for M =1 (the basins for recall states under sequential updating are larger
than for either of these parallel schemes). Kanter and Sompolinsky [1987] offered the
following explanation for this observation: First, the use of two previous states in the
updating rule adds an effective momentum to the dynamics, allowing the network to
"coast” over shallow local minima; Second, spurious oscillatory attractors for this
network are 3-cycles, which, they argued, are rarer than the 2-cycles found in the
M =1 network. Below, we will prove (for general F;) the claim of Kanter and
Sompolinsky [1987] that the only attractors for M = 2 besides fixed points are period-3
 limit cycles. On the other hand, numerical evidence for the M = 2 Ising spin glass
presented in Ch. 7 suggests that spurious 3—cycles may be quite abundant for multistep
networks.

The rest of the chapter is organized as follows. In § 6.2 we derive a global stability

criterion which guarantees that the multistep analog network will always converge to a
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fixed-point attractor as long as the maximum neuron gain f§ = max;(f3;) does not exceed a
critical value which is proportional to the number of time steps M in the update rule and
inversely proportional to the minimum eigenvalue of the connection matrix. For the
particular case M = 2 we also prove that the only other possible attractors (i.e. when the
stability criterion is violated) besides fixed points are period-3 limit cycles. In § 6.3, we
apply these results to multistep associative memory networks and give a simple stability
criterion for the Hebb rule [Hebb, 1949, Hopfield, 1982] and pseudo-inverse rule
[Personnaz, et al., 1985; Kanter and Sompolinsky, 1987]. This criterion depends on
M, B, the ratio o of stored memories to neurons and the self-coupling . In § 6.4,
we show that the convergence time of the multistep network increases proportional to M,
but that in some instances, optimal choices for both  and M give faster convergence

with increasing M. Finally, conclusions and open problems are discussed in § 6.5.
6.2. LIAPUNOV FUNCTIONS FOR MULTISTEP ANALOG NETWORKS
6.2.1. Global stability criterion for general M

In this section we prove that the analog multistep network, Eq. (6.1), will have only

fixed point attractors whenever

2o JDmny) 6.2)
B

where B = max;(8;) > 0 is the maximum neuron gain, M €{1,2,3,...} is the number of
time steps in the update rule and A, (T}j) is the minimum eigenvalue of the symmetric
connection matrix T;- This criterion applies for any distribution of the (real) eigenvalues

of Tij' In particular, when T‘-j has both negative and positive eigenvalues, l,,,,-,,(?}-)
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refers to the most negative eigenvalue. This result should be compared to the
corresponding result for the iterated-map network (the case M = 1) presented in Ch. 5,
which is the stability criterion (5.11).

Following a similar approach to Ch. 5, we consider the discrete-time evolution of the

real scalar function L(¢) defined

M-1
L(I) = —‘;-2 Tl) Z"(I) Zj([) + 2 i 2 [G,»(x,-(t—r))-—[,-xi(t—r)] (63)
if i 7=0
where
Gix) = ['F'(z)dz . (6.4)

The requirement that F; change in magnitude slower than linear at large argument insures

that the function £(r) is bounded below.

The change in L(z) in one time step, defined as AL(f) = L(t+1) - L(¢), is

AL(f) = —%Z T, 20+ 1z (0 +1) — 2(0)2,(0)]
4

+Z$[Gi(xi(' +1)) = Gy(x;(r—M + 1))]

_Z%[,-[x,-(t—l— Y- x(t~M+1)] . (6.5)
* This can be simplified by defining the change in z(?):
Azi(t) = [z;(1+1) - 2, (1)] = %[I,-(t«i- 1)-x;(t—M+1)] (6.6)

and using the symmetry of Tij , giving
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AL(r) = —%2 T; Az(r) Az(t) Zazi(’)lzjijzj(‘) .,.1,}
i,] i ;
"’2%[@(%(“‘ 1) - Gi(x(t-M+1))] . 6.7)

Expanding the last term in (6.7) in a two-term Taylor series about the point x(r+1) and
replacing the coefficient of the quadratic term with the smallest value that it can take,
which is

min(d’G;[dx?) = B (6.8)
gives the following inequality {see Fig. 6.2]:

Gi(x(t+1))=Gi(x:(t—M+1)) < G/ (x;(t +1))[M Az (1)] - %ﬁ;l[MAz,-(z)]?'. (6.9)

where G’ is the derivative of G; with respect to x;. From Eqgs. (6.1a) and (6.4), G,

can be written
G (x(2+1) = K Yx;(r+1)) Z 2;(1) + (6.10)
leading to an inequality for AL():
AL(2) < —%g T, Az (r) Az;(r) —%;Mﬂi—l[mi(:)}z . (6.11)

By defining a matrix Xij as
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x; (t+'1) x; '(1-2) ;‘- (r—M'+l) x; (z'+ 1)

Fig. 6.2. Inequalities (6.9) and (6.20), illustrated for a particular transfer function F;
(inset) and its corresponding G, defined by Eq. (6.4). The curve tangent to G; on the
right side is a parabola with second denvative ﬁ‘-'l , the line on the left is tangent to G;.

Equation (6.9) is the statement A < B. ; Eq. (6.20) is the statement C<D, and C=D
only when x;(r+1)=x;(t -2).
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the inequality (6.11) can be rewritten in the simple form

AL(t) € =Y Ky Az(t) Az(1) . (6.13)
ij

From (6.13) it is clear that if K ij is a positive definite matrix, then AL(?) £ 0, and that
the case of equality (AL(t) =0) only can occur when all Az,(1) = 0. Writing the

difference of Eq. (6.1) at subsequent times as

ZTU Az;(t) = F(x(0+1)) = F(x(0)) (6.14)
J

indicates that the condition Az,(t) = 0 for all i (and therefore the condition AL(t) = 0)
further implies that x; (¢ + 1) = x;(r) for all j; that is, that the system must be at a fixed
point.

A sufficient condition for K; to be positive definite is M Bl> ~Amin(T}j) for all

I, where A (Tij) is the minimum eigenvalue of the matrix TU . (This holds for any

min
value for A,;..) In terms of the maximum neuron gain f3 = max;(B;), this sufficient

condition can be stated

2> - = K positive definite. (6.15)
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Equations (6.13) - (6.15) and the arguments in the preceding paragraphs can be

summarized as follows:

Stability Criterion.
.. (T
% > —%") = (1) L()is a Liapunov function of system (6.1),

(2) All attractors of (6.1) are fixed points. (6.16)

As mentioned above, this criterion applies for any distribution of the (real) eigenvalues of
Ty When T;; has both negative and positive eigenvalues, ﬁ,m,-,,(Tij) refers to the most
negative eigenvalue. The stability criterion (6.16) 1s immediately satisfied 1f the
connection matrix 7 ij is itself positive definite (since M and f are both strictly
positive), although this is uvsually not the case in most currently-used network
applications (see § 6.3).

What can be said about the attractors of (6.1) when the stability criterion (6.16) is
not satisfied? For M = 1, we showed in § 5.2 that the only new kind of attractor that
can appear when (6.16) is violated is a limit cycle of period 2. For M =2, we will prove
in the following subsection that the only possible attractors besides fixed points are
period-3 limit cycles. For M > 2, we know of no results - analytical or numerical - that
limit the possible types of attractors of (6.1) when (6.16) is not satisfied. However, the
trend for M = 1, 2 suggests that for general M, attractors of (6.1) (with symmetric T‘-j)

~ might be restricted to limit cycles with periods of (M+1) and its divisors.
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6.2.2. The case M = 2: Only fixed points and 3-cycles

The simplest multistep extension of the standard parallel update rule is the M =2
case of (6.1). An Ising-model version of this network was studied by Kanter and
Sompolinsky [1987] for the pseudo-inverse rule associative memory. These authors
found numerically that the M = 2 network has improved recall over the corresponding
standard (M = 1) Ising-model network. As part of their explanation for the improved
performance, they also point out that the only non-fixed-point attractors for their network
were period-3 limit cycles.

In this subsection we prove a generalization of the statement of Kanter and
Sompolinsky [1987]: We show that all attractors of the multistep network (6.1) with
M = 2 are either fixed points or period-3 limit cycles for general nonlinearities F; as
defined in § 6.1. Again, this result assumes a symmetric Tij-

Consider the time evolution of the function £(r), defined

—2 T; [ t—l)+ix( l)x}-(r—l)]

+ =Y 2 [Gi(x;(t = )~ Lixi (1 — 7)] (6.17)

where the function G; is given by Eq. (6.4). As with L(z), the requirement that all F;
change in magnitude slower than linear at large argument insures that the function E(z)
1s bounded below. The exact form of Eq. (6.17) was not derived, but was found via
guesswork and some intuition, though it bears an obvious resemblance to L(f) as well
as to other previously discovered Liapunov functions [Cohen and Grossberg, 1983;
Hopfield, 1984; Goles-Chacc er al., 1985; Golden, 1986]. The change in E(¢) in one
time step, defined AE(t) = E(t+1)— E(t), is

- 146 -



il

AE(1) -2 ,,[ (2 +1)z;(1) - 2i()z;(r=1)]

+

Ty [xi(0)x;(6) = x;(e = V(e = 1)]

+-2[ (1 + 1)) = Gi(x(t = 2)) = I e+ 1)+ Ix(t=2)] . (6.18)

Expressing the first term on the right of Eq. (6.18) in terms of x;'s and x;'s (from

Eq. (6.1b)) and using the symmetry of T;;, the change AE(f) can be written as

AE(1) = ---2 [x (t+1)- x(t—2)][2 L7 ](z)+1]
'2 [Gixi(1+1)) = Gi{xi(r - 2))] - (6.19)

We now expand G, to first order about the point x;(r+1) and use the following

inequality [see Fig. 6.2]:

[Gi(x; (1 +1)) - Gi(x;(r - 2))] < G, (x; (e +1D)[x;(t +1) - x;(1 = 2)]. (6.20)

Equation (6.20) differs from the second-order expansion of G; used above (Eq. (6.9)) in
that the only case of equality for Eq. (6.20) is when x;(¢ +1) = x;(t—2). Combining
Egs. (6.10), (6.19) and (6.20) yields

AE(r) < .__25[ (x,(r+1)) i]xxz+1»Hxxr+n-(xxr—2»}. 6.21)

From Eq. (6.10), the difference in square brackets equals zero, and therefore
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AE()<0; (6.22a)
AE(1)=0 = x;(t+1)—x;(r—2)=0 foralli. (6.22b)

Thus, E(1) is a Liapunov function for the system (6.1) with M = 2, and all attractors
(the minima of E(r)) satisfy the condition x;(z+1) = x;(z —2) for all i. That is, all

attractors are either period-1 (fixed points) or period-3 limit cycles.

6.3 MULTISTEP ASSOCIATIVE MEMORIES

To illustrate some of the benefits of using a multistep update rule, we now consider
associative memory networks based on the two learning algorithms studied in Ch. 5: the
Hebb rule and the pseudo-inverse rule. The connection matrices T‘-j to be inserted into
the multistep network (6.1) in order to store a set of p fixed-point memory patterns #

(EH=%1,i=1,..,N;u=1, .., p) are specified by the following rules:

Hebb Rule:
LS grer  Gi2)
—_— i ; 1#)
T, =Na (623)
14 (i =J)
Pseudo-inverse Rule;
LS en(ct) & (=)
T, = NS wo ™ (6.242)
Y (i=))
1 N
Co==3, EF &Y . (6.24b)
Ni:l
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We take the self-coupling term ¥ to have an adjustable value in both learning rules. The
influence of self-coupling ¥ on the recall performance [Kanter and Somplinsky, 1987;
Krauth et al., 1988; Fontanari and Koberle, 1988a,b,c] and stability |Jeffery and
Rosner, 1986a; Denker, 1986¢; Fontanari and Koberle, 1988a; Marcus and Westervelt,
1990] on various associative memory models has been discussed previously.

Mean field analysis [Amit er al., 1985b, 1987; Marcus and Westervelt, 1990] in the
large-N limit suggests that overloading these two associative memories results in the
disappearance - not merely the destabilizing - of fixed points close to the stored patterns.
That is, storage capacities for these networks seem to depend only on the presence or
absence of fixed points, not on the details of the dynamics. Because the fixed point
condition for (6.1) is independent of M, storage capacities for these associative
memories are also independent of M.

To apply the stability criterion (6.16) to these associative memories, we need the
minimum eigenvalues of the connection matrices defined by (6.23) and (6.24). For the
Hebb rule,

T.. Hebb

Amin( T2 ) = ¥-a [a<1] (6.25);

for all values of the network size N [Crisanti and Sompolinsky, 1987].2 For the

pseudo-inverse rule, the minimum eigenvalue asymptotically equals the Hebb-rule value,
l,,d,,(ﬁ}-i"") - 7 [@<1; N>>1] (6.26)

and is slightly [O(N-1/2)] more negative for finite N [Kanter and Sompolinsky, 1987].

2Equation (6.25) can be proved by first showing that the outer product matrix & c_’;T is non-negative
definite and has rank less than or equal to the number of patterns p. Thus for p < N,

mm({é )=0. Then, because the diagonal of (1/N)& § is «, setting the diagonal in (6.23) to ¥
immediately gives (6.25).
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We assume N >> 1 and take A,,;,, = y—« for both rules. We emphasize: this value of
A min 18 exact for the Hebb rule and is valid as N — eo for the pseudo-inverse rule. For
both rules, it is valid for 0 < & < 1. We have not placed any restrictions on biases or
correlations among memories, although (6.25) and (6.26) are nor valid if the connection
strengths are clipped or diluted [Marcus and Westervelt, 1989a].

From Egs. (6.16), (6.25) and (6.26) we can immediately write the main result of this
section: An M-step analog associative memory based on the Hebb or pseudo-inverse
rule with self-coupling ¥ and all neuron gains less than or equal to B will always

converge to a fixed point attractor when the condition

_1- S [ﬂ] (6.27)
B M

1s satisfied.

This is a remarkably simple result. To illustrate its usefulness, consider a pseudo-
inverse rule network loaded to & = 0.8 and no self-coupling, y= 0. From (6.27), the
M = 1 network can oscillate whenever f§ > 1.25. On the other hand, it can also be
shown using a multistep generalization of the contraction mapping theorem [Weinitschke,
1964; Baudet, 1978] that the pseudo-inverse network has a single, global attractor

whenever the maximum gain satisfies

B<(t—a+y)" | (6.28)

independent of M. In this low-gain state, all initial states evolve to the same fixed point
and the network is not useful as an associative memory. For the present example, the
condition (6.28) requires 8 > S to create recall states, which is unfortunately at odds

with the stability condition 8 < 1.25. To simultaneously satisfy both requirements, one
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could add positive self-coupling y> 0, but this has the detrimental side effect of
reducing the size of the basins of attraction for recall states [Kanter and Sompolinsky,
1987; Krauth ez al., 1988]. An alternative is to use a multistep updating rule: From
(6.27) and (6.28), the two desired conditions - guaranteed convergence to a fixed point
and existence of recall states - can be simultaneously satisfied in the pseudo-inverse rule

when

< [( MA:IF 1] + ‘y] (6.29)

Thus, in our example, the M = 1 network must have y> 0.3 to simultaneously provide
guaranteed convergence and the existence of recall states;, however, a multistep network

with M > 3 can satisfy both conditions without the use of positive self-coupling.
6.4 CONVERGENCE TIME

In this section we present a simple analysis of the convergence time for the multistep
network, and show that the convergence time 7, for the M-step network is greater than

for the 1-step network by a factor 7,,/7; where
(M+1)/2 < 14/7y < M. (6.30)

In the context of discrete-time dynamics, the expression “time" means "number of
iterations,” and is not equivalent to the real time taken to perform the updating, which
depends on the details of the implementation. For example, in a multiprocessor
implementation of the multistep network, each processor (one for each neuron) must read

and sum the N states of the other neurons in order to determine its local field. Thus the
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update time in this implementation is roughly N times the processor's cycle time. Note
that the real time for an update does not scale with M, however, since local fields can be
stored in an array and used M times. By this same argument, the real time taken to
update all neurons sequentially is proportional to N2,

Convergence times for associative memories have been studied previously for binary
neurons and discrete-time parallel dynamics with M = 1 [Kanter, 1989] as well as
continuous-time dynamics with time delay [Kerszberg and Zippelius, 1989]. An
important result reported by Kanter [1989] is that the convergence time for binary
networks under parallel dvnamics increases in proportion to the logarithm of the network
size for the Hebb rule, but appears to reach a size-independent limit for the pseudo-
inverse rule.

To analyze the convergence time in the analog multistep network, we consider
evolution in the vicinity of any attracting fixed point, which may be a memory recall state,
a spurious fixed point, or, for very low gain ( BIA( T;‘j ) <1 for all A4, independent
of M), the single, globally attracting fixed point. Close to the fixed point X *, the time
evolution of the deviation () = (X(r)—X*) << 1 can be described by a linearized

version of (6.1):

N 1 M-1
S;(1+1)= ):D,-j[H Y 8,(i- f)] (6.31a)

=0

~ where D‘-j is the Jacobian matrix,

D = inj[ﬁ(zjﬁjxj)j] (631b)

x*

In general, Dij is not symmetric, but it can be shown that all of its eigenvalues are real,
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due to the monotonicity of the F;. We now further assume that the system has had
sufficient time for fast modes to relax, allowing the evolution to be characterized by a
single characteristic multiplier - that is, the system has reached the slow manifold. In this

case, the approach to the fixed point can be described by the linear, scalar iterated map
S(t+1)=Ay (), (6.32)
where the characteristic multiplier A,, is real-valued and IA M| < 1. We emphasize that
even though (6.32) is a single step equation, this form applies for any value of M.
For M =1, (6.31) is a simple N- dimensional linear map, and the value of A, is

just the eigenvalue of Dj; in the slow manifold. For M > 1, the equation for &(r) near

X * can be written in terms of A, as
5(t+1) =%[5(:)+ S(t—1)+ - + 81— M +1)] (6.33)

By repeated application of Eq. (6.32), the multistep equation (6.33) can be cast in the

form of the single step equation
Ay -1 —(M-1)
8(t+1)= -ﬁ[1+ Myt e+ Ay o() (6.34)
- For consistency with the definition of A,, in (6.32), we require

A

Ap =1+ Ay + +Ay~ M (6.35)

Summing the partial series in (6.35) gives a self-consistent expression relating the
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characteristic multipliers A; and A,

M(AM)M (1—Ay)
1-(Au)"

= : (6.36)

We now define a characteristic time 7), > 0 as the number of time steps needed to
reduce an initial distance 8,<< 1 by a factor of 1/e. From (6.32), the distance from the
fixed point decreases according to §(z)=3,[A M]'. This yields an equation for
converting characteristic multipliers into characteristic times: 7, = —[ln|A M|]—l. The ratio
Ty /7T, which indicates how much slower the multistep network is compared to the

single-step network, is therefore given by
Ty /T =AY [ Ay . (6.37)

Values for 7),/7, as a function of 7, for M = 1 through 4 are plotted in Fig. 6.3. For

large and small values of 7y, the limiting values of the ratio 7, /7; are

Lim [ty/n] = M (6.38a)
TM—)D
Lim [ty/n] = M2+1 (6.38b)
Ty —
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Fig. 6.3, The characteristic time 7y, for the M-step network, normalized by the single-
step characteristic time 7y, as a function of 7; for M =1 - 4. Curves are from Eqs.
(6.36) and (6.37), and are based on linear analysis in the vicinity of an attracting fixed
point.
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As a practical example of the convergence time result, we consider the multistep
associative memories discussed in § 6.2, taking F;(z) = tanh(Bz) and Ix- = 0 for
all i. In the vicinity of a recall state (or in the vicinity of the origin (¥ =0), when it is
the unique attractor) the overlap m(?) of the state of the network with a memory pattern

evolves according the scalar iterated map

m(t +1) = tanh(bm(r)) (6.39)

where
b=(1—a+y)B [pseudo-inverse rule], (6.40a)
b=(1+7)B [Hebb rule; analysis is only valid for o« = 01]. (6.40b)

For these networks, the characteristic time for the single-step network is

_ -1
nE ln[b sech?(b m*)] ’

(6.41)

where m* is the stable fixed point of (6.39): m* =ranh(b m*). A plot of 7, as a
function of b from Eq. (6.41) is shown in Fig. 6.4. Values for the characteristic time
Tyy for M > 1 can be found by multiplying 74, /7, (from Egs. (6.36) - (6.38) or Fig.
- 6.3) by the value of 7; (from Eq. (6.41) or Fig. 6.4).

Although a given network configuration takes longer to converge as M increases
(with other parameters fixed), it is possible in some instances to optimize both the neuron
gain 8 and M to satisfy the stability cnterion (6.16) with a resulting reduction in the

convergence time for larger M. For example, in the case of the pseudo-inverse network
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Fig. 6.4. The characteristic time 7, for the one-dimensional map m(f + 1) = tanh(b m(1))
as a function of b, from Eq. (6.41). For b <1 the map converges to m = 0; for b>1
the map converges to one of two non-zero fixed points. This map describes the evolution
of the overlap of the state vector with a memory pattern in the vicinity of a recall state for

the Hebb rule in the a — 0 limit, and for the pseudo-inverse rule with o < 1. Values for
b are given by Eq. (6.40).
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described above with a@= 0.4 and y = 0, the stability criterion (6.16) places an upper

limit on the neuron gain that depends on M. For M = 1, 2 the optimal values are

M=1: B<(1/0.4)=25  [b<L15] =  1,>[L07xL00]=107, (6.42a)
M=2:8<(2/0.4)=50 [p<30] =  1,>[0.29x1.72]=0.49. (6.42b)

In this example, using the maximum safe gain for the particular value of M gives a
convergence time for the M = 2 network that is roughly half that of the M =1

network.
6.5 CONCLUSIONS AND OPEN PROBLEMS

In this chapter we studied the dynamics of a symmetric analog neural network with a
parallel update rule that averages over M previous time steps. We have shown that
convergence to a fixed point attractor can be guaranteed by a simple stability criterion,
Eq. (6.16), which limits the maximum neuron gain to a value proportional to M. The
global analysis leading to this result is based on a new Liapunov function given in Eq.
(6.3). For the system we have considered, certain aspects of the dynamics do not depend
on M; these invariant properties include the associative memory storage capacity and the
value of neuron gain needed to create fixed points away from the origin . The results
were applied to multistep associative memories based on the Hebb and pseudo-inverse
 learning rules, giving the stability criterion (6.27).

In general, the multstep updating scheme is useful when (1) parallel dynamics is
desired - for example, to take advantage of multiple processors; (2) connections are
symmetric, and convergence to a fixed point is desired; and (3) the connection matrix has

a negative eigenvalue of sufficient magnitude to render the stability criterion for the
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single-step network overly restrictive (see: § 5.3) . For example, if 4, /2,... <—1, the
only way to prevent oscillation in the M = 1 network is to lower all neuron gains until
there is only a single, globally attracting fixed point (at which point the dynamics are
computationally uninteresting). Increasing the number of time steps M allows the gain to
be (safely) increased (as per (6.16)) to a sufficiently large value to create multiple fixed
points.

As a quick (and final) example of where a multistep updating would be particularly
useful, consider an analog network with a spin-glass connection matrix: the symmetric
matrix T has random elements picked from a gaussian distribution with zero mean and
variance JZ/N. This system has been studied [Soukoulis er al., 1982; 1983; Ling et
al., 1983] as an approximation to the TAP mean-field approach [Thouless et al., 1977]
and yields reasonable predictions, comparable to Monte-Carlo techniques. [See,
however: Reger ef al., 1984]. The numerical work of Soukoulis er al. was done using
sequential update, and using a parallel update rule (for instance, using a multiprocessor
computer) for such a system is problematic, since the large-N eigenvalue spectrum of T
is symmetric about 0 (i.e. 4,,,, =—A2,,,): as soon as spin glass states appear, period-2
limit cycles also appear. Figure 6.5 shows a phase diagram for the fully connected (SK-
like) analog spin glass. The phase diagram shows that the parallel updating problem can
be cured by going to a multistep updating rule. As long as M > 1, there is a range of

neuron gain f3 for which spin glass states - but nor oscillatory states - can be found.
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Fig. 6.5. Phase diagram for the M-step analog spin glass in the large-N limit.
Connection matrix elements are random gaussian distributed with zero mean and variance
J2/N. The gain of each neuron is 8. Notice that oscillation-free parallel updating
requires M > 1.
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We have also presented a stmple analysis of convergence times and found that the
number of iterations required for a multistep network to converge to a fixed point
increases proportional to M when all other networks parameters held fixed. However,
because an increase in the value of M allows the gain to be safely increased, in some
instances using a larger M can reduce the convergence time when the gain is also
optimally adjusted.

Two important extensions of the present results, which remain open problems, are
the inclusion of (1) weighted averages over previous time; and (2) nonsymmetric
matrices, especially those used to generate desired cyclic attractors. Another open
problem is to prove the conjecture that the only attractors of (6.1) (with symmetric
connections) for arbitrary M are limit cycles of penod M+1 and all of its divisors

(including 1, i.e. fixed points).
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Chapter 7

COUNTING ATTRACTORS IN ANALOG SPIN GLASSES
AND NEURAL NETWORKS

7.1. INTRODUCTION: DETERMINISTIC ANNEALING

The data in Figs. 5.6 and 5.7, showing the fraction of random initial states that settled
onto various types of attractors in an analog associative memory, reveal a remarkable and
useful property of analog neural networks: over a broad range of neuron gain, the
chances of correctly finding a memory pattern increase as the gain is reduced. This
property has been observed and discussed by several authors in a variety of applications
{Hopfield and Tank, 1985, 1986; Koch ez al., 1986; Blake and Zisserman; 1987; Durbin
and Willshaw, 1987], and may well be the primary motivation for developing parallel
computation in analog. The benefits of analog computation were emphasized by
Hopfield and Tank [1985, 1986}, who explained the improved performance at lower gain
by way of a comparison to the stochastic dynamics of simulated annealing [Kirkpatrick
et al., 1983]. In his review of neural networks in Physics Today, Sompolinsky [1988]

assessed the situation from a slightly different perspective:

What is the reason for the improved performance of the analog circuits?
Obviously, there is nothing in the circuit's dynamics, which is the same as
gradient descent, that prevents convergence to a local minimum.
Apparently, the introduction of continuous degrees of freedom smooths the
energy surface, thereby eliminating many of the shallow local minima.
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Thus Sompolinsky makes a keen distinction between stochastic (or Monte-Carlo)
dynamics on a rough energy landscape and deterministic, gradient-descent dynamics on a
smooth energy landscape.! The results of the two schemes may be similar, but the
dynamical process is quite different. The hypothesized smoothing of the energy
landscape is illustrated schernatically? in Fig. 7.1.

In this chapter we explore the structure of the energy landscape in an analog neural
network by counting - analytically and numerically - the expected number of local minima
in the landscape of a typical realization of a Hebb-rule associative memory. The analysis
adapts techniques previously developed to count fixed points in the mean-field spin glass
model of Thouless er al.[1977] (TAP) [Bray and Moore, 1980] and in neural networks
with binary neurons [Gardner, 1986; Treves and Amit, 1988; Kepler, 1989]. The result
provides a quantitative demonstration that using analog neurons dramatically reduces the

number of local minima in the energy landscape [Waugh ez al., 1990].

b

T
averaged over realizations of the connection matrix T, increases exponentially with the

We find that the expected number of local minima in the energy landscape ( pr)

number of neurons N,

(Ng)y ~ exp[Na(e,B)] (7.1)

)} "Energy" herc means any Liapunov function appropriate Lo the particular network dynamics. In
physical systems - or, more generally, in systems obeying detailed balance - the free energy behaves as a
Liapunov function in the thermodynamic limit [for a proof, see Amit, 1989, §3.6.3], hence this
expression., The "energy landscape” describes how a Liapunov function changes as one moves around in
state space.

2 These schematic energy landscapes are ubiquitous in the spin glass literature and seem to have a great
influence on the way the community visualizes the complex state space of spin glasses and neural
networks. Reducing state space to one dimension can create false intuitions if embraced too literally.
Not only does this representation give a distorted sense of adjacency and distance, but it also creates the
impression that fixed points are all either maxima or minima, with necessarily equal numbers of each. In
high-dimensional space, this is not the case: First of all, there can be saddle points in addition L0 maxima
and minima. Second, fixed points need not be evenly divided among the various types. For example, in
the discrete state space of a binary-neuron network with deterministic sequential dynamics, all fixed
points are minima.
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Fig. 7.1. Schematic energy landscapes illustrate how reducing the gain of the analog
neurons smooths the landscape, thereby reducing the number of local minima.
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with a scaling exponent a{a, 8) which is an increasing function of both the neuron gain
S and the ratio @ of memory patterns to neurons.

For the case of binary neurons, Gardner [1986] found that fixed points in a Hebb rule
network are not distributed evenly throughout state space, but tend to be correlated with
the memory patterns, as seen in Fig. 7.2. For low storage (p/N < 0.11) there is a
separate clump of fixed points very near each memory pattern. At a critical storage
fraction, this highly correlated clump disappears, suggesting the disappearance of the
recall state. This analysis provides an interesting alternative method for finding the
storage capacity of a network. Although the result for the storage capacity (p/N ~ 0.11)
is not as accurate as that found by Amit e al. [1985b; 1987], Gardner's technique is
more versatile, being applicable, for example, to nonsymmetric matrices [Treves and
Amit, 1988; Kepler, 1989; Fukai, 1990 (Fukai considers networks obeying Dale's rule,
the physiologically-motivated requirement that a neuron be either purely excitatory or
inhibitory)].

Despite the correlation of the fixed points with the memory patterns seen in Fig. 7.2,
the vast majority of local minima are uncorrelated with all memory patterns. That is,
nearly all fixed points are truly spurious states, having a vanishing overlap with the
stored patterns. In fact, as Gardner points out, the distribution of the fixed points having
overlap m with a stored pattern is very narrowly peaked about m = 0 in large systems;
counting all fixed points or only counting the uncorrelated fixed points gives the same
result in the large-N analysis.

In the limit of large neuron gain B, our scaling function a(¢, ) from Eq. (7.1)
agrees numerically with Gardner's result for the total number of fixed points in a Hebb
rule network with binary neurons. In the limit where both a,f8 — o, we recover the
familiar result for the zero-temperature Ising spin glass [Tanaka and Edwards, 1980; De

Dominicis er al., 1980; Bray and Moore, 1980],
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Fig. 7.2. Scaling exponent a(g) for the number of fixed points a Hebb-rule neural
network with binary neurons and storage ratio & = 0.1. The expected number of fixed
points at a Hamming distance Ng from a stored pattern in a typical realization is
<N (N, g)) = exp[a(g)N]. Negative values indicate regions where no fixed points are
expected. Fixed points at g = 0.5 (overlap with pattern m = 0) dominate at large N.
The dashed line shows the scaling exponent if the fixed points were evenly distributed
throughout state space. After Gardner [1986).
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a(ee,=)=0.1992... (7.2)

One might further suspect that for finite §, the limit &@ — < would correspond to the
finite-temperature spin glass result [Bray and Moore; 1980] with f3 playing the role of
the inverse temperature in the TAP equations. This is not the case, however. The
inclusion of a reaction field term in the TAP equations greatly affects the number of fixed
points, thus the function a(e, 8) = a(B) is not equivalent to the spin glass result of Bray
and Moore [1980], as we will show below. The reaction field also makes the dynamical
version of the TAP equations chaotic for finite f so that a direct numerical test of the
theory for the TAP equations has not been possible [Bray and Moore, 1979].

The analytical results presented in § 7.2 are in good agreement with numerical counts
of local minima, which are given in § 7.3 [Waugh et al., 1990]. This agreement
suggests that the analysis is correct despite its many approximations and assumptions.

The work presented in this chapter was done in collaboration with Fred Waugh, who

led the way through most of the roughest terrain, both analytical and numerical.

7.2. COUNTING ATTRACTORS: ANALYSIS

7.2.1. Analog spin glass

Before considering the analog associative memory, we begin by solving a slightly
easier problem. We will calculate the expected number of local minima in the energy
landscape for the analog version of the SK spin glass [Sherrington and Kirkpatrick,
1975]. The results are interesting in their own right as a demonstration of landscape

smoothing in a well-studied multi-attractor system. Also, the techniques used here will
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appear again when we analyze the analog associative memory.

The fixed-point condition for the analog network is given by

xi:F(hi)=F[27}jxj} : i=1,..,N, (7.3)
j

which can be written as

G =gi(x))-BY.T;x;=0 ;5 i=1,.,N; (7.4)
J
with the definition

gi(x)=BF(x). (7.5)

The neuron transfer function F must be invertible3 and the connection matrix T =
{Tij} is assumed symmetric with elements chosen from a gaussian distribution having

zero mean and variance J%/N. The normalized probability distribution for the Tl-j 1s

N\ (-NT?
P} (5072) “”[ 2 ) Tt o

The type of dynamics or update rule leading to the fixed point condition (7.4) is
unspecified; the results apply to systems with continuous-time dynamics, discrete-time
sequential dynamics and parallel dynamics as long as the stability criterion of § 5.3 is also

| satisfied.
We are most interested in counting the stable fixed points, that is, minima of the

energy landscape, not saddles or maxima. To limit the count to include only stable fixed

3 No other constraints on the nonlinear function are mandated by the analysis. However, the only
nonlinearity for which the theory has been checked by numerical experiment is F(h;) = tanh(Bh;).
How well the theory works with other nonlinear functions is unknowmn.
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The squared sum on the right of (7.16) can be made linear using a Hubbard-Stratonovich

transformation,

2 v 2
exp(%) = (;—x] J_mdxexp{—ig—+alx:| .17

(with a = (BJ/N) E.‘ kix; and A = N in this case). This introduces a new integration

variable V, which will eventually be evaluated by steepest descent. We now have

(N )y = Max [ ”( ]Jnd"
el {42 [ S L s sl ey

(7.18)
Next, we introduce the order parameter

1 2
==Y x 7.19
N <" (719

by muldplying (7.18) by an integral over a complex exponential that is equal to 1:

1= j dq&xp[ [Nq—zi:x,-z]]. (7.20)

This adds two more variables, g and A, to be determined by steepest descent. With this
substitution, the integrals over k‘. in (7.18) are now gaussian and can be integrated to

give
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(V) =M [Tsom] 22 —ang]

N JVx, G
) el 3 P a2,

(7.20)

Notice that the x;'s on different sites i are now decoupled. This allows the N integrals
over the x;'s to be written as a product of N identical integrals, or as a single integral
over x (no index) raised to the Nt power.

We next consider the (|der A[),., which we evaluate using the following property of

the multidimensional gaussian integral:

detA{HG } [jln \/_exp[ %p,-A,-jijQ. (7.22)

where A, i =1, .., N are the eigenvalues of A, and 6 is the step function,
6(z) =(1+ Sgn(z))/2. Notice that the RHS of (7.22) equals det A as long as A is
positive definite, otherwise it equals zero. This is just what we need to count stable fixed
points: Recall that A is the Hessian of the Liapunov function for the dynamical systems
discussed above. Thus replacing Idet Al in (7.20) with (der A)TT;6[4;(A)] will pick out
the minima of the energy landscape. The RHS of (7.22) can be averaged by introducing
- replicas [Bray and Moore, 1980], and eventually setting the number of replicas to -2.
Dropping the step functions (and understanding that the count now includes only stable

fixed points), we write
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. e dp‘ 1 A
det A= Lim J_mg\/ﬁexp[_ai ZP;aAijpja]. (7.23)

m—-2 i a=1

Calculating the average over realizations (derA)T from (7.23) follows Bray and Moore
[1980], and is presented in Appendix 7A. The result, which assumes replica symmetry,

is

(detA)p = Min 1:[(g'(x,~)—2ﬁJR] exp(2NR2) : (7.24)
The Min over R comes from a steepest descent integral. Having to minimize with
respect to R (rather than maximize) is an artifact of the replica method, as explained in
Appendix 7-A.

In certain regions of state space {x;}, the RHS of (7.24) becomes negative. We
interpret a negative result in (7.24) as indicating that A is not positive definite in that
region of state space, and that the replica symmetric treatment has failed to return a zero
for the average, as it should. Because we are interested in counting the stable fixed
points (where A is positive definite) we will limit integrals over state space to the sub-
region of the range of F where (g’(x)—2JJR) is positive. This is indicated by a " +"
marking such integrals. We note that limiting the integrals in this way was necessary to
obtain meaningful results from the saddle-point equations below.

From (7.21), (7.24), and the change of variables: B=-28J/R, A =-8JV, the

- average number of fixed points can now be written
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. Bz_Az
<Nﬁa)1~ =%‘az z‘ylﬂm {expl:N[ 2B 72 —M+ln(1)J:”

= Max Min {exp[Na(B.q.4.B,4)]} (7.25)

where

2
(g(x)— Ax) + MZ} . (7.26)

1 ,
I = WL‘“ (8'(x)+B) exp{——zwq—

and the + on the integral means "only integrate where (g’(x)+B) > 0". Finding extrema
of (7.25) is done by setting derivatives of @(8,q,1,B,4) to zero. This leads to the

following set of coupled equations

dajod =0 = q=<<12>>

2ajdA=0 = A= i((x g(x)))

0afog=0 = A= —%[l —ﬁz—;q« (g(x) - Ax)* >>J
Ji/oB=0 = B= —ﬁ212<( (g'(x)+ 3)_1» (7.27)

The double brackets in (7.27) indicate a weighted average, with the weight function

given by the integrand of I from Eq.(7.26):

[[ax rwW(x)
[ ax w(x)

{(£(x)))=

(7.28a)
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— Ax)?
W(x)=(g’(x)+ B) expl—%+hzl . (7.28b)

A self-consistent solution to the four equations in (7.27) can be found numerically.
Resulting values of ¢, A, B, A, and / are inserted into (7.25) to yield a value of
<Nﬁ, >T = exp[N a(ﬁ)] The resulting numerical values for a(f3) are shown in Fig. 7.3
for the particular nonlinearity F(h;) = tanh(fh;) along with the corresponding value
for the TAP spin-glass result of Bray and Moore [1980). For all finite values of f3, the
analog spin-glass with neuron gain f has more local mimima than the TAP equations
with inverse temperature f. In the limit of large gain, both the TAP result and the
analog spin-glass result approach the zero-temperature Ising spin-glass value
a(f — o) = 0.1992..[Bray and Moore, 1980].

A slight complication: Numerically evaluating the integrals in Eq. (7.26) and (7.27)
is difficult for saturating nonlinearities, for example F(h;) = tanh(Bh;) because the
integrands diverge at the endpoints while the integral itself remains finite. To evaluate
these integrals, it was necessary to expand the integrands near the endpoints and evaluate
the integrals analytically in these regions. The relevant formulas are given in Appendix

7B.
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Fig, 7.3. Theoretical result for the scaling exponent a(f) as a function of inverse neuron

gain 1/8 for the analog spin glass. The expected number of local minima is

<N ﬁ,> = exp[a(ﬁ)N]. Also shown for comparison is the number of solutions of the TAP
equations at temperature 1/ from Bray and Moore [1980].
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7.2.2. Analog neura! network

In this section, we calculate the average number of local minima in the energy
landscape for an analog neural network as a function of neuron gain 8 and the ratio &
of stored memories to neurons. This calculation [Waugh er al., 1990] is a hybrid of the
methods used in the previous section - which were originally developed by Bray and
Moore [1980] for the TAP spin-glass [Thouless et al., 1977] - and the analysis by
Gardner et al. [Gardner, 1986; Bruce er al., 1987] of the number and distribution of
fixed points in a Hebb-rule neural network with binary (Ising) neurons. We will not
consider how the fixed points are distributed in state space, but will instead count their
total number. Based on Gardner's results, we expect that most of the fixed points have a
vanishing overlap with any of the memory patterns as N — e=. That is, most of the fixed
points are completely spurious states.

The analysis begins just as in the previous section, except that now the

interconnection matrix T = {T; j} is given by the Hebb rule:
=3
T, = —=) EFEY T;=0 i j=1,.,N. (7.29)
] > u [} ) ’
NVa 7

where each £# = 1 at random with equal probability and N is the number of stored
patterns. The normalization (N+/a )" is chosen to make EjTij ~ 1, independent of N
- and o

As in the previous section, the expected number of fixed points is found by

integrating a product of delta functions on G, over state space,
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(V) <fde H5[ X ,]lderAl>§ (7:30)

with g(x;) defined in (7.5) and A, the Hessian of the Liapunov function, defined in
(7.8). We use an integral representation of the delta function, this time taking k; real,

(vphe=( 1[5 s

exp[fz () -~ 3 G2, +IBVEY, kix;] det A|> AR
i L i £

We now make the approximation that der A can be averaged separately from the rest of
the integral in (7.31). That is, we set the average of a product equal to the product of the
averages: (X x det A)=(X)x (det A). Physically, this procedure assumes that the vast
majority of local minima have identical local curvatures, so that a single value - the
average - can be used as the multiplier for each. This assumption is reasonable in light of
the fact that other features of the local minima, such as their energies and overlaps with
the stored patterns, behave in this way, i.e. their distributions are dominated by a single
value at large N. The only term in (7.31) which depends on the §f‘ - besides der A -

is the second term in the exponential, which we write as

N J— Y kEFEEx =Y i [[NL\/E]WE k&l I[N%]WZ x,-é’!‘], (7.32)

iju Hu

This term can be further "simplified" by separating the product on the right of (7.32) and
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introducing two new integration variables for each g. This replacement uses the double

Fourier integral:
exp[~i(AB)] = ﬁj:‘ j : dadb exp[i(ab— Aa— Bb)]. (7.33)

Rearranging slightly, (7.31) can be written

() = T[] Pt [ )

expli Zk( +ﬂ«/_x)+12a“ #}

<exp[—i(ﬁ_a—]1/22( ki + byx; ] D (|det A]), . (7.34)
3

L

For 5{‘ =% 1 with equal probability, the average over éi“ can be done easily,

<exp(—ia§f‘ ))5 = cos(a) — exp[—%} , (7.35)

where the term corresponding to a in (7.34) is << 1 for large N. Applying (7.35) to
(7.34) gives
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()= 1150 s (42

exp iZki(g(x,-)+B«/Ex,-)+i2apbu:| X
i M

exp _ﬁ[;kizg%z+;xiz §5#2+ 2%%”#;/@%‘]} X

Ider Al), (7.36)

We now define three order parameters, g, s, and ¢, and their conjugate fields Q, S,

and 7T via integral definitions of 1:

g= %Ex,? - 1= (N/Zm')“ dqdQ exp[Q[Nq - 21,»2)] (7.37)
s= %Zkﬁ -5 1= (N/zm')j dsdS explS[Ns - Zk‘?]} (7.38)

tz-é—;x,-ki - 1=(N/2m')jjdrdr expl:T(Nt—i;xikiJ] (7.39)

This allows the integrals over a, and b, in (7.36) to be evaluated by straightforward

- gaussian integration, giving
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(pr)g = [%]3.[ dqdQds dS dt dT exp[NG] x

J:I;[[g%] J]:[dxi exp i;lc‘-(g(x‘-)wL (ﬁ\/E—T)x,-)} x

exp[—QZ x? -8 2 k2 ( |des AD : (7.40)
where

G=qQ+sT+IT —92‘- In[(ﬁzqs/a) +(1+ 3:/\15)2] . (7.41)

Because g, s, and t now only appear in the exp[NG] term, integrals over these
variables can be evaluated easily using steepest descent by setting partial derivatives of G

equal to zero,

oq os or (742)
which yields solutions
28« 200 Ta Ja
e i pot= - ; 7.43
? 40S+T? 405+ T2 40S+T* B (7.43)
2
G:a_M_Eln L“Q . (744)
5} 2 | 40S+T

The integrals over ki are now in gaussian form and can be evaluated using (7.17), to
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give

where Max indicates that the integrals over O, S, and T are evaluated by steepest
descent by numerically maximizing the expression in curly brackets.

Calculating <|det Al) ¢ is done in a similar manner as for the analog spin glass: We
start with (7.23), which picks out only the stable fixed points (the subspace where A is
positive definite) and average using the replica method over realizations of the Hebb
matrix. Again, we drop the absolute value brackets, as (7.23) is only applicable where
det A > 0. This rest of the calculaton is shown in Appendix 7C. The replica

symmetric solution is

(det A)p = M};n {exp[l\l[%@—a+a In[ﬁf]—a InZIl X

I1(s"(x)+ Ve —ZR)} (7.46)
13

where g’(x;) is the derivative of g(x;) with respect to x;. As we discovered for the
analog spin glass, the RHS of Eq. (7.46) becomes negative in certain regions of state
space. Again, we exclude such regions from all integrations over state space. This
provides an approximate way of counting only the stable fixed points, as described in the

previous section. Restricting the domain of integration in this way was also necessary in
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order to obtain meaningful results from the saddle-point equations below. Substituting
(7.46) into (7.45), and changing the variables O, R, S, and T to a new set: A, B,

g, and A, by the definitions

B=fBVa-2R
A=-Q

g= 2S/ﬁ2

A=T-BJa (7.47)

gives

(4 +ap) -245%

(pr> =%ﬁ A/éin exp| N —%(B+A)+%ln [B—\faﬁf +1n(i)
= %a'ic Afg'n {axp[Né(a,ﬁ,q,}{, B,A)]}
(7.48)
where
p 1 , (g(x)— ax)’
I = dex (g'(x)+B) exp[——2ﬂ%—)+ /'{xz] (7.49)

and the "+" on the integral means that the region of integration is restricted to the range of
F where (g’'(x)+ B) > 0. Notice that ] from (7.49) is identical to J from (7.26) upon

setting J = 1. The rest of the present solution, Eq. (7.48), also bears a strong
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resemblance to the corresponding analog spin-glass solution, (7.25), but has some
signiﬁcant- differences. We note, however, that as ¢ — oo, &(a, B,q,){,B,A) can be
expanded to the leading order in & and becomes identical to @(8,q,4,B,4) from Eq.
(7.25). That s, in the limit @ — o= the analog Hebb-rule network is formally equivalent
to the analog spin glass. This correspondence has been noted already for the case of
binary neurons [Gardner, 1986; Treves and Amit, 1988].

To find extrema of (7.48) with respect to ¢, A4, B, and A, we set partial
derivatives of a(a, 8,9, 1,B,4) equal to zero,

3[1 da _ 8& 3&

which gives a set of four integral equations:

(A+f22—uﬁ q« »

- ap +((A+\/_ﬁ —228? \[ xg(x)»—lJ

Bvagq
" - [59 ) oo )

+vap) —24p2
P (4 22)82(121[3 q (l_ﬁlq« (2(0) = Ax)? >>]

(7.51)

where, as above, the double brackets are a weighted average with the weight function
given by the integrand of I. The weighted average is exactly that given in Eq. (7.28),
setting J = 1 in (7.28b). For given values of a and f3, a set of solutions for g, A,
B, and A are found by numerically solving (7.51). These four values are then inserted

into (7.48) to yield a numerical value for the quantity of interest, a(a, ), defined as
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(V) = exp[Na(a,B)]. (7.52)

Notice that the terms within the double brackets in (7.51) are identical to those appearing
in the spin glass analysis, Eq. (7.27). Thus to evaluate the integrals implied by the
double brackets we again must use the expansion of Appendix 7B.

Values for a(a,B) are plotted in Fig. 7.4 for the particular case F(h;) = tanh(ﬁhi).
The data show that for any value of the storage ratio @, the number of fixed points in the
energy landscape is reduced as the neuron gain is lowered. In the large-gain limit,
a(a, ) is found numerically to agree with Gardner’s [1986] result for binary neurons,

The form of (7.52) indicates that the number of fixed points is dramatically affected
by even small changes in a(«, ), especially for large N. As an example, consider the
effect of lowering the neuron gain from f8= 100 to 8= 10 in a network with storage
ratio & =0.1: Using the values 2(0.1,100) = 0.059 and «(0.1,10) = 0.040, we expect
that the average number of fixed points will be reduced by ~ 97% for N=200 and by

eight orders of magnitude for N=1000.
7.3. COUNTING ATTRACTORS: NUMERICAL RESULTS
7.3.1. Technique for counting fixed points

The analytical results of § 7.2, summarized in Figs. 7.3 and 7.4, have been tested for
the standard sigmoidal nonlinearity F(h;) = tanh(Bh;) by directly counting the stable
fixed points in small computer-generated analog spin glasses and neural networks.
Numerical data were obtained by the following procedure: At several values of S for the

spin glass, or pairs of values (a,f3) for the neural network, 20 random connection
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Fig. 7.4. Theoretical result for the scaling exponent a(@,f3) as a function of inverse
neuron gain 1/8 and inverse storage ratio 1/a for the analog Hebb-rule associative
memory. The expected number of fixed points is (N, } = expa(a, B)N].
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matrices were generated for each of 6 values of N. For the spin glass, matrices were
symmetric with gaussian distributed elements having zero mean and variance 1/N. For
the neural network, the matrices were constructed using the Hebb rule, Eq. (7.29) with
& =11 at random. The values of N were chosen so that the number of fixed points
was roughly in the range 20 to 400.

The number of fixed points in each network was counted by choosing random initial

conditions x;(0) = £1 and iterating the map

x;(t+1) = tanh(B h;(1)) (7.53)
k(1) =Y Tyx(t+ 1)+ Y Tix;(1) (7.54)
j<i Jj>i

(sequential updating) until convergence to a fixed point was reached. Recall that under
sequential updating of state variables, a network with symmetric connections (and zero
diagonals) will converge to a fixed point for all values of gain f3.

For each realization, the search for new fixed points was terminated after 10° initial
conditions or when no new fixed points had been found for 10* consecutive initial
conditions and for every fixed point found, the inverse point (x; — —x; for all i) had
also been found. Then, for each set of parameters (@,f,N), the mean N, and the
variance of the observed number of fixed points (for the 20 realizations) were computed,

and an experimental value for a, defined by the line
In( Nz, (N))=aN + const., (7.55)

was found by a weighted least-square fit. Note that we average the number of observed

fixed points in each realization rather than averaging the logarithm of the number of fixed
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points. This coincides with the analysis above: recall that in § 7.2, we calculated
Zn<N fp>, not <ln(N o )) As we have argued, the two types of averages are expected to

agree in the large-N limit for the fully connected network.
7.3.2. Numerical results for analog spin glass

Numerical results for the analog spin glass, obtained using the above procedure, are
shown in Figs. 7.5 and 7.6. Notice that the data in Fig. 7.6 agree quite well with the
analytical result for the analog spin glass, but are quite different from the TAP result of
Bray and Moore [1980]. To our knowledge, there are no comparable data verifying the
Bray and Moore curve away from 7 = 1/8 = 0. This is due, in part, to the chaotic
dynamics exhibited by the dynamical version of the TAP equations [Bray and Moore,
1979]. In particular, since few initial conditions terminate at fixed points for the TAP
equations at finite B, it is extremely difficult to count fixed points numerically in even a

single realization?.
7.3.3. Numerical results for the neural network

Fixed point counts for the Hebb-rule neural network were performed at six points in
the (¢, B) plane. Results are shown in Figs. 7.7 and 7.8. In Fig. 7.8, the numerical data
are presented along with the analytical results for & = 10, 1, and 0.1. The agreement is
~ very good at larger values of o and B, and reasonably good - though outside the range
of the error bars - for smaller & and S.

It is not clear why theory and numerics disagree for a(a,8) <~ 0.05. At small ¢,

5 Nemoto and Takayama [1985] claimed to be investigating just this problem using a variation of the
TAP equations which is guaranteed to converge and which has as its solutions a superset of the solutions
of the TAP equations. Apparently, this work has not been published.
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Fig, 7.5. Numerical counts of stable fixed points for the analog spin glass at several

values of gain f3, as a function of the system size N. Lines are weighted exponential
fits to the data. Numenical values for the scaling exponent a(f3) are given by the slopes
of the lines (using log-log scale).
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Fig. 7.6, Comparison of theoretical and numerical results for the scaling exponent a{f3)
in the analog spin glass, as a function of the inverse neuron gain 1/8. Note that the

agreement is good, and that the numerical values clearly differ from the corresponding
result for the TAP equations.
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Fig, 7.7 Numerical counts of stable fixed points for the analog neural network for
several values of o and fB, as a function of system size N. Lines are weighted
exponential fits to the data. Nurmnerical values for the scaling exponent a{ ¢, ) are given
by the slopes of the lines (using log-log scale).
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Fig. 7.8. Comparison of theoretical and numerical results for the scaling exponent
a(a,B) in the analog associative memory. The agreement is good, especially at larger
values of aand S.

- 194 -



the problem can likely be traced to the assumption in the analysis that Nv/o >> 1, while
numerical data for o= 0.1 are limited to the range 15 < Nv/a < 30. Why smaller values
of 3 should also cause problems - even for large & and for the analog spin glass - is

unknown.

7.4 DISCUSSION

7.4.1 Asymmetry - An alternate way to eliminate spurious attractors

We have shown analytically and numerically that lowering the gain of the neuron
transfer function in an analog spin glass or neural network greatly reduces the number of
local minima in the energy landscape. This phenomenon provides one mechanism for the
observed improvement of performance in analog neural networks compared to their
binary-neuron counterparts. Because the present method of smoothing the landscape is
fully deterministic, it can be implemented in electronic hardware much more easily than
stochastic methods such as simulated annealing.

An alternate strategy for deterministically eliminating the spurious (“glassy") fixed
points in a neural network is to add some degree of (quenched) asymmetry to the
connection matrix. This idea has been considered by several authors [Parisi, 1986; Hertz
et al., 1987; Crisanti and Sompolinsky, 1987; Treves and Amit, 1988; Kepler, 1989).
In a deterministic Ising spin glass, for example, asymmetry reduces the number of fixed
- points (Fig. 7.9a) as well as the total number of attractors (Fig.7.9b) [Gutfreund er al.,
1988]. For the fully asymmetric spin glass (k = 1 in Fig. 7.9), the number of fixed
points is no longer exponentially increasing with N, and the total number of attractors is

minimized.
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Fig, 7.9, (a) Scaling exponent a(k) for fixed points and as a function of asymmetry
parameter & for asymmetric spin glass with binary (Ising) state variables and sequential
dynamics. Connection matrix is composed of gaussian random symmetric and
antisymmetric parts, T;; = 7]-f + k’ﬂf. Line is theory, squares are from numerical counts.
(b) Numerical counts of the total number of attractors as a function of asymmetry for
various size systems. Both the number of fixed points and the total number of attractors
can be reduced by introducing asymmetry, but this also introduces non-fixed-point
attractors. After Gutfreund ez al.[1988].
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In the limit N — o, all attractors of finite period disappear entirely; the only dynamical
state for the fully asymmetric analog spin glass (besides the origin at low gain) is chaos
[Sompolinsky et al., 1988].

Treves and Amit [1989] have studied the distribution of fixed points in Hebb-rule
neural network (with binary neurons) for arbitrary symmetry and dilution. They find
that, in contrast to the spin glass, a neural network at finite & has an exponential number
of fixed-point attractors for ail values of asymmetry - including full asymmetry. Kepler
[1989] has taken an additional step to eliminate these remaining spurious fixed points by
adding a self-inhibition term T; < 0, which eliminates fixed points, and (for parallel
dynamics) creates in their place period-2 limit cycles. Kepler's result, as well as Fig.
7.9, highlights an important drawback of smoothing with asymmetry: Using asymmetry
to reduce the number of fixed point attractors necessarily creates new, non-fixed-point
attractors. In contrast, smoothing the landscape using analog neurons eliminates fixed

point attractors without introducing any new attractors.
7.4.2. A short discussion of attractors in multistep systems

Finally, we will briefly discuss the nature of the attractors in the multistep updating
rule defined in Ch. 6. We will restrict our attention to the binary (Ising) spin glass (T}
gaussian random symmetric), and compare a sequential update scheme to the M= 2
updating rule, where state variables are updated in parallel based on the average of two
- previous time steps. We expect that our observations will be qualitatively correct for
analog systems and neural networks.

First - to check the validity of our numerical method -we reproduce the well-known
result that the Ising spin glass under single-time-step sequential dynamics always

converges to a fixed point and that the expected number of fixed points is
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<Nﬁ,> = exp[aN] with a = 0.1992...[Tanaka and Edwards, 1980; De Dominicis e?
al., 1980; Bray and Moore, 1980; Gutfreund er al., 1988]. This result is shown in Fig.
7.10. The numerical method is similar to the one described above: Here, 40 random
gaussian matrices were generated for each value of N with § < N < 18. For each
matrix, random initial states (random N-vectors of *1's) were generated and their

associated attractors were found using sequential dynamics:

xi(r+1)=Sgn > Tyx;(t+1)+ 3 Tyx;(1) | (7.56)

J<i J>i

Fixed points for each matrix were counted and tabulated. A particular matrix was
considered fully mined for atractors when 500 consecutive initial states were tested
without finding a new attractor. (This occurred after anywhere from 502 to several
thousand initial states had been examined). The numbers of fixed points for each of the
400 matrices were plotted and a direct, least-square exponential fit to all 400 points was
made (using KaleidaGraph 2.0) to find the scaling exponent a. This method of
averaging is not the same as finding the average number of fixed points for each value of
N first, and then doing an exponential fit. The two methods, however, yield very
similar results. The least-square fit gives a = 0.2030, within 2% of the theoretical value.
Now we turn to the M =2 multistep update rule. Recall thatin § 6.2.2 it was proved
that all attractors for this update rule (with symmetric connections) are either fixed points
~ or period-3 limit cycles. This result is supported by the present numerical investigation.
Counts of fixed points and 3-cycles are shown in Fig. 7.11. The fixed points and 3-
cycle were counted by the same method described above (40 matrices for each N, 8 <
N < 18 and 4 matrices for N = 19). In this case, initial states were generated until no

new attractors of either type had been found for 500 consecutive initial conditions.
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Because there were typically a large number of 3-cycles, this often meant checking tens
of thousands of initial conditions per matrix. Care was taken not to overcount 3-cycles
that are 1dentical under cyclic permutation, though noncyclic permutations were counted
as separate attractors. We point out three important features of the data in Fig. 7.11:

(1) The scaling exponent for the number of stable fixed points using 2-step dynamics is
significantly below 0.1992. The measured value is ag, = 0.175.

(2) The scaling exponent for stable 3-cycles is larger than that of the fixed points (for
either type of dynamics), and is measured to be ag_ cye = 0.237. Thus 3-cycles are quite
abundant in the 2-step network - much more so than fixed points. On the other hand, the
3-cycles are not as abundant as the 2-cycles generated by standard (M = 1) parallel
updating, which are known to have a scaling exponent of a,_ cye = 2(0.1992) = 0.3984
[Gutfreund et al., 1988, Cabasino et al., 1988].

(3) The number of 3-cycles seems not to be self-averaging. For a given system size,
the number of 3-cycles found in particular realizations varies by up to two orders of

magnitude, with (N3 ~ N7 | [ N, ~ 0(1).
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Fig. 7.10. Number of fixed points pr as a function of system size N for the Ising spin

glass with single-step sequential dynamics. See text for details of the numerical method.
The direct exponential fit to all 400 points (line) gives a scaling exponent of a = 0.203,
in good agreement with the theoretical value of 0.1992.

- 200 -



(a) fit: y =1.19 exp(0.175x)
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Fig. 7.11. Number of fixed points Ny, and distinct 3-cycles N3 cycasa function of
system size N for the Ising spin glass with 2-step parallel dynamics (see § 6.6.2). See
text for details of the numerical method. (a) The numerically determined fixed-point
scaling exponent is ag,= 0.175. This value is significantly less than the sequential
update value of 0.1992 (see Fig. 7.10). (b) The numerically determined 3-cycle scaling
exponent is a3_.,. =0.237. This value is larger than ag, so at large N the vast
majority of attractors for the 2-step spin glass are 3-cycles.
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APPENDIX 7A: (det A)T FOR THE ANALOG SPIN GLASS

In this appendix we calculate the average (over realizations) of the determinant of the
Hessian matrix A, defined in Eq. (7.8). The method follows Bray and Moore [1980].
Replicas were introduced in the main text; we pick up the calculation starting at Eq.
(7.23).

From Eq. (7.23), the average over realizations is given by

(det A)y = Lim <j I f‘_“e p[ = Zp,a ‘,pja]> . (TA.1)
T

Ual

Writing the average in (7A.1) as an integral over the gaussian distribution of matrix

elements (7.6),

. 112
(det A)y = Lzm {J. Hff;‘_; J'M(I‘jj)d]}j [%Tj expli(z’

7))

N\,
- T.“| x
o

exp{——}: Y Pia(8'(x:1)8; - ﬁTj)p,a]},

(7TA.2)

with (ij) indicating distinct pairs. Integrals over Tij are gaussian and can be integrated

to give
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2
= Lim A7 7% | [ 2B "
(der )= Lim A T 5% e”’[[ aw ]Z @’ - ] } i

ﬁxp{—%z g’(Xi]piazj”’ (TA3)

where now the double sums over i and j are unrestricted. The squared sum can be
reduced using a Hubbard-Stratonovich transformation (7.17), which introduces two new

order parameters, an m-component vector R , and an m X m matrix M o>

A5 ]

)

= (termA)(termB) (7A.4)

where

(term A) =[—J [~ HdR expl—-NZR 2+J[32[2p,a} } (TA.5)

v
(rermB)z(zl] .L:. I1 dM g ap{—% EMaB2+Jﬁ 2 (zpiapiﬂ]Maﬂ:'

T a,B<a a.fa aB<a\ i

(7A.6)

Following Bray and Moore [1980], we adopt the replica symmetric solutions R, = R for
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all a, and Maﬁ =0 for all (e, f), which reduces (7A.5) and (7A.6) to

(termA) = (%}VZJ‘:QdR exp(—NmRz) exp[] ,BRZ pi02:| .

(7A.7)
(termB)=1.
Inserting (7A.7) into (7A.3) gives
dpla > dR N 1/2 NmR2
(det A) —-ml;t’m2 J Hm Iw -;] exp[— ] X
exp(‘%i (8(x:)- 2ﬁJR)2p,-a2]}.
'_ i a (7A.8)
Integrals over p;, are now gaussian and can be integrated to give
- N2 5 "
(det A)p= Lim J_NdR[;) exp[~NmR ][n(g'[x,-)—zﬁJR) }
=j°° dR(E) exp[2NR2] M{g"(x;)-2BIR) .
e T ; (7A.9)

The integral over R in (7A.9) is eventually done by steepest descent. Because the
number of replicas has been set to -2, the correct solution of this steepest decent integral
© turns out to be a minimum over R, rather than a maximum. This is also the case in the
analysis of Bray and Moore [1980] as they use the solution B = 0, which is likewise a
minimum of der A. Neglecting numerical prefactors of O(1), we obtain the following

result:
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(det A= Min {exp[ZNRQ'] T(s'(x)- mm)], (7A.10)

I

which appears as Eq. (7.24).
APPENDIX 7B: EXPANSIONS FOR STEEPEST DESCENT INTEGRALS

Finding a solution of the saddle-point equations for the analog spin glass (7.27) or
the analog neural network (7.51) requires solving a set of four coupled equations, each of
which contains an integral in the form of the double angle brackets defined by (7.28).
These integrals, five in total, must be evaluated numerically. For the analog transfer
function F(h;) = tanh(fh;), four out of the five integrands diverge at the endpoints of
the domain of integration, X1, causing fatal problems for the numerical integration
package used (NAGLIB DO1AHF). To get around this problem, we split the domain of

integration into three regions:

[ TR S AU (7B.1)
which can be evaluated as
J.—11 = J‘i:e + 2J-11—£ (7B‘2)

by virtue of the (even) symmetry of all of the integrands. The integrals with limits at
+(1-€) no longer have divergent integrands over this reduced domain, and can be
evaluated accurately using the NAGLIB integration package. The remaining parts,

extending over [1-¢,1], can be approximated for € << 1, keeping only those terms
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which diverge as x — 1. Once nonleading terms are dropped, the [1-€,1] integrals can
be evaluated in closed form, giving expressions which depend on €& The procedure is
straightforward, and we give only the results. The approximations were checked by
comparing several values of g, ranging from 10 to 108, and confirming that the sum
of the two integrals on the right of (7B.2) was insensitive to the choice of &, though the
individual parts of each integral did depend on &.

We have suppressed the "+" markers on the integrals indicating that the range of
integration is limited to a sub-region where (det A) > 0. The excluded region is in the
center of state space - covered by the "easy" integral over [-1+€, 1-£] which is done
numerically.

First, we consider the integral 1 of the weight function W(x) defined in (7.28b) for

the case of the neuron transfer function F(h;) = tanh(fh,):
S|
I=[ axw(x) (7B.3)

(tanh_l(x) - Ax)2
28%7%q

W(x)= (1% +BJ exp| - +Ax? | (7B.4)
- X

Notice that / is proportional to the I's defined previously: { = [\;27:4 /3]][ from (7.26)
and I = [«/27L'q ﬁ]f from (7.49). Expanding (7B.3) near £1 as descibed above gives

I-Ej:fsde(x) + Qgel erfc[a/b], (7B.5)

where
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a=In(2/e)-2A, (7B.6a)
b=2BJ2q, (7B.6b)

and erfc is the complementary error function,
oo 2
erfc(z) = __L dre™" . (7B.7)

Using these same definitions of @ and b, the integrals in double brackets from (7.27)

and (7.51) have the following expansions:

<< x? » = %Eldxxz W(x)

%[ e dxx*W(x) +

-1+e

\/_1

I

erfc[a/b]] (7B.8)

1
1

((xgty==]"
[Ii::edx(x tanh_l(x)) W(x)

(x tanh™ l(x)) W(x)

Y

N,’ — '\qgl —

e 2 (Eenf-fi)s s entam)| oo

[J'_I_E dx ( tanh™ (x)- Ax) W(x)

(T (@)l E eiam]|  amo
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Finally, the integrand in << (g’(x)+B)_1 >> does not blow up at *1 for F(k;) =
tanh(Bh;), so it is not necessary to expand the integrand in order to numerically evaluate

this integral.
APPENDIX 7C: (det A); FOR THE ANALOG NEURAL NETWORK

In this appendix, we derive the expression (7.46) for {det A) £ the average
determinant of the Hessian matrix A, defined in (7.8). The average of der A is taken
over realizations of Hebb matrices, defined in Eq.(7.29), each storing oV unbiased and
uncorrelated random memory patterns. That is, each 5; yi=1, ., N;u=1, ..., aN
in (7.29) equals *1 at random.

We start with the identity (7.22),

-2
(det A){HQ[}{‘-(A} -n \/_exp[ Zp‘-A‘-jij (1C.1)

and introduce replicas, indexed by 7, with the number of replicas eventually set to -2,

det A= Lim j_m_n f‘_’exp[-—x S o,y Upn,] (7C.2)

m—-2 i =1

- As with the analog spin glass, we drop the absolute value brackets around the
determinant, recognizing that (7C.1) is nonzero only when A is positive definite, which
implies der A > 0. The claim that (7C.2) picks out only the stable fixed points after
averaging is only valid insofar as replica symmetry is valid. The validity of replica

symmetry in this problem will not be studied.
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We write the average over £/ as

=2
m— -~ i y=1

(detA), = Lim <j°° 122 exp(— =y zp‘y Up”J> (7C.3)
;

2
where the angle brackets denote an average over all 2% states of éj{‘.

Note in (7C.3) that averaging is done before the number of replicas is set to -2. Inserting

Al-j from (7.8) and Tij from (7.29) into (7C.3) gives

(der A)§= Lim <j°° Hj"*_’ p[_%z Py (8(x:) + B
LY

2
+%%y}: [ZPW & J ; (7C.4)

The square in the last term of (7C.4) can be reduced to a linear form via a Hubbard-

Stratonovich transformation,

Aa? AN - Ax?
ZXP(T] = (E;) J._mdx exp[—-T + a)lx:l (7C5)

2
[with A= 1 and a = (ﬁ/Nx/E)V > Elpiy in this case]. This introduces a new set of

integration variables, Oy, (vy=1,...,mu=1, ., aN)and gives
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1/2
<exp[[N+}E) 2 Py o dl Dg (7C.6)

LY.H

Averaging over the éi“ can now be done immediately using the relation

<exp(a.§f‘)>§ = cosh(a) — exp(a2/2) + O(a“) (7C.7)

The term corresponding to a in (7C.6) is small for large N, so that the O(a*) terms can

be dropped:

B V" p 2

exp|| —— Lo, &l - ex e . (7C8

p[N\/E] .YEMP‘Y m & p2N\/5,Z 2Py O (7C.8)
LY, & .P- Y

We now assume replica symmetry by setting 6, = 6, and p;, = p; for all . This

allows (7C.6) to be written as a single-site integral (in replica space) raised to the power

m:

(detA), = Lim {J nj‘z’_;j -2 [—%zpﬁ(g'(xi)wa)}x

m——2

xp[—%%df +%[£J—§‘;sz}{§. C’f}ﬂ : (7C.9)
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Next, we introduce the order parameter
1
i

and its conjugate field R via an integral definition of 1:

1= %Hder axp[R[;piz - NrH . (7C.11)

Inserting (7C.10) and (7C.11) into (7C.9) gives

{(det A) g = Lim {[ JHdrdRra IT \/__'[_NH ap; exp[-NRr] x

m— -2

m
exp[——z JoZ ( (x;)+BVa - 2R) J exp‘t (] ]20 :” (7C.12)
which, after gaussian integration of oy, and p;, yields

(det A)g = Lim_ [[%j” drdR exp[w[-rk - -;‘-‘-1,{ - %m x

T(g"(x) + BV - ZR)_I/2 }"‘.

(7C.13)

The integrals over r and R are evaluated by steepest descent, which is justified for large
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N. Each integral produces a factor 2r/NY/2 o cancel the existing prefactor

proportional to N. Other numerical prefactors of O(1) will be ignored. The steepest

descent integral over r can be done explicitly by setting

J
or

which gives

_{ R+%zn(1—ﬁr/ﬁ)}=o

(7C.14)

(7C.15)

The steepest descent integral over R will eventually be done numerically. Setting the

number of replicas to -2 before performing the saddle point integral makes the minimum

(not the maximum) with respect to R the valid solution. Inserting (7C.15) into (7C.13)

and setting m = -2 yields the desired result,

(detA), = Aﬁ" {exp[N[sz —a+a lr{@j -a ln(Z)H X

]:[(g’(x;) + B - ZR)}

which appears as Eq. (7.46).
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Chapter 8

THE DISTRIBUTION OF BASIN SIZES
IN THE SK SPIN GLASS

8.1. INTRODUCTION: BACK TO BASINS

In this chapter, we return to the problem considered in Ch. 3, namely, the structure of
the basins of attraction in systems with a large number of attractors. We restrict our
attention to the zero-temperature SK spin glass [Sherrington and Kirkpatrick, 1975], and
study the distribution of basin sizes, averaged over the ensemble of (gaussian) random
connection matrices.

The dynamical system we consider is the SK model with deterministic, discrete-time

(sequential) dynamics:

Si(t+1)="Sgn| ¥ T;S;(1+1) + 3. T;S;(r) i=1,..,N. (8.1)

j<i J>i

The state space of this system is discrete, S; = £1, equivalent to the corners of an N-
~ dimensional hypercube. Later in the chapter (§ 8.5) we will consider an analog version

of Eq. (8.1). The connection matrix T ={Tij}

is taken to be symmetric (T; =T )
with off-diagonal elements drawn at random from a gaussian distribution P(Tij) with

zero mean and variance 1/N,
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12
P(T;)= [ﬁ] exp[—ﬂxﬂ : (8.2)

and all T;; = 0.

The main result of this chapter is that over a wide range of basin sizes W, the
numerically-measured distribution f(W) of basin sizes for Eq. (8.1) is roughly
described by a power law, f(W)=KW 7, with ¥ ~ 3/2. (These quantities are defined
precisely below, see (8.4) and (8.7)). After exploring some of the immediate
consequences of such a power-law distribution (§ 8.3), we will compare this result to
known basin-size distributions for other systems, and to a closely related quantity defined
for the SK spin glass, the distribution of cluster weights (defined in § 8.4). Finally, we
show that using analog state variables selectively eliminates fixed points with small
basins as analog gain is lowered (§ 8.5). A discussion and open questions are presented
at the end (§ 8.6).

With all of the attention that has been paid to the SK spin glass over the past fifteen
years [Binder and Young, 1986; Mezard er al., 1987], it is surprising that a direct
measurement of basin sizes has not been presented previously.! Two explanations for
this lacuna seem likely: First, there is the well-known “universality” of systems with
mulavalley energy landscapes [Derrida and Flyvbjerg, 1987a, 1987b; Gutfreund, 1988;
Derrida, 1988b]. This universality has prompted comparisons of different quantities in
different systems, all of which characterize state space in some way. For some models -

such as the Kauffman model (§ 8.4.2) - the quantity used for comparison is in fact the

IN. Parga and G. Parisi have studied a related distribution in the T=0 SK mode!l using a numerical
technique very similar to ours. Rather than looking at the distribution of basin sizes, they measured the
fraction of initial states that terminate at a fixed point with energy between E and E + AE, as a
function of E, They found that as the system becomes large, most initial siates flow to fixed points
with E/N ~ 0.7, with a rather narrow peak. Apparently, this work has not been published except as a
preprint [Triest preprint IC/85/133 (1985)]. Some aspects of the work are discussed in Parga [1987), and
a figure from the preprint appears in the book by Chowdhury [1986, p. 82-83].
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distribution of basin sizes. For the SK spin glass, it is another quantity, the distribution
of cluster weights which is generally used for comparison. An exact expression for the
distribution of cluster weights has been presented and analyzed thoroughly [Mezard et
al., 1984a; 1984b]. Our results for the SK model suggest that besides the important
conceptual difference between the distribution of cluster weights and the distribution of
basin sizes, there are also fundamental qualitative differences between these two
distributions. Our conclusion is that perhaps such distributions are not so universal, and
that care must be taken in making comparisons between them.

The second reason why this problem has not received more attention is that basins of
attraction can only be strictly defined for deterministic systems. Furthermore, their shape
can depend on the details of the dynamics. It is only recently that spin glasses have been
treated as dynamical systems in their own right, and that the standard dynamical-systems
type questions have begun to be addressed [see, for example: Gutfreund et al., 1988;

Cabasino et al., 1988; Sompolinsky, 1988; Kanter, 1990].
8.2. PROBABILISTIC BASIN MEASUREMENT

First, we note that all attractors of (8.1) are fixed points (this is not true for
asymmetric connections or parallel dynamics). This fact can be established by showing

that the total energy, £ (i.e. the spin-glass Hamiltonian)

E=FE= -5 3155, 8.3)
i i

is a Liapunov function of (8.1). In Eq. (8.3), E; is the energy contributed by site /,
equivalent to the local field at site i times -S;/2. We will also refer to the average energy

per site, defined € = E/N. Intuitively, we expect that the most stable attractors (those
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with the most negative energy) will have the largest basins of attraction. Indeed, this idea
is observed to hold for the recall states in associative memory models [Forrest, 1988;
Kepler and Abbott, 1988; Opper e al., 1989], and is an important principle for
developing robust learning algorithms [Krauth er al., 1988; Abbott, 1990]. The
numerically measured relationship between basin size and average energy per spin € for
the SK model (8.1) is shown for N = 20 in Fig. 8.1. This figure shows ~ 11,000 fixed
points from 200 realizations, and confirms the intuition that more stable fixed points have
larger basins of attraction. It is significant, however, that the dependence of basin size on
energy is quite weak: Fixed points with identical energies have basin sizes ranging over
two orders of magnitude.

We now explain how Fig. 8.1 was made. Define the size W of the basin of

attraction of the st attractor as

_ number of initial states leading to attractor s

W, — (8.4)
total number of initial states
This definition satisfies the normalization
SYw,=1 . (8.5)
S

Having only fixed point attractors greatly simplifies the task of measuring basins, since it
is always clear to which attractor a particular initial condition has flowed. Still, because
of the large state space ( 2N states for a system of size N ) a complete enumeration of
basin sizes is prohibitively time-consuming for all but the smallest systems (such an
approach was used by Gutfreund et al., [1988]). The problem is compounded by the
need to average over large numbers of realizations in order to obtain reliable statistics.

Instead, we compute basin sizes W by the following probabilistic method. For each
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Basin size

- Fig. 8.1. Basin size versus energy per site € = £/N for fixed points in 200 realizations
of the deterministic SK spin glass, Eq. (8.1) and (8.2). The number of data points, equal
to the number of fixed points found using the statistical technique, is 11,032. The
relation Ng, = explaN] gives a = 0.200 for this data, in good agreement with the
theoretical value 0.199. Each realization was checked for fixed points until 500
consecutive initial states failed to produce a new fixed point (see text). Note the general
trend that the most stable fixed points (i.e. fixed points with the most negative £) have
the large basins of attraction. Also note that the trend is rather weak.
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realization of Tij’ random 1initial states (random, unbiased strings of *1's) are generated,
and the attractor for each initial state is found under the dynamics of (8.1). Convergence
is fast, typically requiring fewer than 5 updates per site. A list of the distinct attractors is
kept along with the total number of initial states that flowed to each attractor. For each
initial state, the attractor found is compared to the list of those previously found, and if
there i1s a maich, the basin size of that match 1s incremented. If no match i1s found after
checking the entire list, the attractor found must be new. The new attractor is then added
to the list of attractors with its basin size initialized to 1. For each realization of Tz'j’
initial states are generated until a quitting condition is reached. The quitting condition is
that a specified number of consecutive initial conditions have been generated without
finding a new artractor. Typically this number is set 10 500 for N < 20 and 800 for N >
20. This quitting condition is superior to simply using a large, fixed number of initial
conditions to test each realization; It is efficient over a wide range of possible numbers of
attractors without requiring a good “guess” (i.e. a pre-inserted theory) for how long to
sample. After reaching the quitting condition, basin sizes for each of the found attractors
are given by the number of initial states that flowed to that attractor divided by the total
number of initial states tested. Statistics are accumulated over a large number of
realizations (typically 200 - 500).

There is a check which tells us if we have sampled long enough. We know the total
number of fixed points that we should find. The expected number of fixed points N,

for (8.1) is
(N )y = Ae™ (8.6)

with A ~ 1 and @ = 0.1992... [Tanaka and Edwards, 1980; De Dominicis ef a!l., 1980;

Bray and Moore, 1980]. (Henceforth we will drop A, calling it 1, and drop the brackets
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on pr indicating an average over realizations). The result (8.6) was originally
calculated assuming large N, but it is remarkably accurate for N as small as N = 4 (!)
when averaging is done over a large number of realizations |Gutfreund et al., 1988].

The distribution of basin sizes can be found numerically by setting up a histogram of
basin sizes, and collecting data over a large number of realizations. A histogram of basin
sizes for the 11,000 points of Fig. 8.1 is shown in Fig. 8.2(a). Figure 8.2(b) shows a

histogram of energies per site € for this same data set.
8.3 THE DISTRIBUTION OF BASIN SIZES
8.3.1. Definitions

The distribution of basin sizes, averaged over realizations, can be written as a

continuous function?

fw)= <2 5(W—WS)> . (8.7)

T

The O™ and 15! moments of the distribution W) must satisfy the following constraints:
[fwyaw =Ny, | (8.8)

[rwywaw =1. (8.9)

2 The distribution g(E) studied by Parga and Parisi [Chowdhury 1986, p. 82-83; see footnote 1] is

g(E)= <ESW5 6(E' ES)>T'
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~ Fig. 8.2, Histograms of the data of Fig. 8.1, normalized by the number of realizations =
200. (a) Histogram of basin sizes, showing the characteristic power law behavior with
rounding at large and small basin size. Bin width AW = 0.002. (b) Histogram of energy
per site € = E/N , with E defined by (8.3). Bin width Ae = 0.01. Distribution of
energies is in good agreement with theory of Tanaka and Edwards [1980]. A least square
fit of the energy histogram to the gaussian f(g)= Aexp[—N(e— E)/202] gives £ =
—0.49 and o = 0.36; theoretical values are £ = -0.50 and 0 = 0.31 [Tanaka and
Edwards, 1980].
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Other moments of f{W), defined generally as
Ym = [FW)W™aW (8.10)

will also be of interest , especially for comparing our results to results for other
dynamical systems and to numerical data already in the literature.
As a first example, consider the case where all basins are the same size. The

constraints (8.8) and (8.9) then require the distribution to have the following form:
SW)=Ny 8(W-1N,] [equal-sized basins]. 8.11)

We recover the obvious result that if all basins were the same size, that size would be
1/pr (= e0-1992Vy " Figures. 8.1 and 8.2(a) show that it is clearly not the case that all
basins are the same size.

The range of possible basin sizes is limited by the dynamics. On the small end, a
fixed point of (8.1) will always be stable 1o the flipping of a single state, thus no fewer
than N states will will flow to any fixed point. This automatically gives a minimum

basin size Wi of

N+1
Wminz_ﬂ_( 5 ) . (8.12)

On the large end, the maximum basin size consistent with the invariance of (8.1) to the

global inversion §; — —S; for all i, is

(8.13)
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That is, there will always be at least two fixed points dividing state space into equal
halves, so the largest possible basin size is 1/2. Even if we demand that the number of
fixed points in every realization equal exactly pr - and we should, since (8.6) is self-
averaging as N — oo - we still find that the largest possible basin size is ~1/2 to a very
good approximation. For example, with N = 20, a maximum basin size of
W pax = 4995 still allows room for (eo"992*20 - 2) = 52 other attractors, each of

minimal basin size. This approximation, W, ,, = 1/2, improves for larger N.

8.3.2. Numerically observed power-law behavior of f(W)

Figure 8.3 shows the main observation of this chapter. Over a broad range of basin

sizes, (W) is approximately described by a power-law

fWy=K w77 (8.14)

with y ~3/2 (£0.2). The data in Fig. 8.3 were collected from 330 realizations of (8.1)
with N = 28. The average number of basins found per matrix was 232.1,
corresponding to a scaling exponent (8.6) of a = 0.195, which is in reasonably good
agreement with the theoretical value of 0.199. This suggests that most of the basins were
counted. This result is consistent with the histogram in Fig. 8.2(b), but contains more
data.

The value of ¥ is found to be independent of N, though as we will discuss in the
following subsection, there is a cutoff for small basins which does vary with N.

We emphasize that the observed power law is an empirical result. Below, in § 8.4.1,
we will discuss a related theoretical result which supports this observation. However, we
do not yet have a theory which directly explains the power law, let alone the exponent.

We also point out that the distribution we observe is not a perfect power law, but is
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Fig. 8.3, Normalized histogram of basin sizes for N = 28 based on 330 realizations.
Count (per realization) corresponds to f(W)4AW, where f(W) is the distribution of
basin sizes and AW is the bin width. Here, AW = 0.0005. Each realization was

checked for fixed points until 800 consecutive initial states failed to produce a new fixed
point (see text). Line on right indicates slope of -3/2, for comparison.
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concave down for both large and small W. Such deviations might be explained as
numerical artifacts; on the other hand, there is no compelling reason to insist on a perfect
power law for f{W). At our present level of knowledge, the fairest statement is this:
The assumption that f{W) is a power law allows us to easily calculate some
consequences of the observed basin-size distribution. Hopefully, these conclusions do
not depend critically on the value of %, or on slight deviations from a perfect power law.

Lacking a theoretical model, this seems to be a reasonable place to start.

8.3.3. Consequences of a power law distribution of basin sizes

We now explore some consequences of a distribution of basin sizes given by

f(W)=K W77, focusing on the case ¥ = 3/2. The normalization conditions (8.8) and

(8.9) imply that there is a cutoff W

cutoff > 0 which sets the scale of the smallest basin

size. Taking the maximum basin size W, . =1/2 gives the pair of equations

172 ~Y

jmg W Ydw =N, | (8.15)
2

j” KW 7aw=1. (8.16)

wrcuw[

Egs. (8.15) and (8.16) together determine values for X and Wcurojf which depend only
on Y. These normalization equations imply that ¥ is between 1 and 2. This is
consistent with our observation ¥~ 3/2. For the case y=3/2, Egs. (8.15) and (8.16)

yield
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2 : [Lim(K)=1/«/5} (8.17)
2_4/Nﬁ? N o0
Wcuzoﬂ' = 2Nﬁu_2 y l:,g‘i)ni(wcutoﬁ) :0] - (8.18)

Equations (8.17) and (8.18) already lead to three rather surprising conclusions:

(i) The value of K depends very weakly on N, especially for larger values of N. That
means that the average (absolute) number of fixed points with basin size between W and
W+dW forany W > W ¢ is independent of N.

(i) The cutoff of the power law, W

cutoff tends to zero more slowly than the minimum

basin size W as the size of the system N becomes large. Specifically,

min
Wesiogr ~ e 038N while Wain ~ e 0N Below W o urofp the density of basins falls
rapidly to zero. Thus the smallest (typical) basin size is much larger than W, . for large
N.

(iii) Wcmoﬁr is also the most common basin size, since f(W) has its maximum at this

which 1is

value. The value of W_ . off is different from the average basin size W, e

I/pr by definition. Thus as the size of the systermn increases, the most common basin
size goes to zero faster than the average basin size.

Theoretical values for W %

aver Weutofp @nd W, are shown in Fig. 8.4(a) along

with numerical measurements of W off for several values of N. Numerical values of

cut
W usofr are taken to be the maxima of the histograms of basin sizes, as shown in
- Fig. 8.4(b) for the case N = 22.

Higher moments of f(W) can also be calculated. Using f(W)=K W7 with

¥=3/2 and values for K and Wcmﬁ from (8.16) and (8.17), we find
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Fig. 84. The small-basin cutoff Wcutoff for the power law f(W)=K W~7 with
Y =3/2, as a function of system size N. From Eq. (8.18),
Wcutoff = ZN@_?' =2¢73%¥ " Also shown are the average basin size W = I/pr
and minimum basin size W, = 2-N(N+1), both of which are independent of the
form of f(W). Data (circles) are numerical values of W for several values of NV,

cutoff
defined as the maximum of the f{W), as shown in (b) for the case N = 22.
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1- 2
2N - 2N,

Ym =7 , m=0,123, ... (8.19)
Ny (Ng —2)2m-1)
Lim|y,]|= — —, m=123,.. (8.20)
N—sca (2m—1)2m

Of particular interest is second moment y,, which approaches the value 1/6 as the
system size (and thus the number of fixed points) becomes large, according to (8.20).
Numerical results of Gutfreund et al.[1988] for a system identical to (8.1), generalized
to include asymmetric connections, showed that y, tends to zero as the system size
increases for symmetric connections. The data of Gutfreund et al. were obtained using a
different technique from ours, one which tested only two initial conditions per realization
and sampled an extremely large number of realizations. Repeating these measurements
using our probabilistic method also indicates that the numerical value of y, tends to zero
, not 1/6, as N becomes large. This disagreement shows that a strict -3/2 power law
does not provide a completely accurate description of f{W). In particular, the -3/2
power law must exaggerate the number of large basins, leading to a finite second

moment.

8.4. DISTRIBUTIONS FOR OTHER MODELS

There is theoretical and numerical evidence for universality in the way state space
~ breaks into clusters - basins of attraction, for example - in dynamical systems with many
attractors [Derrida and Flyvbjerg, 1986, 1987a, 1987b; Derrida, 1988b; Gutfreund et

al., 1988]. This section provides a brief summary of results for some of the systems

which show these universal properties.
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8.4.1. Clusters of states in the SK model

Mezard et al.[1984a, 1984b] supplied a crucial piece of the spin glass puzzle by
describing the state space of the SK model in terms of a hierarchical or ultrametric
geometry. Ultrametricity gave deep physical insight into the meaning of the Parisi order
parameter g(x), and also provided a satisfying picture of the state space of a spin glass
as a hierarchy of valleys within valleys [Mezard et al., 1987; for a review of
ultrametricity, see: Rammal, 1986]. These papers [Mezard er al., 1984a; 1984b] also
presented an analytic form for the distribution of clusters of states3, with clusters
defined according to the mutual overlap g of states. We will present some of their
results without providing details (see Mezard et al., 1987, Ch. 1V, for a very readable
account).

Consider a division of the state space of the SK model into clusters, such that states
with overlap larger than ¢ belong to the same cluster. The overlap between a pair of
states o and B is defined q"“6 = N’lzi<S‘-°‘>(S,ﬁ> with brackets denoting a
thermodynamic expectation value. Define W s to be the size of the st cluster. When
averaged over realizations, the cluster sizes will form a continuous distribution f (W)

which was given by Mezard et al. [1984a; 1984b],

_W-w)”
- I(y)Ir(-y)

F(w) z<2 S(W—Ws)> (8.21)
s T
The quantity y in (8.21) depends on the choice of g used to set the cluster size and also

on physical parameters such as temperature and applied magnetic field. The gamma

3Throughout this section the term "states” will refer to equilibrium states, or states separated by energy
barriers that become infinite in the thermodynamic limit. At T = 0, equilibrium states of the SK model
are equivalent to fixed points of the dynamical system (8.1).
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functions in (8.21) normalize f (W) so that
[7(W)W aw =1. (8.22)

The derivation of f (W) takes into account the Boltzmann probability of a state being
present in counting the number of states in a cluster. Setting g to its maximum value,
which is gz, (the Edwards-Anderson order parameter) reduces the cluster size such that
each cluster contains just a single state (recall: gz, = ¢®%is the equilibrium overlap of a
state with itself). For this choice of g, the function f (W) is just the average density of
states with Boltzmann weight W. That is, for g= qra the weight W (y(g)) of the

s state is given by

-BF

o e $
W“ =7 (823)
T
s

where f3=1/kT and F _ is the free energy of the st state.

It can be shown that y(g) for ¢ = gg, is given by the length of the plateau of the
Parisi order parameter ¢(x) [Mezard et al., 1984a, 1984b]. A value for y( gg,) can
be found using an approximation known as the PaT hypothesis [Vannimenus et al.,
1981], which assumes certain quantities to be independent of magnetic field and

temperature. In the limit 7 — O the PaT hypothesis gives

Limy(ggs)= (8.24)

1
T50 2

Inserting (8.24) into (8.21) gives the following encouraging result: For small clusters,
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F(w) ~-71;W—3/2 , W<<1,T>0. (8.25)
Before celebrating the appearance of a -3/2 power law, we emphasize two points:
(i) Recall what we have found. f (W)dW is the number of states with Boltzmann
weight between W and W +dW . It is not at all clear how this weight is related to the
basin size, although Fig. 8.1 may offer some clues.
(i1 We have considered the solution as T — 0 because in this limit, the fixed points of
(8.1) correspond to thermodynamic equilibria of the SK model. However, another effect
of the T — 0 limit is to heavily weight the states with lowest free energy. Thus
f (W;T - 0) pertains only to the lowest energy states, not all equilibria. This explains
why the distribution f (W) has a divergence at W = 1: As T — 0 the sum in the
denominator of (8.23) is dominated by a single term, the ground state for that realization.
When the state s in the numerator of (8.23) is the ground state, the numerator is nearly
equal to the denominator, so W gs ™ 1. Note that the divergence in f (W) as W—1is
not present in the distribution of basin sizes AW) which must vanish above W = 1/2.
Nevertheless, the form of (8.25) is tantalizing. At present, however, we do not have any
satisfying way to relate this result to the observed power law for the distribution of basin

sizes.
8.4.2. The Kauffman Model and the Random Map

Kauffman introduced a simple model of genetic mutation and adaptation which shares
many features with spin glass models [Kauffman, 1969, 1984, 1990]. The model
consists of N sites, representing individual genes, each of which is characterized by a
binary state (0 or 1) indicating one of two possible alleles for that gene. Each site is

affected by exactly X sites, selected at random from the N sites in the system. The

-230-



response of a site to its K inputs is a random Boolean function which is chosen
independently for each site, and is fixed for all time (i.e. quenched) once chosen. The
dynamics are deterministic and parallel, with each site following its random truth table
(2K input states assigned randomly to a O or 1 output state). Because the model is
deterministic and has a discrete and finite state space, all attractors must be periodic, with
periods ranging from 1 (fixed points) to 2%V,

The distribution of basin sizes in the Kauffman model has been studied numerically
as a funcdon of X [Derrida and Flyvbjerg, 1986; see also Kauffman, 1990 for basin size
vs. energy plots similar to Fig. 8.3]. The numerical results of Derrida and Flyvbjerg
[1986] suggest a surprising universality: moments of the distribution of basin sizes,
plotted one against another, agree extremely well with analytical results relating the
moments of f(W) the distribution of weights in the SK model. Such agreement
indicates that certain statistical properties of multivalley state spaces are insensitive to the
details of the underlying dynamical system.

In the limit K — o, the Kauffman model is equivalent to a random mapping of an
N-dimensional binary space onto itself [Derrida and Flyvbjerg, 1987a, 1987b]. (Note
that the limit K — o= can be taken even for finite N, since the connection rule does not
restrict how many times a particular site may appear in a truth table.) In contrast to the
Kauffman model with general X, the random map made! is mathematically tractable, and
many of its statistical properties are known analytically [Harris, 1960]. From these
results, Derrida and Flyvbjerg [1987a, 1987b] derived the following exact expression for

the distribution of basin sizes in the random map model:

Fa (W) = %W'l (-w)y™?, (8.26)
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Note the similarity between fp (W) and the distribution of weights f(W) for the SK
spin glass in Eq. (8.21). Of particular interest is the divergence at W = 1 common to

both, but absent in the distribution of basin sizes for our system (8.1).
8.4.3. The 1-D spin glass

The one dimensional (1-D) spin glass at zero temperature is another example of a
system with many attractors for which the distribution of basin sizes is known exactly
(the other being the random map). In this case, the result is that all the basins are the
same size, that is, AW) is given by Eq. (8.11) [Ettelaie and Moore, 1985; Derrida and
Gardner, 1986].

Derrida and Gardner [1986] analyzed the metastable states of a 1-D chain of L Ising
spins with symmetric nearest neighbor coupling and free ends. The dynamics they
considered were single spin flip, with either random or deterministic order of updating.
Their results do not depend on the details of the distribution P(T,-j) of the random
connections, as long as it is symmetric ( P(Y}j)=P(—7}J-) ) and contains no delta
functions. They find that the typical number of metastable states in a rcalizati'on of length
L is pr = 2L53 and that the average number (over realizations) is Nf";“' =(4/ n:)L [see
also: Li, 1981; Ettelaie and Moore, 1985]. That the average and typical number of fixed
points in a realization are not equal is characteristic of short range models; for the infinite-
range SK model, Ng, = NZe.

It may seem surprising that the 1-D spin glass has many metastable states, since it is
not frustrated in the sense of Toulouse [1977] (see § 4.3.2). Indeed, for zero external
field - where the number of metastable states achieves its maximum [Derrida and
Gardner, 1986] - the 1-D spin glass is equivalent to a purely ferromagnetic chain by a

Mattis transformation [Mattis, 1976], albeit a ferromagnet with a distribution of
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ferromagnetic coupling strengths. How then, can such a system possess an exponential
number of metastable states? The answer is that single-spin-flip dynamics does not allow
kinks at weak bonds to unkink themselves. This point is illustrated by a simple example
with four spins and three ferromagnetic bonds, two strong ones on either side of a

relatively weak one.

For this configuration, no single spin flip will allow the weak bond in the middle to
become satisfied. The metastable state shown is also stable for parallel updating of spins.
On the other hand, an update rule which checks for energy reduction upon
simultaneously flipping pairs of spins will eliminate the metastable state shown. Moore
[1987] has discussed the computational efficiency of update rules which use multiple spin
flips to eliminate local energy minima. Finally, we note that recasting the 1-D chain in
terms of analog state variables - by replacing Sgn[h] with ranh[Bh] in (8.1), for
instance - can also be used to reduce the number of metastable states. Continuing with
the simple four spin arrangement above, with the particular connection strengths 1T, =
IT 341 = (3/2)IT,3l, setting B < 1.44 will destabilize the metastable states, while the
ground states will remain stable for > 0.48. This holds for sequential, parallel, or

" continuous-time analog dynamics.
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8.5. BASIN SIZES IN AN ANALOG SPIN GLASS

The last example in the previous section showed how recasting a binary system into
its analog counterpart can dramatically change the system's energy landscape. This idea
was also discussed at length in Ch. 7. What effect will using analog state variables have
on the basin structure? We address this question for an analog version of the SK spin

glass,

x(+1)= tanh[ﬁ[Zﬂjxj(t +1) + zl}jxj(t)ﬂ i=1,..,N. (8.27)

j<i j>i

where the states x;(t) now take on continuous values. As before, connection strengths
Tij are symmetric (Tij = Tﬁ) and gaussian distributed according to (8.2). In the limit
of large gain , 8 — o, (8.27) reduces to (8.1).

Figure 8.5 shows the distribution of basin sizes and energies for the analog spin glass
with N = 20 for two values of neuron gain, 8 = 4 and f = 20, averaged over 100
realizations. Basin-size counts and energies are based on binary states generated by
applying the Sgn function to an analog fixed point after convergence of (8.27). Initial
states were random corners of the unit hypercube, as before. The data in Fig. 8.5 show
that the reduction in the number of fixed points at lower gain (see § 7.2.1 for theory) is
strongly biased toward eliminating fixed points with small basin of attraction. For

example, we see from Fig. 8.5 that the average number of fixed points whose basins
occupy 0.1 of the state space (105 initial states for N = 20) is essentially the same for 8
=4 and f3 = 20, while the average number of fixed points with basins occupying 0.001
of the state space (103 initial states) is ~50 times smaller at B =4 than at §=20. The
distribution of energies - calculated using (8.3) after applying the Sgn function to the

analog fixed point - also shows that lowering the gain shifts the distribution to lower
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Fig. 8.5. Distribution of basin sizes and energies per site € for the deterministic analog
spin glass (defined in text) at two values of analog gain, 8 =4 (solid line) and =20
(dashed line), for system size N = 20. 100 realizations were counted for each value of
- B. The critical value of gain where fixed points first appear away from the origin
(x=0)is §=1/2, not B=1, as it would be for the finite temperature spin glass.
(a) Histogram of counts (per matrix) =f(W)AW for a bin width AW = 0.0025. Data
show that lowering the gain greatly reduces the number of small basins, while leaving
most of the big ones. (b) Histogram ( =f(g)Ae ) of fixed point energies per site € =
E/N. Bin width Ae = 0.01. Lowering J reduces the number of fixed points and also
shifts f(€) to lower (more negative) energies.
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energies. This effect, however, is weak compared to the shift in the basin-size
distribution. From these observations, we conclude that using analog state variables is
effective for selectively eliminating attractors with small basins, though not specifically

the most shallow attractors.
8.6. DISCUSSION AND OPEN PROBLEMS

We have found numerically that the distribution f{W) of basin sizes in the SK model
is approximately descibed by a power law with exponent ~ -3/2. Thus, (W) appears
to be quite different from the distribution fg,,(W) of basin sizes in the random map
model and different from the distribution f (W) of Boltzmann weights in the SK model.
So what has become of the universality of multivalley landscapes discussed by Derrida?
Gutfreund ez al.[1988] have suggested that the general features of a multivalley
landscape depend on whether the number of attractors grows exponentially with system
size N. In the random map mode! for example, the average number of attractors {A) is
linear in N: (A)= NIn2/2. This is different from the SK model, where the average
number of attractors is exponential in N. On the other hand, numerical data show that
the number of attractors for the fully asymmetric spin glass does scale linearly with the
size of the system, and also that the distribution of basin sizes for the asymmetric spin
glass shares some common features with fp (W) and f(W) [Gutfreund et al., 1988].
Perhaps basin structure, and the general structure of state space, can be divided into
~ universality classes depending on whether the number of attractors does or does not
increase exponentially with N. At present, is not clear that such broad classes of
dynamical systems exist, or even by what phenomenological criteria such distinctions
ought to be made.

The results presented in this chapter raise many new questions. Here are some:
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-- Will other techniques for measuring basin sizes yield the same results?

-- How do the the details of the dynamics affect basin structure? For example, how is
state space shared between the fixed points and the 2-cycles in a parallel version of (8.1)?
-- Why does a power law - or an approximate power law - appear? How is it related to
the ultrametric structure of state space?

-- How well do the results generalize to include (among other things) nongaussian
connection distributions, nonsymmetric connection, correlated connections, and
stochastic dynamics?

-- How can these results be applied to neural networks, where control over basins of
attraction is of central importance? A first step in approaching such a question would be
to study the distribution f{W) in an associative memory as the number of stored patterns
p goes from p << N (the ferromagnetic limit), where presumably the basins for the
stored patterns are all the same size, to p >> N, (the spin glass limit), where the
present results should be recovered.

-- Is the weak correlation between the energy or depth of a fixed point and the size of its
basin of attraction a general phenomenon? What about the correlation between basin size
and the stability parameter x, defined as the minimuym of the distribution of local fields?
For the associative memory, numerical and analytical evidence suggests that the

correlation between x and basin size is strong [Forrest, 1988; Abbott, 1990].
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Chapter 9

CONCLUSIONS

In the introduction of this thesis, we discussed the idea that models of large nonlinear
systems ought to be simple on a microscopic scale if one is to have any hope of
understanding their large-scale dynamical behavior. At that point, no mention was made
of how, given a physical system, one should go about separating wheat from chaff,
discarding the unimportant microscopic details and keeping the essential ones. Making
such distinctions a priori seems to be impossible; small changes often make big
differences, and vise versa. This distinction, and, more generally, how a dynamical
system's microscopic features influence its large-scale behavior, is at the heart of the
controversy surrounding the whole neural network approach. One often hears that
describing a neuron as a binary threshold element is a ridiculous oversimplification. If
this is so, then why? Specifically, what global properties are lost, or even eroded, by
making such an approximation?

In this thesis, we have studied how properties of analog neural networks at the level
of the individual neuron affect the large-scale dynamics of the network, and how this
effect is related to global network properties such as the spectrum of eigenvalues of the
connection matrix. The neuron properties we have considered are especially relevant to
- designing fast, stable neural networks in electronic hardware. For example, an electronic
neuron (or a biological neuron for that matter) does not have an infinite switching speed,
and so, in principle, one must account for any delay in describing the overall dynamics of
the network. Intuition tells us that when the delay is extremely small (compared to some

characteristic time of the network), it can probably be ignored. In this case, a simple

- 238 -



model which assumes instantaneous response will suffice. But when is small no longer
small? At some point the chaff becomes wheat, and the delay must be accounted for.
The problem of delay-induced instability was discussed in detail in chapters 3 and 4. In
this example and throughout the thesis, we found that the gain of the neuron (i.e.
maximum slope of its transfer function) has a strong influence on the global dynamics of
the network. In several instances, the influence of neuron gain could be reduced to a
simple stability criterion for insuring convergence of the dynamics to a fixed point.

From a practical point of view, the most important conclusion of this thesis is that
networks of analog neurons offer important computational advantages over networks of
binary (Ising) elements. Those advantages are: (1) Symmetrically connected analog
networks can be updated in parallel with guaranteed convergence to a fixed point. In
general, networks with binary neurons must be be updated sequentially to prevent
oscillation. Parallel updating is faster than sequential updating by a factor of O(N)
where N is the number of neurons in the network. (2) Lowering the gain of analog
neurons shows many of the beneficial effects of using temperature to escape local
minima. This was demonstrated numerically for associative memories in Ch. 5, and an
explanation for this surprising effect was given in Ch. 7. Specifically, it was shown in
Ch. 7 that Jowering the neuron gain dramatically reduces the number of local minima in
the network's energy landscape. (3) The analog networks we considered have
deterministic dynamics, which means that they can be built using standard analog VLSI
technology. Implementing a stochastic update rule in hardware is difficult because of the
~ need for lots of random numbers. Implementing a stochastic algorithm with parallel
dynamics in electronics would be even more difficult, as it would require N independent
random numbers at each time step. Deterministic annealing could also be implemented
easily in analog VLSI by changing all neuron gains simultaneously via a single control

Iine.
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One might also be lead to speculate that the analog character of biological neurons -
that is, their well-known graded response - has similar computational significance, rather
than being an artifact of evolution.

Another significant idea which has emerged in this work is that certain analytical
techniques originally developed for Ising spin glasses, and later extended to treat binary
neural network models, can also be successfully adapted to the study of analog neural
networks. The analysis of storage capacity leading to the phase diagrams in Ch. 5 and
the analysis of the number of local minima for the analog spin glass and associative
memory in Ch. 7 are two places where techniques developed for discrete systems have
been adapted to the analog problem.

The systems we have considered were not arbitrarily chosen by any means. One
should not get the impression that relaxing some of the assumptions made will make the
problem only slightly more difficult. Usually, things get much harder. The most
restrictive assumption made throughout the thesis was that the coupling was symmetric.
Neural networks with asymmetric connections have vastly richer dynamics but are
correspondingly more difficult to approach analytically. The extension of the present
results to include asymmetric networks is the first and most obvious direction in
extending the present results. Be warned, this first step is a big one. Another example:
The analysis of the multistep network in Ch. 6 does not generalize in any simple way to
allow weighted averages of previous time steps. It is unclear whether qualitatively new
dynamics would arise if different weights were allowed. One thing is certain: the present
~ analytical approach quickly runs aground when the assumption of equal weights is
relaxed.

Finally, we end with some interesting but unanswered questions:

-- Why 1s chaos so rare in finite-size networks? Can a "learning algorithm" be

developed to train a network to be chaotic?
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-- Arelated question is how to train a network to possess higher dimensional attractors,
or chaotic attractors with a specific (noninteger) dimension. Measuring the dimension of
an attractor is straightforward, so there ought to be a way to develop a training algorithm
which yields an attractor of arbitrary dimension.

-- How can nonsigmoidal neuron transfer functions be used to advantage? One
example, the smooth staircase function, is discussed in Ch. 5. What about nonmonotonic
functions? Certainly from a dynamics point of view nonmonotonic neurons are more
interesting. But interesting is not what one wants in a neural network. Boring and
predictable make for robust computation.

-~ What other sorts of problems, besides associative memory and a few ad hoc
optimization problems, can take advantage of the extensive feedback of Hopfield-type
networks? An answer to this question will determine whether this model is destined to

become a valuable technology or an academic curiosity.

- 241 -



Chapter 10

APPENDIX:
REPRINTS OF CHARGE-DENSITY WAVE PAPERS

Reprinted with permission from the American Physical Society
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We present a mean-fietd analysis of a many-body dynamical system which models charge-density-
wave transport in the presence of random pinning impurities. Phase ship between charge-deasitv-wave
domains is modeled by a coupiing term that is periodic in the phase differences. When driven by an
external field, the system cxhibits a first-order depinning transition, hysteresis, and switching between
pinned and sliding states, and a delayed onsct of shding near threshold.

PACS nombers: 7(.45.Lr, 03.20.+i. 05.45.+b, 72.15.Nj

Collective transport in coupled dynamical systems is a
topic of considerable current interest.! An cxperimental
example is the nonlinear conduction seen in charge-
density-wave (CDW) samples.>? When a sufficiently
strong dc electric field is applied to a sample with a static
CDW, the CDW depins from impurities in the lattice
and begins (o slide and carry current. Classical models
of CDW transport*'® assume that the dynamies are
dominared by competition between the internal elasticity
of the CDW and the local potentials of randomly spaced
impurities.

These models of COW transport do not account for
cxperimentally observed hysteresis, switching, and de-
layed conduction in “switching samples.”!'"! CDW in-
ertia,'® current noise,'” and avalanche depinning'® have
been proposed to account for switching. More recently,
switching and hysteresis have been ascribed to phase
slippage in the CDW.'2"'% A physical model for a CDW
in a switching sample is a collection of domains, each
with a well-defined phass, separated by regions where
the amplitude of the CDW is weak.'>"* Phase slip can
occur easily in these connecting regions. A rigorous
theory of CDW transport for this case is very difficult,
although a detailed analysis of a phenomenological mod-
¢l with a few degrees of freedom has been presented.!’
It is also uncertain which of the observed complex phe-
nomena are intrinsic and which are properties of particu-
lar samples or experimental treatments.

In this Letter we present a simple modet of collective
" transport which is applicable to CDW transport in
switching samples. The model consists of many phases
which represent the states of CDW domains, and phase
slip due to amplitude coilapse'® is modeled by a weak-
coupling term periodic in the phase differences. Thisis a
simple modification of a well-understood model®™* with
elastic coupling and no phase slip. As we will show, the
periodic coupling gives rise to switching, hysteresis, and
delayed conduction. Our approach is to analyze a simple

2380
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mode] which may have some generality, rather than to
make a detailed phenomenological treatment specific to
charge-density waves.

The Hamiltonian is

H-JLZU—aM&—®H+bEH-wd%—wﬂ.
2N I 7

(1a)

and we assume zero temperature and relaxational dy-
namics with a driving field

b=-H i py j=1... N

26, (ib)

The 8; represent the phases of weakly coupled
domains,®® In other models,®’ 8, represent the phase
distortion of the CDW at the jth pinning site. In Eq.
(1), J is the coupling strength, b is the pinning strength,
a; is a pinniog phase randomly distributed on [~ 7],
and Eg is an electric field applied along the CDW wave
vector. The coupling term favors phase coberence.
whereas the random fields try to pin each 6; at @;. For
weakly coupled domains, the ratio K =J/5b is small. The
infinite-range coupling in Eq. (1) corresponds to the
mean-ficld approximation, also used for previous
work. &3

The model (1) is closely related to the system studied
by Fisher.® The difference is that in the Hamiltonian
Eq. (1a} we have assumed a periodic coupling | —cos(6;
—§;) rather than a quadratic coupling + (6, —6,)%.
The periodic coupling in Eq. (1a) allows for phase-slip
processes®!'! and corresponds physically to the effects of
CDW defects™'? or amplitude collapse'*!* between
cobierent regions of the CDW. In particular, the model
is appropriate in CDW systems with strong pinoing
centers that favor the formation of weakly coupled
domainy.'>® We have made the simplifying assumption
that the argument of the periodic coupling is the phase

© 1988 The American Physical Society
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difference 6; —6, rather than a more general multiple
2(8;—8;), where A reflects the amount of polarization
that can be built up before phase slip occurs. Additional
metastable states'? with different polarizations caa exist
below the depinning threshold for A#I; these are not
present in our model.

We first consider the static configuration of the system
when Ep=0. The phase coherence of the equilibrium
configurations depends on the normalized coupling
strength K. For instance, in the absence of coupling
(K=0), the 6; arc pinned at a; and arc completely in-
cohereat, whereas for K — ao, there is perfect coherence
(8, =8 for all i,f). To characterize the transition frora
incoherence to coherence, we define a complex order pa-
rameter

rel=N "3 explid)),
where 7 measures the coherence and ¢ is the average
phase.

We now show analytically that there is a first-order
transition in the model from the incoberent state (r =0)
to the coherent state (r == 1) at K =2, when the domains
are strongly coupled. This zero-field transition is an ar-
tifact of mean-ficld theory, but a related hysterctic tran-
sition occurs for nonzero Eo in the physically relevant
weak-coupling regime, as discussed below. The strategy
of the analysis is to derive a self~consistent equation for
r, by use of the fact that r determines the equilibrium
phases 8; and is in turn determined by them.

Equilibria of # satisfy 8H/86,=0, i.c.,

sin(a; =0+ - Tsin(6,~6)) =0.
Rewriting the sum in terms of the order parameter yields
sin(a,-B,-)+Krsin(¢—0,-)-0. (2)

We may sct ¢ =0 because there is no absolute phase
reference. This choice removes the rotational degenera-
¢y. Solving Eq. (2) for 8, yields

Kr+e |

Krte ™

Combining Eq. (3) with 7=N "' T, exp(i8;) and letting
N — oo, we obtain the self-consistency relation for -

(3)

¢

p=-L x Kr+cosa a @)
2r Y -x (1 +2Krcosg+K4r2)'2

For each K, the values of r that satisfy Eq. {4) may be
found as follows [Fig. 1{(a)l. Let u=Kr and let f{u)
denote the integral in Eq. (4), which may be expressed
exactly as an elliptic integral.?' Because f(u) and u/K
are both equal 1o r, the intersections of f(u) and the linc
u/K yield solutions for the cohercnce r, given the nor-
malized coupling streagth X [Fig. 1(a)].

Figure 1(b) showt the first-order transition between
incoherent and coherent states. The incoherent state

=244 -

FIG. 1. (a) Solid lines indicate the integral f(u) plotted
from Eq. (4) together with the line u/& (see text). Equitibri-
um solutions for r cocur where f(u) intersects the line u/KX.
For the value of K shown, three solutions exist (filled circles).
Dashed lines show /K for the critical values X =K, and
K=2. (b) Plot of the exact equilibrium solutions for r vs K:
solid lines, locally stable equilibria; broken lines, unstable
equilibria.

r=0 always solves Eq (4). An unstabie second branch
of the solutions bifurcates from r=0 at K =2, with
r~{(2—K)"? as can be seen from Eq. (4) and the series
expansion f(u)=u/2+u’/16+0(u>), valid for u <1.
We have also proven?' that r=0 is locally stable for
K <2 and unstable for K> 2. A locally stable third
branch of solutions, with r = {, is created when u/K in-
tersects f(u) tangentially [Fig. 1(a)] at X =KX, =~ 1.489.
Note that for K between X, and 2, the system is bistable.
We emphasize that this first-order transition is a conse-
queace of the cosine coupling in Eq. (1a) and would not
be seen if a quadratic coupling were assumed.

We turn now from statics to dynamics. In the pres-
ence of a driving field, the equations of motion from Eq.
(1b) are

dé,/dt =E + Krsin(¢ — 6,) +sinla; —8,) . )]

By letting E = Eo/b and time t — bi, we have set b =1}
without loss of generality; as before, K=J/b. The
second term on the right-hand side of Eq. (5) is the col-
lective torque exerted on 8; by all other phases. ' For
E =0 and small X, the phase coherence r =0 and there-
fore the collective torgue is zero. If » becomes nonzero,
the collective torque provides a positive feedback which
tries to increase r further by aligning cach 6; with the
average phase ¢. The physical consequences of this pro-
cess arc hysteresis and delayed conduction, as discussed
below. In our model hysteresis and switching result from
the transition to coherence of a randomly pinned state,
Incoherence of the pinned state occurs maturally for a
large number of random pinning phases a;; systems as
small as three phases show hysteresis and switching, but
only when the @; are chosen evenly spaced on [—=x,z].
Thus in our medel these phenomena are associated with
many degrees of freedom.
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Figure 2 plots the regions of stability of the pinned
and sliding CDW states. The pianed state (d8,/dz =0)
in this model can be analytically shown to be incoherent
(r=0). Using variational stability analysis about the
pinned state, we have proven?' that this state becomes
unstable above the depinning threshold field Er=(1
=K?/ 4)'2 when K <2, as shown in Fig. 2. For strong
coupling. X>2 where the wodel is not physically
relevant, £7 =0 and the CDW slides (d¢/dr > 0) for any
ficlds £>0. This is an artifact of mean-field theory
which also occurs in models®® with elastic coupling.
Numerical solations of Eq. (5) show that the sliding
state is always cohereat (»>0). The sliding state be-
comes pinned and incoherent below a separate pinning
threshold Ep shown as the dashed line in Fig. 2, which
was calculated numerically from the initial condition
re=1. This boundary extends from the critical value K.
found analytically for £=0, also shown in Fig. 1. The
solid and dashed lines in Fig. 2 bound a hysteretic region
where both pinned and sliding solutions are stable; the
final etate reached depends on the initial conditions. The
physically relevant weak~coupiing region of Fig. 2 is for
K < K., where £7 and Ep are nonzero.

The model predicts hysteresis and switching between
pinned and sliding states as illustrated by the numerical
solutions of Eq. (5) shown in Fig. 3. As E is increased
slowly past Er, the induced collective velocity dg¢/dt cor-
responding to the CDW current jumps up discontinuous-
ly, then increases pearly lipearly. If £ is then decreased,
the velocity de/dt decreases and then drops discontinu-
ously to zero at the scparate pinning threshold £ =£p as
shown in Fig. 3. When the CDW pins, the coberence r
also drops discontinuously to zcro. This loss of coher-
ence is illustrated in the limit Ep =0 for the analytical
results in Fig. 1(b). Hysteretic current-voltage curves

1 hysteretic sliding

c
1.0 A ‘/ET
1 pinnes e
05 4 © £ -
1 :-»
Y A—— S—
00 02 04 06 0. 10 1.2 14

E

F1G. 2. Stability diagram for the model Eq. (5): solid line,
depinning threshold £7=(1 —K}/4)'? determined analytical-
ly: dashed line, pinning threshold E» obtained by numerical in-
tegration of EQ. (5). Note the presence of hysteretic region.
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have been seen in low-temperature expeniments on CDW
samples with dilute impurities or irradistion-induced de-
fects, which act as dilute, strong pinning sites !¢ The
switching and hysteresis predicted by the modei depend
crucially on the periodic coupling in Eq. (l1a); neither
switching nor hysteresis are predicted for quadratic cou-
pling. &

The model exhibits delayed conduction above the de-
pinning threshold £y whes £ <1. Numerical solutions
of Eq. (5) were used to study the evolution of the system
from a random ipitial state. The sysiem first rapidly
reaches an inocoberent configuration with §;=gq;
+sin " '£, then gradualiy deveiops coherence, and finally
depins suddenly when r becomes appreciable.?' The de-
lay before depinning increases near the threshold E7, as
observed experimentally.!""!* If E > 1, switching occurs
immediatcly.

Numerical solutions of Eq. (5) show that the individu-
al phases do not move with a constant velocity in the
sliding state, although the collective velocity de/dr is
constant. Near threshold, the motion of each phase is
periodic, alternating between rapid advances by nearly
2x, and slow crecp about its pinning phase. In this
respect, Eq. (5) and other mean-field models®$ agree
with results from more realistic short-range models,'°
and with recent experiments'>% which suggest a spatial-
ly nonuniform rate of CDW phase advance near thresh-
old. An aritfact of the mean-field approximation is that
all the pbases 6, execute identical periodic motions shift-
ed in time and phase.

We have also analyzed the dynamics of Eq. (5) far
above the depinning threshold. For £ £,, perturbation
theory?  yields (d¢/de)/E =1—{1/2E)+O(E ~*).
Thus, the deviation from the limiting dc conductivity as
E— oo ig proportional to £ ~" with n*2, in agrecment
with some CDW models®*22 and in contrast to the value
n=1% predicted by others.’ The available data for
higb-ficld conductivity in CDW's? suggest ns= | —2.

Simplification of approximations in the model are
infinite sample size N and infinite-range coupling. Solu-

0.8 o increasing €
« oOacreasing €
0.61
9 0.1
0.21
0.0 oope oo ——

04 ¢ 7 06 . 08 g, 10

FIG. ). Hysteresis and switching between pinned and slid-
ing states. Data points obtained for N =300 phases by numeri-
cal integration of Eq. (8) with X=1, for which E;=(%)'2
The curve is a guide for the eye.
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tions of the infinite-range model are relatively insensitive
to NV, and clossly approximate the resuits presented here.
To assess the effects of infinite-range coupling, we have
numecrically integrated Eq. (1) on a cubic lattice in three
dimensions with nearest-neighbor coupling. The numen-
cal solutions show hysteresis and switching,?' though
over a reduced rangec in £. For N=216 aad N =1000
sites, the width of the hysteresis is approximately 20%
and 15%, respectively, of the width predicted by the
infinite-range model for the same values of N. Thus the
qualitative behavior 1s similar to the mean-ficld theory,
at least for finite sample sizes, but the thresholds are
quantitatively different.

[n summary, we have analyzed a dynamical system of
many driven phases with random pinning and isfinite-
range coupling. The periodic coupling in the model gives
rise to a first-order depinning transition, hysteresis, and
switching between pinned and sliding states, and a time
delay before the onset of sliding. These results demon-
strate that some of the complex phenomena observed ex-
perimentally ip strongly pinned charge-density-wave sys-
terns can be accounted for by a simple dynamical model.
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Delayed switching in a phase-slip model of charge-density-wave transport
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We analy2e the dynamics of the depinning transition in & many-body mode! of charge-density-
wave (CDW) transport in switching sampies. The model consists of driven massless phases with
random pinning and a coupling term that is periodic in the phase difference, thus allowing phase
slip. When the applied field in our model exceeds the depinmng threshold by a small amount, there
is a delay before the appearance of a coherent moving solution. This delay is also scen expenmen-
tally in switching CODW matertals. We find that close to threshold the switching delay is approxi-
mately proportional to the inverse distance above threshold. Analytical results agree with numeri-
cal integration of the model equations. Results are also compared to available cxperimental data on

delayed switching.

I. INTRODUCTION

The nonlinear conduction in charge-density-wave
(CDW) materials has been extensively studied in a variety
of quasi-one-dimensional metals and semiconductors, and
a large number of theoretical models have been present-
ed, cach explaining some of the phenomena observed in
these materials.”? Classical models of CDW dynam-
ics’ ¢ which consider only the phase degrees of freedom
of the CDW condensate have been quite successful at
describing the behavior of both pinned and sliding
CDW's in a regime where pinning forces are weak, phase
distortions are small, and higher-energy amplitude modes
are not excited. While many aspects of CDW dynamics
are we)l described by a rigid phase model with only one
degree of freedom,® dynamics near the depinning thresh-
old are best treated by 2 model with many degrees of free-
dom, which allows for local distortion of the CDW in
respanse to random pinning forces. For example, a
mean-field discrete-site model of many coupled phases
analyzed by Fisher® gives a continuous depinning tramsi-
tion with a concave-upward I-¥ curve at depinning, in
agreement with experimental data, and in contrast to de-
pinning of the corresponding single-phase model.

Recently, experimental and theoretical interest has
tumed to = class of CDW systems which have discontinu-
ous dcpinning transitions and hysteresis between the
pinned and sliding states.’ ™% This discontinuous depin-
ning has been termed “switching.” Several authors'! =V
(though not all'® %) have attributed switching to phase
slip between coherent CDW domains occurring at ultra-
strong pinning sites. Experimentally, it is known that
switching can be induced by irradiating the sample,
which creates strong pinning sites.

A very interesting phenomenon associated with switch-
ing. first reported by Zett) and Griiner’ for switching
sampies of NbSe;, and subsequently seen in other materi-
als.! ™! {5 a delayed onset of CDW conduction near
threshold. When an electric field slightly larger than the
depinning threshold is applied to a switching sample,
there is a time delay before the pinned CDW begins to
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slide. The delay grows as threshold is approached from
above and varies over several orders of magnitude from
tenths to hundreds of microseconds.

In this paper, we analyze the dynamics of depinning
for a many-body model of CDW transport in which
phase ship is allowed. We show that, for an applied driv-
ing field slightly above the depinning threshold, switching
from the pinned state to the coherent moving state is de-
layed, and that the delay grows roughly as the inverse of
the distance above threshold. In Sec. II the phase-slip
model is described and briefly compared to other models
of CDW transport. The dynamucs of the depinning tran-
sition in the model are then analyzed and an expression
for the switching delay is derived. These results are
shown to agree with direct numencal integration of the
model. In Sec. II1 our results are compared with the
available experimental data on switching delay.

IL PHASE-SLIP MODEL OF DELAYED SWITCHING

A. Mean-field model of switching CDW's

The dynamical system we will study is given by Eq. (1)

dG,»_ i KN
7—E+ sm(al—ﬁl/)+? 3 sin(6,—6;),

=1
Ji=L2... N

The system (1) is formally very similar to the model
studied by Fisher® and Sneddon,* with the exception of
the final term: the coupling between phases in (1) is
periodic in the phase difference, rather than linear. Also,
the physical interpretation of the phases 6, is somewhat
different than in these elastic-coupling models, as dis-
cussed below.

The phases 6; in Eq. (1) represent the phases of CDW
domains; E >0 represents the applied d¢ field and K >0
is the strength of coupling between domains. The a,
represent the preferred phase of each domain, taken to be
randomly distributed on [0,27]. The strength of pinning
is assumed to be constant for each domain, and has been
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normalized to one. The values E and K thus represent
the strengths of the coupling and applied ficld relative to
pinning. The time scale similarly reflects this normaliza-
tion. For all-to-all coupling in the large-¥ limit, a ran-
dom distribution of pinning phases is equivalent to an
evenly spaced distribution a; =2mj /N, j=12,...,N.

In the phase-slip model (1), the 8, represent the phases
of entire CDW domains, or subdomains,’’ separated by
ultrastrong pinning sites. In this sense, our phase vari-
ables have a similar interpretation to those in the model
of Tua and Zawadowski.’* Physically, the dynamics of
Eq. (1) represent a competition between the energy in the
applied field, the Jarge pinning energy, and the energy of
CDW amplitude collapse at the pinning sites. Phase dis-
tortions within a single domain due to weak pinning are
not in¢luded in this model.

By describing a phase-slip process at the pinning sites
by a phase-only model, we have neglected the dynamics
of amplitude collapse, except as it is reflected by a period-
ic coupling term. lnui er al.'® recently presented a de-
tailed analysis showing how phase slip (with amplitude
collapse) can be implicitly included in a phase-only model
ol switching CDW's in the lmit of fast amplitude-mode
dynamics. Zettl and Griiner’ suggested that phase slip in
switching CDW's could be accounted for by a sinusoidal
coupling term. The model presented here ts a discrete-
site mean-ficld version of the phase-slip process, in the
spirit of Fisher's trearment.’* By choosing a particularly
simple form for the periodic coupling function —but one
with the right overall behavior—we are able to analyze
much of the model's dynamics.

Previously,™? we have shown that the large-N,
mean-field version of (1) has a discontinuous and hys-
teretic depinning transition as the applied field E is
varied. The switching seen in this model is in contrast to
the smoooth, reversible depinning which occurs in the cor-
responding equations with elastic phase coupling.® The
threshold field Ep(K) where the pinned solution,
8,=a,+ sin” Y E), becomes unstabic to the formation of
a coherent moving solution was shown* D (o be
EAK)=(1-K¥/4)'? for K <2 and Ep(K)=0 for
K >1. At this threshold, the pinned solution bifurcates
from a stable node to a saddie poiat in configuration
space.”

B. Delayed switching

We now consider the time evolution of the system (1)
during depinning. In order to simulate the experimental
procedure where delayed switching is scen, we “apply” 2
superthreshold ficld E > Ep(K) at 2 =0 to the system (1)
starting in the £ =0 pinned state 6, =a . The response
aof the system depends on the value of E: for £ > 1 the
phases quickly leave the E =0 pinned state and organize
into a coherent moving solution. There is no delayed
switching in this case. For E,(K)<E <1 the phases
leave the pinned state guickly, but come to a near
standstill at the saddle point 6,=a;+ sin™'(E}, where
they linger for a long time before finally leaving— again,
very quickly —along the unstable manifold of the saddle
point to form a coherent moving solution. Closc o
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threshold, the time spent in the vicinity of the saddle
point is much longer than any other part of the depinning
process, resulting in a long delay before a rapyd switch to
the moving state. In this subsection we analyze the dy-
namics of (1) near the saddle point and derive an expres-
sion for tbe switching delay.

To characterize the collective state of the phases, we
define the complex order parameter re‘q's(l/:V)zle‘ ‘\
In the limit N — =, the distnbution of pinaing phases &,
becomes continuous on {0,27] and the phase 6, can be
written as a continuous function 8, parametrized by the
pinning phase a. In this limit the order parameter is
given by
W L 2 i8,

da .
2r <o e @2

re

We find numerically that for evenly spaced pinning sites
the model is quite insensitive to the choice of N for all
N 23 In the infinite-¥ limit, an evenly spaced distribu-
tion of pinning sites becomes equivalent to a random dis-
trbution, but at finite N, simulations with a random dis-
tribution of pinning sites showed a much stronger finite-
size effect than those with evenly spaced pinming sites,
The insensitivity to & for evenly spaced pinning provides
a useful trick allowing us to numerically investugate the
large-N behavior of Eq. (1) using relatively small simula-
tions (typically N =300). Simulations with evenly spaced
pinning sites did show a slight size dependence, especially
at very small initial cohetence (ry < 1073, and care was
taken in using a sufficiently large system to eliminate any
measurable dependence on N. The excellent agreement
between the simulations and the analysis shows that the
dynamics of Eq. (1) are well approximated by the
infinite-& limit. Analysis of Eq. (1} will henceforth treat
the case N — 0. Justification for applying the large-N
limit to real CDW systems will be discussed in Sec. 111

Physically, the magnitude of the order parameter r
(0<r <1) characterizes phase coherence between CDW
domains. In a pinned coafiguration, for example, where
the phases of the domains are determined by a random
locally prefesred phase, there is no coherence among the
domains; accordingly, all stable pinned solutions of (1)
have r =0. In the steady sliding state (d¥/dr >0) the
model shows a large coherence between domains; all
stable sliding solutions of (1) have r~1. The rate of
change of the order-parameter phase, dW¥/dt, corre-
sponds to the current carried by the CDW. The delayed
switching observed experimentally corresponds to a delay
in the current carried by the CDW. In our model, the
onset of & “current” {(d¥ /dt > 0) and the onset of coher-
ence (r ~1) occur simultanconsly, as seen in Fig. 1.

The slowest step in the depinning process for
Ef(K)<E <1 is the evolution near the saddle point
8,=a+ sin"!(E). As we have shown elsewhere,”? an in-
teresting feature of the dynamics of (1) is that any initial-
Iy incoherent {r~G) configuration will be funneiled to-
wards this saddle, and from there coherence and steady
rotation will evolve. Thus the delay before switching
for any incoherent initial state 1s approximately given by
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FIG. 1. Delayed onset of coherence r and current
d\¥/dt for three normalized distances above threshold,

e=(E —E;)/E+=0.1, 0.01, and 0.0001. Note the loganthmic
scale for the (dimensionless) time axis. Curves are from numeri-
cal integration of Eq. (1) with N =300, ro=35X 107% and X =1,
giving £, =(31""2. The ininal siate of the system was the £ =0
pinned state with a small amount of random jitter: 8, =a,+1,
with 7, ~O(107%). The large values of d¥/dr at t < 10 show
the rapid evolution from the mmtial state to the saddle point
6,=a,+ sin”'(E\. Note that for a given € the order parameter
r and the rotation rate dW¥ /dr switch after the same delay.

the time for coherence to develop starting near 8,
=g~sin”"E).

Because the depinning process with £ >0 changes an
initially static configuration (d¥/dt =0) into a uniform-
ly rotating configuration (dW/dr >0), the analysis is
greatly sumplified by working in a coordinate system that
1s corotating with ¥. In terms of the corotating phase
variables defined as 4=(6—W) and y =(a—¥), the de-
pinning transition appears as a Landau-type symmetry-
breaking transitton from the unstable equilibrium at » =0
to a stable, sratic equilibnum at r~1. Recasting the
dynamscal system (1) in terms of y and ¢, and writing the
coupling term in (1) in terms of the order parameter gives
the following mean-field equation:

34,
ay

29
dr

dr 3% .
+_ —_—= —_ _ 1
ar or E +sinly —4,)—Krsin(é,) .

(3)

In deriving Eq. (3) we have assumed that &, only de-
pends on r and y. Assuming this dependence is
equivalent to assuming that as the system leaves the sad-
dle point ¢, =y + sin_ (E) it will not be free to visit all
of state space, but is constrained to lie only in the unsta-
ble manifold of the saddle. Within the unstable manifold,
two quantities are sufficient to characterize the state of
the entre system: y, which reflects the direction in
which rotational symmetry has broken, and r, which
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reflects the position along the unstable manifold.
We now cxpand 4, about the saddle point
$,=y+ sin”'(E) in a Fourier series:

é,=v+sin (E)+ 3 A,sinlky)+ I B, coslky),
k=1 k=0

(4)

where the Founer coefficients A, and B, only depend on
r. We assume that for small r each A4, and B, can be ex-
panded as & power series in r. We then solve Eq. (3) using
a solution of the form of Eg. (4) with A,, B,, dr/d1, and
dW /dt expanded in powers of r. This procedure gives a
solution for ¢, at each order of r. For self-consistency,
these solutions must also satisfy the definition of the or-
der parameter, which requires

1 g . _
. fo sin(é,)dy =0 . (5
Retaining terms to third order in r for k <2 uniquely
determines (after much algebra) the evolution equation
for the coherence:
K—K;y
2

1 2 _
Py fo cos(¢, My =r,

6—K%
K,

dr_

o oy, (6)

r

where Kr=2(1—E!'2  The form of the O(r’)
coefficient in Eq. (6) was derived assuming that the sys-
tem is close to threshold, that is, assuming K — Ky <<K'p.

The value of r where the two terms on the nght-hand
side of Eg. (6 are equal, defined as
re=[Kp(K —K7)/(6—K2)]""%, marks a crossover point
in the evolution of coherence. For r(f)<r®, the cubic
term 1s negligible and r grows as a slow exponentiai:
rir)ys=rqyexplat), where o=(K —Kr)/2. Note that
o —0 as E—FE;. After r(z) reaches the value r*, the cu-
bic term 1n Eq. (6) dominates the linear term and » grows
very rapidly. The rapid onset of coherence is accom-
panied by the simultaneous rapid growth of d¥ /dt, as
seen in Fig. |. We identify the switching delay 7., as
the time the system takes to evolve from r to r*® by slow

exponential growth: r®=rjexplor,,,.,)- Solving far
Tswch givcs
1 K (K —-K;)
Tyuntch =~ — 1.2 7
K—-Kr (6—K3)rg

The switching delay given by Eq. (7) agrees very well
with numerical integration data for all values of
Er<E <1 and ry<r®. Figure 2 compares numerical
data with Eq. (7) as a function of the normalized distance
above threshold e=(E —Ey)/Ey. Numencal data were
obtained using fourth-order Runge-Kutta numerical in-
tegration of Eq. (1). The pinning phases were evenly
spaced on [0,27] and the initial phase configuration was
the E =0 pinned state plus a repeatable random jitter:
6;=a;+7, with n,~0(107%), giving ro=1X10"* at
each e. The random jitter 7; is introduced to break the
symmetry of the unstable equilibrium at » =0, which is
present for infinite N and also for finite N with evenly
spaced pinning. In the absence of any inital jitter, ry is
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FIG. 2. Dependence of the delay (in dimensioniess units) on
the normalized distance above thresbold £ =(E — E;)/Ey for
K =1. Curve shows the theory from Eq. (7); circles are from
nomencal imegration of Eq. (1} wath ¥ =300. The minal state
was the E =0 pinned state with random jitter: A, =a, +17, with
n,~0{10"%). The same intial state was used for all values of €.
The vajue of r, used to calculate the theoretical curve was taken
directly from the numencal data as the smallest value of ¢ dur-
ung 1ts evoluton; the mnimum r depended very slightly on e,
and a single value of ry=1X 107" was used in Eg. (7). The
disagreement between theory and numencs at £¢> 0.1 1s due to
the smail but finite ume taken for the other pans of the depin-
ning process besides the time spent lingenng near the saddie
pomt.

2¢ro and the predicted switching time is infinite from Eq.
17). An interesting detail is that during the very eariy
evolution. as the system evolves from the initial
configuration 8, =a, +n, towards the saddle point (be-
fore the delay), r actually decreases—that is, the system
becomes less coherent as it approaches the saddle. Be-
cause of this effect, the appropnate value of 7, to use in
Eq. (7)— and the value used for the theary in Fig. 2— is
not the initial r, but the minimum r. which is slightly less
than the initial value. The switching event for the nu-
merical data was defined as the time where ri7) reached
0.75. Because of the rapidity of the switch, any other
reasonable definition of the switch time would have given
nearly identical results.

111, DISCUSSION OF THE MODEL
AND ITS PREDICTIONS

The phase-slip model of delaved switching presented
here is a highly simplified treatment of CDW dynamics.
Several approximations made in the interest of keeping
the model analytically rractable are known to be physi-
cally unrealistic, including the all-to-all coupling of
domains and the uniform coupling and pinning strengths.
Passible justifications for these assumptions have been
discussed elsewhere %
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An unphysical aspect of the madel is the absence of
multiple pinned configuratons. Metastable pinned states
are seen experimentally in both switching and nonswitch-
ing systems,”® as well as in models with elastic cou-
pling.*?® The absence of multiple pinned states in aur
model is a direct result of the periodic coupling, which
does not ailow large phase differences between domains
to bunld up. Our assumption is not a necessary feature in
modeling phase slip: an alternative phase-slip model that
does allow a large buildup of phase difference before
phase slip begins has been proposed by Hall es af.'> ™+

A subclass of switching samples, termed “type II” by
Hundley and Zettl,'” shows muitiple depinning transi-
tions as the applied field is swept. In contrast. type-l
swilching samples’” show a single, hysteretic switch. Be-
cause the parameters in our model are uaiform, we do
not see multiple switching; our modecl always behaves like
a type-l sample. The effects of distributed parameters in
our model remains an interesting open problem.

Because we interpret phases as entire domains, aur use
of a large number of phases might be questioned in light
of recent experiments identifying a small number of
coherent domains separated by phase-slip centers.t:'>!”?
We believe the large-A treatment is justified: Several ex-
periments on switching samples indicate that even when
a small number of coherent domains can be identified.
these Jarge domains have been formed by the collective
depinaing of many subdomains. The relevant dynamical
process leading to switching and delayed conduction in
this case is the simultaneous depinning of many sub-
domains within a single large domain. Experiments by
Hundley and Zett],'” for example, show that a switching
sample will depin smoothly when subdomains are forced
to depin individually rather than collectively by applying
a temperature gradient across the sample.

In spite of these limitations and the modet's simplicity,
we find that several aspects of delayed switching seen ex-
perimentally are produced by the mean-field phase-slip
model. These similarities include the following.

(1t For e=(E —E;)/E; << and ry <r*, the switch-
ing delay in the model is approximately related to € by
the power law

xg™B g1t . 18}

This behavior is clearly seen at small € in Fig. 2. This
dependence is different from that predicted by other
models of delayved swizching.u'm_:' as will be discussed
elsewhere.’’” Experimentally, power-law behaviar with ex-
ponent S~ 1 at small ¢ is consistent with the data of
Maeda el al. [Fig. 5 of Ref. 9).

(2) Above a certain value of €, defined as €, the depin-
ning transition in our model is not delayed. The value of
Eo 15 defined by the condition E =1. Similar behavior was
seen experimentally by Zettl and Griner,” who report
that, for a bias current exceeding 1.25 times the threshold
current, switching occurred without measurable delay.
Measuring £y in a switching sampie will uniquely deter-
mine the appropriate value of K to be used in our model
according 1o the formula X =2[1 —lgg+1)72) 72

(3) Far values of e slightly below g, the switching de-
lay in the model decreases more rapidly than the power

‘ swicch
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law (8), giving a concave-downward shape to a log-log
plot of 7, s versus e. as seen in Fig. 2. This feature 15
also seen in the experimental data of Maeda et al. (Fig §,
Ref. 9).

(4) The switching delay in our model depends on an in-
itial coherence. In Eq. (7) this dependence appears as the
ro term in the logarithm, indicating that a sizabie ininal
coherence will shorten the delay. For a sufficiently large
initial coherence ry>r", Eq. (7} is not applicable because
the cubic term in Eq. (6) will dominate throughout the
evolution, leading to an extremely short switching delay.
A reduction of the switching delay due to an organized
initial state has been observed indicectly in the experni-
meats of Kriza er al.> Using two closely spaced su-
perthreshold pulses, Kriza er al! were able to reduce the
switching delay for the depinning which occurred during
the second pulse; the shorter the spacing between the
pulses, the shorter the observed switching delay.

(S) The delay in our model 1§ a deterministic function
of E, K, and r,; we do not predict a scatter 1n the ob-
served switching delay near threshald. Probabilistic
models of depinning, {or example, the model of Joos and
Murray,?! predict a scatter of delay times. A sizable
scatter was reported by Zett! and Griiner:’ more recently,
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Kriza et al.® attributed all scatter in the measured delay
to “instrumental inseability.” [t 1s not clear whether the
scatter seen experimentally is an artifact or an intnnsic
feature of delayed switching.

[n conclusion, we have analyzed a very simple model of
CDW domain dynamics with phase slip, and have found
several features seen experimentally in switching samples.
The resulis suggest that switching, hysteresis, and de-
layed onset of conduction are closely related phenomena
which appear together when phase slip between domains
occurs. Further expeniments on delayed switching would
be very wsefvl to test in greater detai] the predictive
power of such a simple model.
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