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Abstract

Conductance through quantum dots at low temperature exhibits random but repeatable

fluctuations arising from quantum interference of electrons.  The observed fluctuations follow

universal statistics arising from the underlying universality of quantum chaos.  Random matrix

theory (RMT) has provided an accurate description of the observed universal conductance

fluctuations (UCF) in “open” quantum dots (device conductance ≥ e2 h ).  The focus of this

thesis is to search for and decipher the underlying origin of similar universal properties in

“closed” quantum dots (device conductance ≤ e2 h ).  A series of experiments is presented on

electronic ground state properties measured via conductance measurements in Coulomb

blockaded quantum dots.  The statistics of Coulomb blockade (CB) peak heights with zero and

non-zero magnetic field measured in various devices agree qualitatively with predictions from

Random Matrix Theory (RMT).  The standard deviation of the peak height fluctuations for non-

zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard

deviation of the peak height for non-zero magnetic field is also measured.  The second

experiment summarizes the statistics of CB peak spacings.  The peak spacing distribution width is

observed to be on the order of the single particle level spacing, ∆ , for both zero and non-zero

magnetic field.  The ratio of the zero field peak spacing distribution width to the non-zero field

peak spacing distribution width is ~ 1.2; this is good agreement with predictions from spin-

resolved RMT predictions.  The standard deviation of the non-zero magnetic field peak spacing

distribution width shows a T −1 2 dependence in agreement with a thermal averaging model.  The

final experiment summarizes the measurement of the peak height correlation length versus

temperature for various quantum dots.  The peak height correlation length versus temperature

saturates in small quantum dots, suggesting spectral scrambling after adding a small number of

electrons.  Larger devices show saturation to a higher value suggesting that the larger devices are

less prone to spectral scrambling.  Enhanced correlation, arising possibly from pairs of CB peaks

with similar peak heights, is observed in all dots at low temperature.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Quantum dots provide an experimental system to probe our understanding of single-particle and

many-particle physics.  One of the main efforts currently under task is the study of the

applicability of a single-particle model to a many-particle system.  The Coulomb blockade (CB)

regime in transport through quantum dots provides a near perfect system to probe the

applicability of the single particle model to a system involving many electrons[1].  Particularly,

the CB regime is characterized by a large charging energy, EC , which suppresses transport

through the device except at points of degeneracy in dot occupation number.  This charging

energy represents the interaction energy of the electrons on the dot; hence, EC  represents a

characteristic energy of the many-particle system.  Coulomb blockade in isolated quantum dots at

low temperatures is characterized by transport through a single level of the dot spectrum[2].  As

such, the measured transport properties provide statistics of a single level on the background of a

many-particle interacting system.

In open systems, measured transport properties exhibit mesoscopic fluctuations (random

but repeatable fluctuations arising from quantum interference)[3-8].  The statistics of the

mesoscopic fluctuations exhibit universal features which are due to the underlying universalities

of quantum chaos[9-12].  Random Matrix Theory (RMT) provides one of the theoretical

frameworks for understanding and predicting transport properties in open systems[13, 14].  RMT

also provides a prediction of the universal statistics of conductance amplitudes and level spacings
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within the CB regime.  The underlying assumption of RMT is that the (non-interacting) single-

particle model is an adequate description of the level spectrum and couplings of the quantum dot.

Deviations from the predicted statistics would, hence, suggest either a many-particle effect or an

effect not included in the RMT formulation.

This thesis summarizes measurements of the conductance and level spacing statistics in

the CB regime over many devices.  The measurements are restricted to CB transport through the

ground state of the dot; transport through excited states of a quantum dot in the CB regime have

been studied in other experiments[15, 16].  The goal of the thesis is examine transport properties

for underlying universalities.  Additionally, a secondary goal is to determine a theoretical frame

work which provides plausible explanations for measured data.

1.2 Organization of this Thesis

This chapter provides an introduction to and some motivation for the study of statistics of

transport properties in the CB regime.

Chapter 2 gives an introduction to quantum dots, summarizes the measurement set-up

used in the experiments, describes CB phenomena and discusses the techniques used to extract

the device energy scales, and provides a list of device parameters for the dots measured. Chapter

3 describes the results of the experiments to measure CB peak height statistics. Chapter 4

discusses CB peak spacing statistics. Chapter 5 summarizes a measurement of the level spectrum

sensitivity to the addition of electrons in quantum dots of different sizes. The results are

summarized in Chapter 6. Appendix A summarizes the device fabrication procedure.  Appendix

B summarizes techniques to reduce device noise during measurement.  Appendix C shows the

circuit diagram used to combine ac and dc bias for the measurement of ∆  in Section 2.4.3.

In all chapters and appendices, the figures and tables are placed at the end in order to not

interrupt the flow of the text.
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Chapter 2

Coulomb Blockade in Quantum Dots

2.1 Introduction

Quantum dots have been used extensively to investigate electron transport in open (greater than

or equal to one conducting channel into and out of the quantum dot) and closed systems[17-19].

A laterally defined cavity in a 2-dimension electron gas (2DEG) is one particular example of a

quantum dot.  This work makes use of these types of devices to further investigate transport

properties in closed systems.  The sections in this chapter describe the quantum dot design, the

measurement set-up and the transport behavior in the CB regime.

2.2 GaAs/AlGaAs 2DEG Devices

The quantum dots studied in this thesis are made in a two-dimensional electron gas (2DEG)

which forms at the interface of a GaAs/AlxGa1-xAs heterostructure grown by molecular-beam-

epitaxy[20]. The heterostructure, seen in Fig. 2-1, is grown on an epitaxially grown GaAs layer

formed on top of a bare GaAs substrate; a layer of 50 to 200 nm thick layer of AlGaAs is grown

epitaxially to form the interface for the 2DEG.  A layer of thin (~ 10 nm) GaAs cap is grown on

the top of the AlGaAs to prevent oxidation.  The AlGaAs layer provides free electrons to the

2DEG from a region of n-type dopants.  The band diagram of the heterostructure forms a well at

the GaAs/AlGaAs interface; at low temperatures, only the lowest level of the sub-band falls

below the Fermi energy.  As such, the electrons are confined to a region in the 2-dimensional
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plane within ~ 10 nm of the interface.  The typical Fermi energy of the 2DEG is ~ 10 meV; this is

much lower than energy difference between the lowest sub-band and next available sub-band (~

150 eV).  The temperatures used in the experiments are less than 1 K (~ 86 µeV); the voltage

biases used for conductance measurements are < 100 µV (typically ~ 5 µV).  The only slight

mismatch between the GaAs and AlGaAs lattices produces a low number of interfacial defects.

Additionally, the n-type dopants in the AlGaAs layer are located 20 – 40 nm from the interface to

minimize the effect of scattering from charged impurities at the 2DEG.  These two

heterostructure properties lead to a 2DEG with a mean free path of 10’s of microns. Typical

values for the parameters of a 2DEG formed in a GaAs/AlGaAs heterostructure are given in

Table 2-1.

To form the quantum dot, the 2DEG is laterally shaped to form a cavity with the use of

surface gates (see Fig. 2-2).  These gates, in contrast to the NiAuGe contacts (described below),

do not make electrical contact to the 2DEG.  Applying a negative bias on the surface gates with

respect to the 2DEG forces the electrons under the gates to be depleted.  Selectively depleting

regions of the 2DEG (by patterning surface gates) permits the definition of the quantum dot.

One of the major advancements made during the experiments in this thesis was the design

of quantum dots with many independently controllable gates.  The multi-gate designs permit the

accurate tuning of the dot point contacts (tunnel barriers) with the source and drain regions of the

2DEG.  The multi-gate design also allows the shape of the quantum dot to be changed without

affecting the conductance into and out of the quantum dot.

Electrical contact is made to the 2DEG through annealed NiAuGe contacts on the surface

of the heterostructure (see Fig. 2-1); these contacts are tested to verify “ohmic” behavior.

Transport through the dot is measured by applying a fixed current through the dot or by applying

a fixed voltage bias across the device.

2.3 Measurement Set-up

The resistance of the device in the CB regime is sufficiently large compared to the ohmic contact

resistance and the lead resistance that a 2-wire, voltage bias measurement can be used to measure

conductance.  A current bias measurement is not possible in the CB regime as the device

resistance grows to a large value between the CB peaks (in the blockade state); the large

resistance in the blockade state would drive the voltage across the device into a regime out of the

linear, single-level transport regime.  The sum of the ohmic contact and lead resistance is < 1 kΩ,
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and the device resistance is typically on the order of 100,000 kΩ.  This permits an accurate

measurement of the device conductance from the measured current in the voltage bias mode.

A typical voltage bias measurement set-up is shown in Fig. 2a.  A fixed voltage bias from

a lock-in is applied to the source side of the device; the drain is connected to an Ithaco 1211

current pre-amp.  The output of the pre-amp is feed back into the lock-in for a current

measurement.  Two 50 Ω resistors are placed in series on the lock-in high and low outputs to

prevent the lock-in shield (low) from floating by a few µVs.  The gates are biased negative with

respect to the drain using a battery box in addition to a computer controlled voltage supply board.

In the measurement, it is important to keep the applied bias below the temperature, the single

particle level spacing ∆  and charging energy EC  of the device, eVbias  < kT , ∆ , EC ; these sets of

inequalities ensure that the transport on a CB occurs only through a single level of the quantum

dot.  The formulation of these requirements is provided in the next section.

This 2-wire measurement set-up is modified slightly in order to make a direct

measurement of ∆; the modification includes a direct measurement of the ac and dc components

of the applied bias as shown in Fig. 2-3b.  The dc bias is added to the ac bias from the lock-in

using an “adder box” built by D. Stewart; the adder box acts like a 1,000:1 divider for the ac

signal and a 100,000:1 divider for the dc signal at 13 Hz.  Details of the adder box can be found

in Appendix C[21].  The ac component of the applied bias is measured directly using a phase

locked lock-in; the dc component of the bias is measured using a DMM after amplifying the

signal using a SRS560 voltage pre-amp.  This measurement set-up allows a direct measurement

of the applied bias at the dot; particularly, it can be used to see if the 50 Ω resistors in series

mentioned above remedy the floating of the lock-in shield.

2.4 Coulomb Blockade in Quantum Dots

2.4.1 Coulomb Blockade Theory

Coulomb blockade is observed in a quantum dot when the total conductance through the device is

below e2 h  = 1/25813 Ω; particularly, the conductance of each point contact (leads into and out

of the quantum dot) is less than 2e2 h .  In this regime, the transport of electrons occurs via

tunneling into and out of the quantum dot.  In the CB regime, the quantum dot can be

conceptualized simply as a metal island coupled capacitively to the source, the drain and a gate as

depicted in Fig. 2-4; in this picture, tunneling is permitted into and out of the quantum dot from
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the source and drain (via the resistive element) but not from the gate[2, 20].  Classically, the

charge on the quantum dot is continuous, linear with the voltage across the dot.  In actuality, the

charge on the dot is quantized to an integral number of electrons.  The charge state of the

quantum dot can be depicted as shown in Fig. 2-5.  The charge imbalance between the quantum

dot and the source/drain, see Fig. 2-5a, oscillates between e 2  and −e 2  as the voltage of the dot

is tuned by changing the gate voltage.  The dot occupancy increases with the dot voltage in the

form of a staircase as shown in Fig. 2-5b; conductance through the dot is only possible at points

of degeneracy where the charge on the quantum dot can change between N  and N +1[22].  All of

the CB measurements in this thesis are restricted to the regime where the transport occurs via the

ground state of the N  or N +1 electron system; for larger applied bias, transport becomes

possible through both the ground and excited states of the system.  This large-bias regime of

transport has been studied by many experimentalists[15, 16, 23-28]; the techniques used in those

experiments are used to make a measurement of the quantum level spacing of the dot as discussed

in section 2.4.3.  The conductance is shown in Fig. 2-5c as a function of dot voltage; periodic CB

peaks appear when the electron occupancy of the quantum dot is allowed to change by one.  The

spacing of adjacent CB peaks provides a measure of the charging energy (neglecting the

contribution from single particle energy levels within the dot); this relationship is derived in

Section 2.4.4.  In the blockade regime (between adjacent peaks), the quantum dot occupancy is an

integral number of electrons.  This picture is accurate as long as the charging energy (energy

required to change the dot occupancy by 1) is larger than the temperature of the dot and the

applied bias.

The experiments in this thesis focus on CB transport in the regime of low temperatures

with near zero intrinsic level broadening.  The energy level diagram for the dot with respect to the

source/drain can be depicted as shown in Fig. 2-6.  The levels in the quantum dots are broadened

(due to coupling between the dot and the source/drain) by ~ 0.5 µeV; this target is achieved by

increasing the tunneling barriers into and out of the quantum dot by tuning the point contact

surface gates.  The applied bias is selected to be less than the base temperature of the device; this

assures that the Fermi levels at the source and the drain are offset relative to each other by less

than the temperature broadening of the Fermi surface.  The lowest base temperature for the

experiments is ~ 50 mK (corresponding to 4.3 µeV); the differential conductance is measured

with an ac voltage bias in the range of 2 – 5 µV.  The single particle level spacing is derived from

the 2d density of states; the level spacing, ∆ , is typically 10 – 40 µeV assuming non-spin
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degenerate levels within the quantum dot.  Finally, the charging energy EC  of the quantum dot is

~ 500 – 1000 µeV.

Transport properties (conductance line-shapes and their temperature dependence) in the

regime Γ  (level broadening) < kT , ∆  < EC  have been studied theoretically by Beenakker[2].  In

the near-zero applied bias transport regime, the conductance process is described by resonant

tunneling.  The conductance line-shape in the regime Γ  < kT  < ∆  < EC  is given by:

g= e 2

h 2kT
ΓlΓr

Γl + Γr

cosh−2 E0 − eVg

2kT

 

 
  

 

 
  [2.1]

where Vg  is the applied gate voltage, Γl , Γr  are the source-dot and dot-drain tunneling rates

multiplied by   h  (define Γ = Γ l +Γr( )), E0 is the resonant level energy and  is the ratio of the

gate capacitance to total dot capacitance.  Within this regime, transport occurs via a single level

of the quantum dot.  The expressions for Γl , Γr  include the overlap between the source/drain

wave-function and the wave-function of the level contributing to transport.  At temperatures

larger than ∆  ( Γ  < ∆  < kT  < EC ), transport occurs via all quantum levels within the

temperature smeared Fermi surface energy window; here the line-shape is given by:

g= e 2

h
1

2kT
1

4∆
ΓlΓr

Γl + Γr

cosh−2 E0 − eVg

2.5kT

 

 
  

 

 
  [2.2]

The Beenakker formulation presented here sets the model under which the experimental data is

interpreted to extract properties of the CB peak height, CB peak spacing and CB spectral

scrambling statistics[2].  All data presented in the thesis is taken with symmetric coupling

between the source-dot and dot-drain, i.e. Γl = Γr ; for a given dot configuration, the value of

Γl , Γr  can be calculated from g  (in the configuration at kT  < ∆) and Eq. 2.1.

Outside of the work presented in this thesis, there is considerable experimental and

theoretical investigation into other CB transport phenomena.  Particularly, there has been

extensive theoretical and experimental work on transport properties in the partially blockaded

region (non-zero conductance between adjacent CB peaks)[29, 30].  Experimental investigation

into the level spectrum of a quantum dot in the CB regime has been carried out on lateral and

vertical quantum dots[15, 16, 28].  Finally, there has been work studying CB phenomena in a

quantum dot with one conducting channel[31].
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2.4.2 Measurement of Device Temperature

Device temperature measurement is made possible by measuring the width of the CB peak versus

temperature.  The peak FWHM (full width at half maximum) scales as 3.53kT  for temperatures

kT  < ∆; the FWHM remains linear in temperature with a different slope ( 4.35kT ) for

temperatures ∆  < kT [32].  Data in Fig. 2-7 shows the measured FWHM versus the dilution

fridge temperature (measured by a Ruthenium Oxide resistor).  A transition from the low

temperature slope to the high temperature slope occurs around 800 mK.  There is observable

decoupling of the device temperature from the fridge temperature due to heat influx from the

measurement leads into the quantum dot.

In order to lower the device temperature, improvements were made to the thermal sinking

and RC filtering of the device leads.  The details on the improvement are provided in appendix C

of A. Huibers’ thesis[33].  The FWHM temperature dependence is shown in Fig. 2-8 for another

quantum dot after the improvements.  At the base temperature of the fridge, the device

temperature is lowered to ~ 45 mK after the wiring changes.

The FWHM dependence on temperature also provides a means of measuring the gate to

dot capacitance ratio  based on the relationship e FWHM = 3 . 5 3kT  at low temperatures.

Using this relationship, the calculated value of  is 0.0583 (0.0651) for the data shown in Fig. 2-

7 (Fig. 2-8).  The measured value of  is used to convert other measurements in gate voltage to

energy differences within the quantum dot.

2.4.3 Measurement of ∆ , Single Particle Level Spacing

The theoretical calculation of the single particle level spacing for a quantum dot can be calculated

directly from the 2d density of states.  Assuming that the energy levels within the dot are spin

resolved (i.e. spin symmetry is broken), the single particle level spacing is given by:

  
∆ = E

n
= h2

m*A
[2.3]

where m*  is the effective mass of the electron and A  is the quantum dot area.  The assumption of

spin resolved levels within the quantum dot is justified based on the absence of even-odd

structure in the measured CB peak spacings.  This is discussed in Chapter 4 of this thesis.

The single particle level spacing can also be measured directly by applying a dc bias

across the quantum dot in the CB regime in addition to the ac bias used to measure the differential
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conductance.  With an applied dc bias VDC  across the dot (with EC  > VDC  > ∆), the electrons in

the source can tunnel into one of ~ VDC ∆ aligned and un-occupied levels.  The levels

participating in the transition include both the N +1 ground state and any available N +1 excited

states of the quantum dot.  If VDC  = 0 and VDC  << ∆ , then the N +1 excited states are not

available for tunneling since they are (on average) ∆  or more above the N +1 ground state; this

situation is the standard, small bias CB regime.  Going back to the finite EC  > VDC  > ∆
measurement, the differential conductance shows a peak whenever the N +1 ground state or

N +1 excited state aligns with the source or drain Fermi energy[16].  Hence, a measurement of

the differential conductance at finite dc bias provides a measurement of the level spectrum

spacing in a quantum dot.  An excellent description of transport in this finite dc bias CB regime is

presented in Chapter 3 of D. Stewart’s thesis[21].

Figure 2-9 shows a typical measurement for ∆  using a 200 µV dc bias on top of a 2 µV

ac voltage signal.  The spacings between the peaks in the conductance at finite bias (Fig. 2-9b)

provide measurements of the level spacings between the discrete levels of the quantum dot.  The

differences in the gate voltage positions of the peaks is converted to energy differences in the

quantum dot using .  The average of the 3 spacings measured in this scan reflects an average

level spacing of 20 µeV for this device; the calculated ∆  from depleted device area is 9 µeV.

This observed difference between the measured versus calculated ∆  is, as of this writing,

unresolved.

2.4.4 Measurement of EC, Charging Energy

The charging energy EC  is related to the peak spacing between adjacent peaks as the gate voltage

Vg  is swept.  The explicit relationship can be derived assuming a single particle energy model for

the dot energy.  Figure 2-10 shows two adjacent CB peaks; the peak spacing ∆Vg
N  between the

N −1↔ N  peak and N ↔N +1 is related to EC  by e ∆Vg
N = EC + sN , where sN  is the difference

between the N +1 and N  single particle energies[34].

The derivation of this relationship starts with the CB degeneracy condition:

N +1 − N = e Vg
N + , [2.4]
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where N  is the N -electron ground state energy, Vg
N  is the position of the CB peak corresponding

to N ↔N +1 degeneracy and  is the chemical potential of the dot.  The peak spacing ∆Vg
N  can

be calculated in terms of the ground state energy differences:

e ∆Vg
N = e Vg

N −Vg
N −1( ) = N +1 −2 N + N− 1. [2.5]

Assuming that the N -electron ground state energy can be represented as

N = i

i =1

N

∑ + N2e2

2Cdot

[2.6]

with ith single particle energies i, the above equation simplifies to

e ∆Vg
N = e2

Cdot

+ N +1 − N( ). [2.7]

Here the charging energy EC  is identified as e2 Cdot , and the level spacing is identified as

sN = N +1 − N .  Since the typical values of EC  are approximately 30 - 50 times the typical values

of ∆ = sN N
 (see Table 2-2), it is customary to express EC ≅ e ∆Vg.  The fluctuations of ∆Vg

apart from the slowly varying EC  contribution is the subject of Chapter 4; the peak spacing

fluctuations are studied to examine the underlying statistics of the single particle level spacing

distribution.

2.5 Devices Measured for Thesis Work

A total of seven quantum dots were measured over the course of this thesis work.  Table 2-2

summarizes the device parameters for all of the devices.
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Figure 2-1.  GaAs/AlGaAs heterostructure and band diagram. The GaAs/AlGaAs heterostructure
is comprised of a bulk GaAs substrate, a layer (~ 50 – 200 nm thick) of AlxGa1-xAs, and a plain
GaAs cap (~ 10 nm). The AlGaAs layer is partially doped with n-type donors which contribute
electrons to a two-dimensional electron gas (2DEG) that forms at the GaAs/AlGaAs interface at
low temperature. Gold (Au) gates and NiAuGe ohmic contacts are patterned on the surface during
device fabrication. The ohmic contacts are annealed so that their metal diffuses down and makes
electrical contact with the 2DEG. The band diagram of the GaAs/AlGaAs wafer is shown on the
right with energy on the horizontal axis. At low temperature, electrons fill the triangular potential
well at the GaAs/AlGaAs interface up to the Fermi energy, forming the 2DEG. (Figure courtesy
of M. Switkes).
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2DEG Property Symbol Value Units

Effective mass m* 0.067 me = 9.1 x 10-28 g

Spin degeneracy gs 2

Valley degeneracy gv 1

Dielectric constant ε 13.1 ε0 = 8.9 x 10-12 Fm-1

Effective Lande g-factor g* –0.44

Density of states ρ(E) = gsgv(m
*/2πh2) 2.8 x 1010 cm-2meV-1

Level spacing 1/ρ(E) 3.57 µeVµm 2

Fermi wave vector kF = (4πns/gsgv)
1/2 1.1 x 106 cm-1

Fermi energy EF = (hkF)
2/2m* 7.0 meV

81 K

Fermi wavelength λF = 2π/kF 56 nm

Fermi velocity vF = hkF/m
* 1.9 x 107 cm/s

Scattering time τ = m*µe/e 40 ps

Mean free path l = vFτ 10 µm

Resistivity ρ = (nseµ e)
-1 30 Ω per square

Diffusion constant D = vF
2τ/2 7 x 104 cm2/s

Thermal diffusion length lT = (hD/kT)1/2 5 x 103
n m / T

Cyclotron energy hωc 1.73 meV/B

20 K/B

Cyclotron radius lc = hkF/eB 70 nm/B

Magnetic length lm = (h/eB)1/2 26 n m / B

Zeeman energy g*µBB 25.5 µeV/B

296 mK/B

Table 2-1.  Typical parameters of a 2DEG formed in a GaAs/AlGaAs heterostructure. The 2DEG
sheet density and mobility are taken as ns = 2 x 1011 cm -2 and µ e = 1 x 106 cm2/Vs, respectively.
The units of B are Tesla, and the units for T are Kelvin. (Table courtesy of S. Cronenwett;
Adapted from Ref. [20]).
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(a)

Figure 2-2.  a) Schematic 3D view of Dot 4 formed by six gates (gray) on the surface of a
GaAs/AlGaAs wafer. The 2DEG, shown in blue, exists slightly below the surface at the interface
plane except immediately beneath the negatively biased depletion gates. A current can be passed
through the device via the ohmic contacts (gold). Current flows only through the two openings
indicated with the black arrows; all the other spaces between gates are fully depleted.  b) A
scanning electron micrograph (SEM) of a quantum dot. The gates forming the tunneling barriers
are colored gold. The 2DEG regions forming the source, drain, and dot are colored in blue.
(Figure courtesy of S. Cronenwett).

(b)
Source

Drain

Dot
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Figure 2-3.  Circuit diagram of 2- and 4-wire voltage bias measurements.  a) A simple 2-wire
measurement consists of a lockin sourced ac voltage, divided down to the desired VAC  ~ µV’s.
The circuit is completed with an Ithaco 1211 current preamp connected to an ohmic in the drain.
The output of the Ithaco feeds into the lockin to measure the current. The gates are biased relative
to the drain ohmic contacts, through a GΩ resistor to prevent current leakage.  b) The 4-wire
voltage bias measurement includes separate voltage sensing lines which feed into a second lockin,
phase locked to the first, and an optional dc voltmeter. This circuit also shows a finite dc source-
drain bias voltage added to the ac voltage. At a frequency of 13 Hz, the ac + dc adder box
contains voltage dividers of 100,000:1 and 1000:1 for the ac and dc components respectively.  A
circuit diagram of the ac + dc adder box can be found in Appendix C.  (Figure courtesy of S.
Cronenwett).
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Figure 2-4.  Schematic representation of a quantum dot in the CB regime.  The dot is connected
to the source and drain via a capacitive and resistive element.  Dot is connected to surface gate(s)
only capacitively.  (Figure courtesy of S. Cronenwett).
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Figure 2-5.  Charge imbalance, dot occupancy and conductance.  a) The charge imbalance
between the quantum dot and the source/drain is shown as a function of Vg .  b) The number of

electrons on the dot is quantized.  c) Coulomb blockade conductance peaks appear at points of
degeneracy where the dot occupancy is allowed to change by one.  Transport occurs via single
electron tunneling (  N → N +1 → N → N +1→L) in isolated quantum dots at low temperatures
and low voltage bias.
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N

N - 2

N - 4

N + 1

N + 3

Vg

Charging Energy
Ec = e2/Cdot
       ~ 500 - 1000 µeV

Level Spacing
∆ = πh/m*A
   ~ 10 - 40 µeV

Dot

Source Drain

Temperature ~ 50 mK
     ~ 4 µeV

Level Broadening
Γ ~ 0.5 µeV

VBias ~ 2 - 5 µV

Figure 2-6.  Quantum dot energy scales.  A schematic representation of the quantum dot level
spectrum in the CB regime is shown above.  The levels within the dot are broadened due to
coupling between the device and the leads; the intrinsic width of the levels is ~ 0.5 µeV.  The
electron temperature within the dot is ~ 4 µeV.  The spin-resolved single particle level spacing is
10 – 40 µeV for devices studied in this thesis.  For the same devices, the charging energy EC

ranges from 500 – 1000 µeV.  Unless otherwise indicated, an applied ac bias of magnitude 2 – 5
µV was used to measure the differential conductance through the quantum dot.
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Figure 2-7.  Temperature dependence of CB peak FWHM in Dot 4.  a) Cross over from 3.53 kT
dependence to 4.35 kT  dependence at higher temperatures.  Low temperature FWHM does not
follow linear prediction due to decoupling of the quantum dot temperature from fridge
temperature.  b) Zoom-in of (a) plot.  Device temperature extracted from base temperature
FWHM is approximately 100 mK for this device.
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Figure 2-8.  Temperature dependence of CB Peak FWHM after improved thermal sinking and
RC filtering of the device leads (Dot 5).  a) Data showing linear FWHM dependence.  b) Zoom-in
of (a) data; measured device temperature is ~ 45 mK.
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Figure 2-9.  Finite bias measurement for ∆ .  a) The differential conductance through Dot 5
versus applied dc bias.  The black line represents the CB peak associated with transitions between
N  and N +1 ground state levels of the quantum dots.  The blue lines represent CB peaks
associated with transitions between the N  ground state level and N +1 excited levels of the
quantum dot.  b) A slice of the data shown in (a) taken with VDC  = -200 µV.  Measured spacings
in Vg  between adjacent peaks (black and blue diamonds) are multiplied by  to extract an

average ∆  = 20 µeV.
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Figure 2-10.  Relating EC  to ∆Vg .  Two adjacent CB peaks from Dot 5.  The peak on the left

(right) corresponds to the N −1↔ N  ( N ↔N +1) degeneracy condition.  In between the peaks,
the number of electrons on the quantum dot is fixed to N .

Parameter dot 1 dot 2 dot 3 dot 4 dot 5 dot 6 dot 7

A (µm2) 0.17 0.20 0.32 0.34 0.38 0.47 0.50

d (Å) 900 900 800 800 900 800 900

∆ (µeV) 21 18 11 11 9 8 7

EC (µeV) 560 760 580 500 380 600 320

N 340 400 960 1000 760 1400 1000

Table 2-2.  Measured devices and parameters.  Data is given for a typical gate voltage
configuration (with a nominal depletion region around the dot perimeter):  dot area (A), 2DEG
depth (d), mean, spin-resolve level spacing (  ∆ = h2 / m* A), charging energy ( EC = e2 /Cdot) and
number of electrons in dot ( N ).  Devices 1, 2, 5, and 7 (3, 4, and 6) have a sheet density

ns ~ 2×1011 cm− 2 ( 3×1011 cm−2) and mobility ~1.4 ×105 cm 2 /Vs ( 6.5×105 cm2 /Vs ).  The
2DEG for devices 1, 2, 5 and 7 (3, 4, and 6) was provided by C. I. Duruoz and J. S. Harris, Jr. at
Stanford (K. Campman and A. C. Gossard at UCSB).  Devices 1, 2, 5 and 7 (3, 4 and 6) were
fabricated by me (Andy Huibers).
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Chapter 3

Mesoscopic Fluctuations of Coulomb

Blockade Peak Heights

3.1 Introduction

Low temperature transport measurements in quantum dots show random but repeatable

fluctuations in the conductance due to quantum coherence of the electrons[3-8].  These

mesoscopic fluctuations exhibit universal features which are associated with the underlying

universalities of quantum chaos[9-12].  Previous measurements (mentioned above) have focused

on transport measurements in the “open” regime (where the conductance of each lead into and out

of the dot is greater than or equal to one quantum of conductance ( 2e 2 h )).  The experiment

described here investigates the mesoscopic conductance fluctuations observed in “closed”

quantum dots (device conductance << e2 h ); fluctuations of this type were alluded to in several

earlier CB experiments but were not the primary focus of the experiments[24].  Chang, et al.

reported the 1st measurement of the conductance distributions and statistics in the “closed”

regime; some of the measurements presented here were reported along side of the measurements

presented by Chang, et al.[35].  Statistics of CB peak heights and temperature dependence of B ≠

0 peak height distribution are discussed below.  Measurement of the magnetic field correlation

length is also presented.
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3.2 Coulomb Blockade Peak Heights: Theory

The measurements presented here examine the statistics of conductance fluctuations in the CB

regime.  Particularly, the measurements are made in the regime Γ  < kT , ∆  < EC  with an ac bias

less  than kT , ∆ , EC .  In this regime, the conductance is a result of single electron tunneling

through the quantum levels of the device.  For low temperatures ( kT  << ∆), the transport occurs

through a single level of the device; hence, the statistics of the conductance provides a signature

of the statistics of the coupling between the source/drain and the single electron eigenstate

corresponding to the level participating in the transport[1, 2].

The statistics of single electron tunneling in the CB regime has been studied using

random matrix theory (RMT) and super-symmetry method[36, 37].  Within RMT, the

Hamiltonian of the isolated device is described by random matrix from Gaussian orthogonal

ensemble (GOE) for zero applied magnetic field and from Gaussian unitary ensemble (GUE) for

finite, non-zero applied magnetic field.  The symmetry classes are selected to respect the time-

reversal symmetry constraint of the Hamiltonian.  Transport in the quantum CB regime ( kT  <<

∆) resembles the statistical theory of compound nuclear scattering, with the CB peak heights

analogous to Porter-Thompson distributions of the resonance widths.  The assumption that the

overlap integrals of the dot wavefunctions with the lead wave functions are Gaussian distributed

implies that the tunneling rates into and out of the dot Γl  and Γr  (proportional to the square of the

overlap) are 2  distributed with  = 2 for B = 0 and  = 4 for B ≠ 0.  The distributions of Γl

and Γr  are given by:

P(Γ) = e−Γ Γ 

Γ 
(B = 0) [3.1]

P(Γ) = 2
Γ 

 

 
 

 

 
 

2

Γe− 2Γ Γ (B ≠ 0) [36]. [3.2]

The CB peak height can be expressed as:

gmax = e 2

h 2kT
ΓlΓr

Γl +Γ r

≡ e2

h
Γ 

2kT
, [3.3]

where ≡ ΓlΓr Γ Γl + Γr( )  is a dimensionless peak height.  The mesoscopic fluctuations in gmax

arise from changes in Γl  and Γr  with external parameters such as magnetic field (for non-zero

applied field), dot shape (for zero and non-zero applied field) and the number of electrons in the
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dot.  Assuming that the dot leads are statistically independent and identical (Γ l = Γ r = Γ 2 ), the

distributions of the dimensionless peak heights are given by:

P( ) = 2
e−2 (B = 0) [3.4]

P( ) = 4 K0 2( )+ K1 2( )[ ]e−2 (B ≠ 0), [3.5]

where K0 and K1 are modified Bessel functions[36].

The peak height distributions discussed above assume that kT  << ∆  and only one level

contributes to the measured conductance/transport; the changes to the distributions and the height

statistics arising from finite temperature effects has been recently considered by Alhassid, et

al.[38].  Their calculation includes transport from more than one level as kT  becomes larger than

∆ .  The calculated peak height distributions and standard deviations for B ≠ 0 are compared to

measured distributions below.

Alhassid and Attias show that the generic peak height autocorrelation function C ∆X( )
(where ∆X  is a change in any continuously varying parameter which induces a change in Γl  and

Γr ) is approximated by a Lorentzian squared for B ≠ 0[39].  Taking magnetic field as the

continuous parameter, the functional form of the autocorrelation function becomes:

C ∆B( )= 1+ ∆B BC( )2[ ]−2

. [3.6]

The correlation field length BC  is typically smaller than one flux quantum 0  through the dot,

BC A ~ 0 cross H , where   H = h /∆  is the time scale to resolve individual levels,

cross ~ A /vF  is the time to cross the dot, and  depends on the dot shape[40, 41].  The

measured magnetic field correlation length is compared to BC  from above.

3.3 Coulomb Blockade:  Magnetic Field and Dot Shape

Coulomb blockade peak height distributions for B = 0 and B ≠ 0 were measured in Dots 3 and 6

in the regime Γ  < kT  < ∆  < EC .  Figure 3-1 shows the temperature dependence of a CB peak

line shape as a function of device temperature; the device base temperature in this measurement is

~ 90 mK.  The CB peak line shape is accurately described by a cosh-2 functional form.  The peak

width exhibits the linear dependence on temperature as discussed in section 2.4.2.  The

measurements were made with an ac voltage bias of 5 µV at 11 Hz.
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Peak height statistics were collected by sweeping gate voltage Vg1 over ~ 25 peaks (see

inset Fig. 3-4a).  For B = 0 and B ≠ 0, independent ensembles of CB peaks are accessed on gate 1

by changing the shape of the quantum dot by adjusting the voltage applied to gate 2; the use of

shape distortion to access independent ensembles was originally suggested by Bruus and

Stone[41].  Figure 3-2 shows the effect of shape distortion on the CB peak heights measured by

sweeping voltage Vg1 for two different values of Vg 2 .  Changing the value of Vg 2  changes the dot

occupancy and/or dot geometry (inducing a change in the couplings Γl , Γr ) to yield a new

sample of statistically independent peaks on Vg1.  For B ≠ 0 statistics, the magnetic field through

the dot was varied by more than one BC  to access another independent ensemble of CB peaks

with gate 1.  The inability to access ensembles at B = 0 using the magnetic field greatly reduces

the total possible number of statistically independent CB peak height measurements; this

necessitates the use of shape distortion as described already. The peak heights exhibit mesoscopic

fluctuations; for fixed magnetic field and fixed Vg 2 , the peak height sequence generated by

sweeping gate 1 is repeatable.

Figure 3-3 shows the measured peak height versus magnetic flux for Dot 4.  The peak

height is symmetric with respect to the origin; mesoscopic fluctuations in the peak height are

visible between 5 – 15 0  through the quantum dot.  One flux quantum through the dot is

equivalent to 12.2 mT based on the area estimate (including depletion).  The measured magnetic

flux correlation length is 0.8 0  (9.7 mT) compared to 0.2 0  from theory assuming that  is a

factor of order unity.  The disagreement in the flux scale remains an unresolved issue within this

field.

3.4 Coulomb Blockade Peak Height Statistics:  Experimental Data

A plot of the B = 0 and B ≠ 0 peak height distribution is shown in Figure 3-4.  The data represents

CB peak height data measured from both devices.  The measured peak height distributions for B

= 0 and B ≠ 0 agree with the predicted functional forms from RMT.  The displayed data

represents data from ~ 600 peaks (for both B = 0 and B ≠ 0) of which ~ 90 are assumed to be

statistically independent.

Although the data displayed in Fig. 3-4 shows excellent qualitative agreement with

predictions from RMT, the measured probability distribution for B ≠ 0 has visibly fewer near zero

height conductance peaks compared to the RMT predictions.  This discrepancy can be quantified
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by comparing the measured standard deviation of peak heights with predictions from RMT

including temperature.

The investigation of the peak height fluctuation standard deviation is simplified by

scaling the predicted RMT peak height distributions to have a mean of 1.  This is simply achieved

by defining a new scaled dimensionless peak height ˜ = ; this forces the distribution P ˜ ( )
to have ˜ =1 .  The standard deviation of the new distribution is given by

˜ ( ) ≡ ˜ 2 −1 = ( ) .  Figure 3-5 shows a plot of ˜ ( ) versus temperature for 2 different

shape configurations of Dot 1 and one shape configuration of Dot 5.  All 3 data sets show the

same behavior with increasing temperature.  The measured data all have smaller peak height

fluctuations than predicted by RMT.  The measured peak height distributions (insets Fig. 3-5)

also show smaller than predicted standard deviations compared to predicted distributions from

RMT.  This departure from the finite-temperature RMT prediction is likely due to decoherence

effects within the quantum dot; as such, it may provide a novel tool to measure decoherence in

nearly isolated structures (similar to measurements in open quantum dots[42]).

The peak height distribution calculated from the combined lowest temperature data (inset

Fig. 3-5) reproduces the peak height distribution form observed for B ≠ 0 data in Fig. 3-4.  This

reinforces the underlying universality of the measured CB peak height statistics.  Specifically, the

same distribution line shape and standard deviation of peak height fluctuations are measured

between 4 different devices fabricated out of 2 different 2DEG samples; moreover, the 2 different

2DEG samples were grown by 2 different groups.

3.5 Conclusions

Experimental evidence is presented for mesoscopic fluctuations of CB peak heights as a function

of magnetic field.  Shape distortion and magnetic field are used to gather statistics of CB peak

heights in various quantum dots.  The peak height distributions agree qualitatively with RMT at

low temperatures.  The peak height distribution width is observed to be smaller than predicted by

RMT including temperature.  The magnetic field correlation length, extracted from peak height

measurements, is approximately 0.8 0  (where 0  is one flux quantum through the dot); this field

scale is smaller than predicted by theory.

The initial CB peak height distributions were measured by J. Folk[43].  J. Folk, S.

Cronenwett and S. F. Godijn assisted with device measurements; A. Huibers assisted in device
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fabrication.  The 2DEG was supplied by K. Campman and A. C. Gossard from UCSB or C. I.

Duruoz and J. S. Harris, Jr. from Stanford.
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Figure 3-1.  Temperature dependence of CB peak line shape.  A plot of the conductance through
Dot 6 is shown versus the voltage applied to gate 1; the absolute value of the voltage applied to
gate 1 is ~ -1 V.  The CB peak line shape agrees with Eq. 2.1.  At higher temperatures, the CB
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Figure 3-2.  Effect of shape distortion.  a) CB peaks measured at B ≠ 0 with Vg 2  at –1010 mV on
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Figure 3-3.  Peak height fluctuations and auto-correlation function versus flux.  a) Peak height is
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are observed between 5 – 15 0 ; the peak height is symmetric with respect to the origin.  b) The
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Lorentzian squared functional form.  Extracted correlation length is 0.8 0  ( BC  = 10 mT).  Inset:
SEM image of Dot 4.
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peaks leading to divergent P( ) at  = 0.  b)  Peak height distribution for B ≠ 0.
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Figure 3-5.  Temperature dependence of peak height standard deviations.  Normalized peak
height distribution width ˜ ( ) versus temperature is shown for 2 configurations of Dot 1 and one

configuration of Dot 5.  The width statistics are nearly identical between the device
configurations.  Insets:  Full distributions of normalized peak heights P ˜ ( ) for all dot

configurations combined; at kT  = 0.1 ∆ , kT  = 0.5 ∆ , and kT  = 1.5 ∆ .   RMT prediction
(assuming a uniformly spaced rather than Wigner-Dyson spectrum) is shown in solid curve.
Differences between measurements and RMT predictions is likely due to decoherence.  The value
of ∆  is measured from DC bias measurements in the CB regime as described in Section 2.4.3.
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Chapter 4

Statistics of Coulomb Blockade Peak

Spacings

4.1 Introduction

Measurements of UCF in open quantum dots and statistics of CB peaks heights in isolated

quantum dots are observed to be in good agreement with predictions from RMT.  Coulomb

blockade in isolated quantum dots also provides a measurement of the single electron addition

energy as a function of electron number.  This measurement is made by converting the CB peak

spacings to an energy with the use of , see Eq. 2.7.  Within the “constant interaction” (CI) CB

theory, the fluctuations of the CB peak spacings are the same magnitude as the quantum level

spacings ∆  within the dot; the fluctuations of the charging energy EC  are assumed to be

negligible (apart from a slowly varying term depending on dot occupancy N ).  Several

experiments observe that the peak spacing fluctuations are dominated by fluctuations in EC ; the

fluctuations are of order 0.1 – 0.15 EC  [44-46].  Statistics of CB peak spacings are studied

systematically in seven quantum dots.  The temperature dependence of the peak spacing

fluctuations is also measured.
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4.2 Coulomb Blockade Peak Spacings:  Theory

Section 2.4.4 provides the relationship between peak spacings and intrinsic energy scales of the

quantum dot.  The statistics of sN ≡ N +1 − N  correspond to statistics of the quantum level

spacings within the dot.  Within spin-degenerate (SD) RMT, sN  is zero for N  odd.  For N  even,

sN  is drawn from the Wigner-Dyson distribution.  The Wigner-Dyson distributions are given by:

PWD s( ) =
2

se
−

4
s2

(B = 0) [4.1]

PWD s( ) = 32
2

s2e
− 4

s2

(B≠ 0) [4.2]

with s = sN 2∆  and   ∆ = h2 m* A[47].  Using the given Wigner-Dyson distributions, the

distributions of sN  are given by:

PSD s( )= 1
2

s( )+
2

se
−

4
s2 

 
  

 

 
  (B = 0) [4.3]

PSD s( )= 1
2

s( )+ 32
2

s2e
− 4

s2 

 
  

 

 
  (B ≠ 0) [4.4]

for SD quantum levels within the dot; these distributions are referred to as CI + SDRMT in this

thesis.  The delta function in the above equations takes into account the spin degeneracy of the

quantum levels.  The mean value of sN  for both distributions is ∆ .  The standard deviation of the

B = 0 (B ≠ 0) distribution is σ = 0.62 (0.58) ∆; the ratio of the B = 0 standard deviation to the B

≠ 0 standard deviation is ~ 1.1.

Since the experimental data (here and in [44, 45]) does not show any sign of the delta

function contribution in the peak spacings, one is forced to consider the CI model without any

even-odd structure.  The breaking of the spin degeneracy is discussed in [48] and observed

experimentally in [15, 16, 28].  The distributions of the spin-resolved (SR) quantum level

spacings can be derived from two overlapping Wigner-Dyson distributions [47].  The functional

form of the SR level spacing distributions (referred to as CI + SRRMT) is given by:

PSR s( ) =
2

s2
1− erf

4
s

 

 
  

 

 
  

 

 
  

 

 
  

2 

 

 
 
 

 

 

 
 
 

B = 0( ) [4.5]



34

PSR s( ) =
2

s2
e

− 1
s2

− s
2

1− erf
1

s
 

 
 

 

 
 

 

 
  

 

 
  

 

 
  

 

 
  

2 

 

 
 
 

 

 

 
 
 

B ≠ 0( ) . [4.6]

The standard deviation of the CI + SRRMT B = 0 (B ≠ 0) distribution is σ = 0.70 (0.65) ∆; the

ratio of the B = 0 standard deviation to the B ≠ 0 standard deviation is ~ 1.1 (nearly identical to

the result from CI + SDRMT).

The spin-resolved and spin-degenerate level spacing distributions are shown in Fig. 4-1.

The spin-degenerate level distributions show bimodal structure due to the delta function at the

origin.  As already mentioned for both SR and SD cases, the B = 0 distribution width is wider

than the B ≠ 0 distribution width.

The temperature dependence of the CI + SRRMT B ≠ 0 distribution standard deviation

can be approximated by thermal averaging  the zero-temperature sN  spacings.  The finite

temperature level spacings are approximated by yN = wN , js j
j

∑  with wi, j ∝cosh−2 si − s j kT( ) ;

the functional form of wi, j  is chosen to include more contributions from adjacent spacings sN  at

higher temperature.  Within this model, the CI + SRRMT B ≠ 0 distribution standard deviation is

given by T( )∝T −1 2.

4.3 Coulomb Blockade Peak Spacings Data

Coulomb blockade peak spacings were measured from all seven quantum dots.  A typical CB

peak scan at B = 30 mT is shown from Dot 1 in Fig. 4-2a.  The average peak spacing decreases

with increasing number of electrons N  in the quantum dot (reflecting an increase in Cdot), Fig. 4-

2b.  To account for this change in the peak spacing, a running average ∆Vg
i  is found from the

best fit line to the peak spacing data; the ∆Vg
i  is used to defined dimensionless peak spacing

fluctuations = ∆Vg
i − ∆Vg

i( ) ∆Vg
i .  The units of  are charging energy; the measured peak

spacing fluctuations are on the order of ∆/ EC , Fig. 4-2c.  A measurement of the noise in the peak

spacing data can be made by comparing the peak spacing fluctuations between positive and

negative magnetic fields as shown in Fig. 4-2b; the data shown in Fig. 4-2b shows random,

repeatable fluctuations in the peak spacing.

Peak spacing statistics from all dots is listed individually in Table 4-1.  Statistics for B =

0 were not measured in Dot 1.  The listed value of ∆/ EC  is calculated from Table 2-1.  The
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number of statistically independent peak spacings is calculated from the number of peaks in a

given scan times the number of scans with characteristically different peak heights.  In all cases

the measured standard deviation of the peak spacing fluctuations is less than ~ EC /20 and on the

order of ∆/ EC ; this is in good agreement with CI + SRRMT.  The measured standard deviation

for B = 0 is larger than measured standard deviation for B ≠ 0, in agreement with theory.  The

ratio of the B = 0 standard deviation to B ≠ 0 standard deviation is ~ 1.3 compared to ~ 1.1 from

theory.  An estimate of the noise in the peak spacing measurement is provided by measuring the

anti-symmetric component of the peak spacing fluctuations measured at opposite magnetic field

values (as shown in Fig. 4-2b).  Devices 2, 6 and 7 exhibit a correlation between enhanced

noise ( )  and larger ( ) .

Combined peak spacing data for Dots 3, 4 and 5 (with similar device parameters) is

displayed in Fig. 4-3.  Distributions for B = 0 and B ≠ 0 are symmetric in  and nearly Gaussian.

The absence of any bimodal structure in the measured distributions indicates a breaking of spin

degeneracy within the dot.  For comparison, the bimodal CI + SDRMT distributions with thermal

broadening (via convolution of the zero-temperature distribution with a Gaussian of width kT )

are shown in the left insets; there is clearly no such structure in the measured spacing

distributions.  The measured distribution width for B = 0 (B ≠ 0) is B = 0 ( )  = 0.027 ( B ≠ 0( )  =

0.022); the distribution width from the best fit Gaussian for B = 0 (B ≠ 0) is B = 0 ( ) f
 = 0.019

( B ≠ 0( ) f
 = 0.015) (the subscript f indicates “Gaussian fit”).  The difference between measured

width and width from best fit Gaussian results from broad tails (see right insets Fig. 4-3).  The

ratio of the distribution widths is ~ 1.2 – 1.3 (using either the measured width or the width from a

Gaussian fit); this is larger than but comparable to the predicted value from CI + SRRMT.  The

measured distribution widths are much smaller than previous measurements (see top right inset).

Peak spacing distribution for B ≠ 0 from the smallest device (Dot 1) is shown in Fig. 4-

4a.  The data shows good agreement with the predicted CI + SRRMT distribution after thermal

averaging is included; thermal smoothing is applied by convolving the zero-temperature

distribution with a Gaussian of width kT .  The temperature dependence of the distribution width

B ≠ 0( )  is shown in Fig. 4-4b for 2 different device configurations of Dot 1.  The data shows ~

T −1 2 dependence; this is in fair agreement with the results from the thermal averaging model

described in the theory section.  A more complete model of T( ) has yet to be developed.  The
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measured width at high temperatures shows the noise floor of the peak spacing fluctuations

measurement to be around 0.006 from the saturation value of T( ).

4.4 Conclusions

Measurements made in the course of this thesis work show that the CB peak spacing fluctuations

are of the order ∆ , much smaller than measured previously in other experiments[44, 45].

Additionally, the measurements show that the levels within the quantum dot are not spin

degenerate; CI + SRRMT provides a more accurate picture of the level statistics than CI +

SRRMT.  There is good agreement between the measured peak spacing distributions and the peak

spacing distribution derived from spin-resolved level spacing fluctuations in the absence of EC

fluctuations.  The temperature dependence of the peak spacing distribution width is measured for

Dot 1; the data shows T −1 2 dependence.

There has been recent theoretical work by Usaj and Baranger to investigate the absence

of spin degeneracy in the peak spacing data [49].  They calculate the effect of:  (1) e-e interaction,

(2) spectral “scrambling” when adding electrons to the dot (see Chapter 5), (3) shape deformation

and (4) finite temperature on the peak spacing distribution in the CB regime.  Of these

mechanisms, the finite temperature effect proves to be the critical factor in establishing agreement

between theory and experiment.  The measured data presented here agrees with their results.

S. Cronenwett, J. Folk, S. F. Godijn, and D. Stewart assisted with device measurements;

A. Huibers assisted in device fabrication.  The 2DEG was supplied by K. Campman and A. C.

Gossard from UCSB or C. I. Duruoz and J. S. Harris, Jr. from Stanford.
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Figure 4-1.  Quantum level spacing distributions from RMT.  Level spacing distributions for spin
degenerate levels are shown in (a) and (c).  Level spacing distributions for spin resolved
degenerate levels are shown in (b) and (d).  All distributions assume zero-temperature inside the
quantum dot.  In both SR and SD cases, the B = 0 distribution width is ~ 1.1 times the B ≠ 0
distribution width.  The mean of all 4 distributions is 1, corresponding to an average level spacing
∆ .
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Figure 4-2.  CB peak heights and spacings.  a) CB peak height data from Dot 1 (diamonds) and
best fit to cosh-2 lineshape (solid curve).  Insets:  Right – SEM image of Dot 1; Left – Detailed
view of data and fitted curve on log scale.  Peak center location is extracted from fitted curve for
each peak.  b) Peak spacings extracted from data in (a) at B = 30 mT (diamonds) and B = -30 mT

(open circles).  Dashed line is best fit to peak spacing data corresponding to ∆Vg
i .  c)

Dimensionless peak spacing fluctuations  as a function of gate voltage Vg1 from (b).

Fluctuations are seen to be on the order of ∆/ EC  (vertical bar; see Table 4-1).
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Parameter dot 1 dot 2 dot 3 dot 4 dot 5 dot 6 dot 7

∆/ E
C

(×10−3)

36 24 19 22 24 13 22

ni 190 70 140 830 1300 710 420

B=0
( )

(×10−3)

-- 48
(7)

38
(2)

25
(2)

25
(3)

43
(2)

56
(3)

B≠0
( )

(×10−3)

18
(2)

34
(4)

23
(3)

22
(1)

20
(2)

38
(2)

43
(2)

B=0
( )

B≠0( )
-- 1.3

(0.2)
1.7

(0.2)
1.2

(0.1)
1.2

(0.2)
1.1

(0.1)
1.3

(0.1)

noise
( )

(×10−3)

6 23 15 10 8 25 30

Table 4-1.  Measured peak spacing statistics from all dots.  Listed parameters:  the value of
∆/ EC  calculated from Table 2-1, number of statistically independent peak spacings ( ni ),
measured standard deviation of peak spacing fluctuations ( )  for B = 0 and B ≠ 0 with

uncertainties in parenthesis, ratio of B = 0 ( )  to B ≠ 0( )  (when available) and an estimate of the

noise in the measurement as the standard deviation of the noise distribution noise ( ) .
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Figure 4-3.  CB peak spacing distributions for Dots 3, 4 and 5.  a)  Measured peak spacing
distribution for combined B = 0 data from Dots 3, 4 and 5.  b)  Measured peak spacing
distribution for combined B ≠ 0 data from Dots 3, 4 and 5.  Data represents approximately 4300
(10,800) total peaks with ~ 750 (1,600) statistically independent peaks for B = 0 (B ≠ 0).  Left
insets:  CI + SDRMT distributions with thermal averaging show bimodal structure due to spin-
degeneracy.  Measured distributions do not show any bimodal features.  Right insets:  Measured
distributions (diamonds) and best fit Gaussian on log scale.
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Figure 4-4.  Peak spacing fluctuations versus temperature.  a) Peak spacing distribution from Dot
1 (bars) compared to CI + SRRMT prediction after thermal smoothing (solid curve).  Dotted
curve is CI + SRRMT distribution at zero-temperature.  b) Temperature dependence of peak
spacing distribution width for 2 configurations of Dot 1.  Data shows T −1 2 dependence.  The
value of ∆  is calculated from area of the dot assuming depletion around the gates.
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Chapter 5

Changing the Level Spectrum by Adding

Electrons

5.1 Introduction

The magnitude of electron-electron (e-e) interactions within confined systems is the focus of

much experimental [44] and theoretical work[48, 50].  The material discussed in this thesis so far

has not directly addressed e-e interaction effects.  A second hand indication of the e-e interaction

magnitude is provided, however, in the peak spacing distribution width measurements.  The peak

spacing fluctuations observed in Section 4.3 show fluctuations of order ∆ .  Particularly, the

measured fluctuations are much smaller than EC ; fluctuations associated with classical charge

rearrangement within the dot are absent.  The last statement suggests that the e-e interactions do

not dominate CB addition spectrum; however, a more direct study of e-e interaction effects would

be useful.  A direct probe of the e-e interaction energy scale is made via an investigation of the

CB peak height correlation length.  Specifically, the temperature dependence of the peak height

correlation length provides a novel technique to examine the device level spectrum and couplings

for e-e effects.
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5.2 Calculation of the Peak Height Correlation Length versus

Temperature

As discussed in section 2.4.1, transport on a CB peak in the regime Γ  < kT  < ∆  < EC  is

mediated by resonant tunneling through a single level.  At higher temperatures (with Γ  < ∆  < kT

< EC ), the conductance on a CB peak consists of contributions from kT / ∆  quantum levels, and

one would expect roughly this many consecutive peaks correlated in height.  This assumes that

the level spectrum and individual level couplings do not change with the addition of electrons.

On the other hand, if the addition of electrons (going from one CB peak to the next) changes the

level spectrum and/or individual level couplings of the quantum dot, the peak height correlation

length nc  would not grow beyond a certain value.  The saturation value would be roughly equal

to (but not equivalent to) the number of added electrons required to “scramble” the quantum dot.

The temperature dependence of the peak height correlation length nc  has been derived

from RMT distributed peak heights without spectral scrambling within the quantum dot by

Alhassid, et al[38].  Within their work (in the regime Γ  < kT , ∆  < EC  with eVbias  < kT ), the on

peak conductance is given by:

Gmax = e2

h
Γ 

8kT
T( ) , [5.1]

where T( ) = w T( )∑  is a weighted sum of normalized source-dot-drain conductances and

= 2Γl Γr Γ  Γl +Γ r( )[ ] .  The dot is assumed to have symmetric leads, i.e. Γl = Γr = Γ 2.  In

the regime used in the experiments ( kT , ∆  < EC ), the weighting function is given by:

w T( )= 4 f ∆FN − ˜ E F( ) n
N

1 − f E − ˜ E F( )[ ] , [5.2]

where ∆FN  is the difference in the canonical free energy of N  and N −1 non-interacting

electrons on the dot, n
N

 is the canonical occupation of level  with N  electrons on the dot,

˜ E F = EF +e Vg − N −1 2( )EC  is the effective Fermi energy with Vg  tuned between N  and N −1

electrons on the dot, E  is the energy of level , and f ( ) =1 1+ e kT( )  is the Fermi function.

The above equation yields the previously mentioned distributions for  in the regime Γ  < kT  <

∆  < EC .



44

The calculated peak height sequences are used to extract a correlation length versus

temperature.  The peak height data of length M  is used to calculate a discrete correlation

function:

C n( ) = 1
M − n

gi gi+ n

i=1

M −n

∑ 1
M

gi gi

i=1

M

∑ , [5.3]

where gi = Gmax( ) i
− Gmax .  The peak height correlation function is fit to a Gaussian of the form

C n( ) = e
− n nc( )2

 to extract nc .  This Gaussian functional form is not based on any theoretical

model but appears to accurately describe the shape of the calculated peak height correlation

function.  The calculated nc T( ) from RMT data is shown in Fig. 5-2c.  As expected, the

correlation length nc  starts from a value close to zero (peak heights uncorrelated at low

temperatures) and then transitions to a linear dependence on temperature.

5.3 Measured Peak Height Correlation Length

Coulomb blockade peak height data was collected from Dots 1 and 5 for different temperatures.

A typical sequence of peaks at base temperature (~ 45 mK) and 400 mK is shown in Fig. 5-1.

The data in Fig. 5-1a shows a short peak height correlation length; peaks which are separated by

more than one peak spacing have nearly un-correlated peak height.  Same set of peaks at 400 mK

are shown in Fig. 5-1b; the correlation length is clearly much larger (~ 3 peaks).

The measured peak height sequences are used to calculate C n( )  and nc  for various

temperatures.  Figure 5-2 shows the measured C n( )  curves for Dot 5 and one gate voltage

configuration of Dot 1 for various temperatures.  For Dot 5, the calculated C n( )  curves show a

clear increase in nc  for increasing temperature (Fig. 5-2a).  The measured values of nc  for Dot 5

and 2 configurations of Dot 1 are plotted in Fig. 5-2c along with the calculated nc  from RMT (as

discussed above).  The configuration of Dot 1 with the largest ∆ , EC  (corresponding to the

smallest quantum dot) shows saturation of nc  (to ~ 2) at kT / ∆  ~ 0.5.  Dot 5 data (largest

quantum dot in the data set) does not show saturation of nc  until much larger kT / ∆ .  The

difference in nc T( ) behavior between the different dot sizes suggests that the spectrum and/or

level couplings of a small quantum dot are prone to scrambling with fewer number of additional

electrons than for a larger dot.  The nc T( ) from RMT seems to be the asymptotic behavior of the

peak height correlation length in the absence of spectral scrambling.



45

In order to examine the effect of peak height sequence length M  on the observed

temperature dependence of nc , the peak height correlation length was calculated from Dot 5 data

(with the longest sequences of CB peak heights) truncated to match the data length from Dot 1 in

the configuration producing the smallest quantum dot.  The temperature behavior of nc  for Dot 5

data post-truncation does not change compared to pre-truncation.  This verifies that the observed

saturation of nc  is indeed an effect due to scrambling within the quantum dot upon the addition of

electrons and not due to an experimental artifact in the calculation of nc  from the measured data.

All dots show enhancement of nc  at low temperatures compared to predictions from

RMT as shown in 5-2c.  Several possible explanations for this have been proposed[51-53].  We

note that the enhancement of peak height correlation can result from similar peak heights from

spin-paired levels.  Such pairs of correlated peaks may appear as adjacent or nonadjacent peaks

depending on interaction-induced spin splitting.  The inset in Fig. 5-2c shows one such pair of

adjacent peaks with similar peak heights from Dot 2.

5.4 Conclusions

Measurement of CB peak height correlation length for 3 devices compared to predictions from

RMT provides evidence of a changing spectrum and/or level couplings with the addition of

electrons.  Smaller dots are more prone to scrambling than larger quantum dots as evidenced by

smaller values of nc  at saturation.  The observed scrambling is evidence of e-e interactions as

added electrons change the level spectrum and/or level couplings within the quantum dot.

Enhanced peak height correlation is observed compared to RMT at low temperatures.  The

enhancement of nc  is noted to arise from similar peak heights from spin-paired levels.

D. Stewart assisted with device measurements.  The 2DEG was supplied by C. I. Duruoz

and J. S. Harris, Jr. from Stanford.
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Figure 5-1.  CB peak height sequence from Dot 5 for two different temperatures.  a) Peak height
sequence at T ~ 45 mK.  Note that the peak height correlation length is ~ 1.  b) Peak height
sequence at T = 400 mK.  Data shows enhanced peak height correlations compared to data in (a).
Insets:  Extracted peak height fluctuations data g used to calculate C n( ) .
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Figure 5-2.  CB peak height correlation data: C n( )  and nc .  a) Measured C n( )  from Dot 5 at 45,

100, 200, 300 and 400 mK.  Data shows increasing nc  with increasing temperature.  b) Measured

C n( )  from Dot 1 at 45, 100, 200, 300, 400 mK.  Data shows saturation of nc  at higher

temperature.  C) Measured nc  from 3 data sets and RMT calculations.  Saturation of nc  is seen at
higher temperatures for the smallest device (solid circles).  Enhanced nc  at lower temperatures is
observed in measured data compared to RMT.  Inset: Example of similar peak heights from
adjacent spin paired peaks from Dot 2.  Measured values of ∆  and EC  are provided in the figure
legend.
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Chapter 6

Conclusions

6.1 Summary

The focus of this thesis work has been the analysis of statistical data gathered via transport

measurements in the CB regime.  The measured peak height data shows universal features in the

distribution line-shape and distribution width as measured over different devices on different

2DEGs.  Moreover, the distribution line-shape and width agree qualitatively with an RMT based

model.  The discrepancy between the measured peak height statistics and RMT points to a

possible dephasing contribution which leads to the reduced distribution width when compared to

theory.  This reduction in the UCF variance has been observed in “open” quantum dots and used

to extract a dephasing time in that regime[7, 42].  Comparing peak height data between devices 1

and 5 in Fig. 3-5 to peak height correlation length nc  data (Fig. 5-2) from the same devices, one

can conclude that the peak height statistics are not sensitive to spectral scrambling.

The measurement of peak spacings statistics in the CB regime  provides clear evidence of

broken spin symmetry.  The measured distributions across many different devices do not exhibit

any signs of the bimodality expected from a spin-degenerate system.  Additionally, the measured

distribution line-shapes and width ratios from B = 0 to B ≠ 0 are in good qualitative agreement

with the predicted peak spacing distributions from CI + SRRMT.  The measured peak spacing

distribution widths are on the order of the single particle level spacing ∆; this measured value is

much smaller than 0.1 – 0.15 EC  measured by [44, 45].  The intrinsic device noise may be a

contributor to the discrepancy between the measurements presented in this thesis and earlier
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measurements.  The noise floor in the measurements presented here is well below the signal level

as seen in Fig. 4-4.  There is one discrepancy observed in the peak spacing measurement.  The

measured value of ∆  is larger by a factor of ~ 2 compared to the ∆  calculated from the device

area assuming spin-resolved single particle levels within the quantum dot.  This suggests that

perhaps the value of ∆  near the Fermi surface is nearly the spin-degenerate single particle level

spacing.  A clear theoretical model to account for this observation has yet to be formulated.

The peak height and peak spacing data shows good agreement with predictions from

RMT (which assumes a non-interacting single particle model of the quantum dot apart from a

fixed or, at most, a slowly varying EC ).  The measured peak height correlation length nc  shows

evidence of departure from the RMT model.  First, the measured peak height correlation length

versus temperature has different behavior for different sized devices.  This non-universality

seems to be arising from an interaction effect which is larger in smaller devices (and, hence,

induces increased spectral scrambling).  There is also an enhancement of the peak height

correlation at low-temperatures which is not captured within the RMT framework.  The data

shows evidence of spin-paired peaks which leads to the observed increase in nc  for smaller

devices.

The work presented in this thesis has been published in various articles.  References to

the published articles is presented here for completeness [43, 54-56].

6.2 Future Direction

The ability to extract the interaction energy scale in a Coulomb blockaded quantum dot would

prove to be extremely valuable to formulate a proper theory of the system which includes

interactions.  This may become possible via additional experiments which focus on the behavior

of nc  for different sized quantum dots.  There is also a lot of insight to be gained into dephasing

in a quantum system by relating the differences observed in the peak height distribution width

compared to RMT predictions.  There has been some work towards that end by Folk, et al. in

which the difference in average CB peak height between B = 0 and B ≠ 0 is used to infer

contributions from inelastic scattering or dephasing mechanisms in the quantum dot[57].  The

peak height distribution widths may be able to provide a second measurement to estimate these

mechanisms within the quantum dot.
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Appendix A

Device Fabrication

A.0 Acknowledgement

This section is copied with permission from S. Cronenwett’s thesis [58] and then edited to

describe my fabrication details.

A.1 Overview

The devices measured in this thesis were fabricated in the cleanroom at Ginzton Laboratories at

Stanford University.  The fabrication process was developed by myself and the following students

in the Marcus group:  Andy Huibers, Sandra Godijn, Duncan Stewart and Mike Switkes.

The 2DEG used to fabricate the devices was grown by one of two growers who supply

material to the Marcus group.  The Gossard group at UCSB is one of the 2DEG providers.  The

other provider is the Harris group at Stanford.  We have found that one particular 2DEG wafer

grown in the Harris group (wafer CEM2385A) consistently provided the best measurements

(lowest switching noise in the 2DEG).  I fabricated Dots 1, 2, 5 and 7 from this “quiet” 2DEG.

Andy Huibers fabricated Dots 3, 4 and 6 on 2DEG from Gossard’s group.  Beginning from an

MBE-grown wafer, the outline of the fabrication process is as follows:

1.  Cleave a small chip (~ 6 mm x 6 mm) from the wafer.
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2.  Etch mesas to provide electrical isolation between devices (photolithography).

3.  Pattern, deposit and anneal ohmic contacts (photolithography).

4.  Pattern and deposit gates which define the device on a 100 µm scale (ebeam

lithography).

5.  Pattern and deposit bondpads which connect to the small scale gates (optical

lithography).

6.  Glue chip into carrier and bond to devices of interest.

Figure A-1 shows a quantum dot device at several levels of magnification so that the photo and

ebeam lithography steps are all visible.  As the general principals of photo and ebeam lithography

are relatively common in the mesoscopic community, I will not give a broad overview of these

fabrication methods but instead describe the particular recipes that I have used.

A.2 Photolithography

Photolithography was done in the inner “Submicron Room” of the Ginzton cleanroom using a

Karl Suss MB-3 photolithography machine with chrome plated glass masks.  The general

principle involves a photosensitive plastic “resist” that is exposed to light in the desired pattern to

create a mask for either etching or metal liftoff.  Over the years, a number of different masks were

made for various device designs.  One of the older, but often used, designs can be seen in Fig. A-

2.  A single 4” mask is usually made with four quadrants to incorporate multiple patterns

necessary for a complete device.  From left to right, Fig. A-2 shows the designs for a single

device mesa, ohmics, and bondpad interconnects.

The photolithography recipe developed in our group has been optimized to be very

reliable and give a large undercut to facilitate liftoff.  Without doing an edge bead removal step,

the resolution of this process is ~ 3 µm.  Because we use ebeam lithography for all our small

features, the relatively poor resolution is not a problem.  The basic photolithography recipe I have

used is the following:

• Three-solvent clean for 5 min each in boroethane (or TCE or other equivalent), acetone,

methanol.  Use ultrasound if possible (not advised after the fragile ebeam layers have

been deposited).

• Hotplate bake, 120° C, 5 min.  Place chips on a glass slide on the hotplate.
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• Spin Shipley 1813 photoresist at 7000 rpm for 30 sec.  This gives a ~ 1 µm thick layer of

photoresist, with an edge bead.

• Hotplate bake, 90° C, 20 min.

• Chlorobenzene soak, 15 min.  This step hardens the top of the resist so it is less soluble in

the developer, leading to a large undercut for liftoff.

• Hotplate bake, 90° C, 5 min. (to remove leftover chlorobenzene solvents).

• Expose desired pattern for 24 sec (power = 16.4).  These times will depend on the lamp

power and should be checked with a junk chip for every machine and fab run.

• Develop in equal parts DI and Microposit concentrated developer for 50 sec.  Rinse in

fresh developer solution for an additional 25 sec (1 min 15 sec total).  It is always OK to

check how the develop is progressing by rinsing the sample in DI, looking under the

microscope (with a UV filter in place!!) and then continuing the develop if necessary.

• Oxygen plasma with 100% O2, at ~ 150 W for 0.09 minutes (in the Ginzton Phlegmatron,

50 % power, 0.09 min) to clean the surface.

• For metal evaporation and liftoff steps, we have always done an oxide removal acid dip.

We did a HF dip with 20:1 buffered oxide etch (BOE) for 15 seconds.

• For the bondpad interconnect layer, evaporate 200 Å Cr, then 2500 Å Au using processed

cooling water to cool the sample during and after the evaporation.  Liftoff in acetone,

using ultrasound only as a last resort (as the thinner ebeam metal could come off as well).

• The wet etch and ohmic recipes are described in the following sections.

It is strongly advised to process at least one, preferably two, practice (junk) chips along with any

real 2DEG sample.  In the steps above, the three-solvent clean and bake can be done

simultaneously on the real and junk chips.  Then spin the junk chips first, and, if they look good,

go ahead and spin the real chip.  If the junk chips don’t turn out for whatever reason, do not

proceed with the real 2DEG.  The chips may all be baked together, soaked in chlorobenzene and

baked again.  All exposures, including edge bead removal, should be done on the practice chips

first.  If the exposure and develop look good (good undercut for metal liftoff processes), then the

real chip can be processed in exactly the same manner.  Otherwise, cut your loses, rinse off the

photoresist in acetone and start again.  This is OK even on the ohmic step provided you have not

exposed the real 2DEG yet.  After exposing and developing the patterns, the chips (real and junk)

can be stored, away from solvent fumes and in the dark, for several days with no ill effects.  For
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metal liftoff steps, process the junk chips through the plasma etch, oxide acid etch, metal

evaporation, and liftoff before following with the real 2DEG.  If the first junk chip does not

liftoff, try the second.  If it looks risky and this is the final bondpads step, your time is better

spent redoing the whole process than ruining a set of nearly completed devices. If this is the

ohmic step, it’s a 50-50 decision.

A.3 Wet Etching

Etching of the mesas is done in a solution of dilute sulfuric acid.  The mixture is 1:8:240 of

hydrogen peroxide : sulfuric acid : DI water.  Always add the hydrogen peroxide to the acid in a

graduated cylinder to measure, then pour into the DI water.  Mix well. Because an etch step can

take several hours, I recommend leaving the etch mixture covered with a cover glass when not in

use to prevent non-uniform evaporation which will change the etch rate.  Every etch mixture

should be calibrated using a patterned junk chip made of good GaAs (not a 2DEG heterostructure,

but not unknown junk either).  I have always used an Alpha Step profilometer to measure the etch

profile.  We generally etch all of the AlGaAs layer to the depth of the 2DEG, though a shallower

etch is sufficient to isolate devices in most cases.

A.4 Ohmic Contacts

Ohmic contact is somewhat of a mystery; there have been many cases in my experience where,

even after following this process on junk and real pieces, I would end up with failed ohmics.  I

believe that a lot of it has to do with the surface preparation where the ohmic metal goes down

and also with the contamination of the ohmics material evaporation boats in the evaporator.  For

best results, replace the 3 boats with new boats and Nickel, Au and AuGe eutectic

Following the photolithography step for the ohmic contacts, metal is evaporated using

either a thermal or ebeam evaporator (or both).  I have used 50 Å Ni, 1200 Å AuGe eutectic, 250

Å Ni, and 1500 Å Au deposited in a single thermal evaporator step for the ohmic contact metal.

The sample is cooled with chilled water during the evaporation.  Liftoff in acetone (should be

relatively easy with a large undercut, but ultrasound can be used if needed).  After liftoff, the

ohmic metal must be annealed into the heterostructure to make contact to the 2DEG.  The

optimum annealing time and temperature will vary from one heterostructure to the next and

should be determined separately for each one.  Remember to process a little extra material if

using a new wafer so you can cleave a couple rows into small pieces to use for ohmic
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development.  In general, we have found that this Ni-Au-Ge ohmic recipe yields good electrical

contact (< 1 kΩ) when annealed at 410° C for 20 – 50 seconds.

Ohmic contacts on the real 2DEG chip should be tested in a dunker at 4.2 K after

annealing to ascertain that they are satisfactory at low temperature0 before proceeding with

further processing.  I would generally test one or two pairs of ohmics on devices near the edge of

the chip as well as one set of four ohmics on a single device (to do a 4-wire measurement of the

2DEG as well).  If the ohmics seem questionable, keep checking more until you can decide

whether the chip is useable or not.  Re-annealing ohmic contacts on a chip is a possible last resort.

A.5 Electron Beam Lithography

Electron beam (ebeam) lithography is used to pattern the fine metal structures that define the

gates of the quantum dots and point contacts as well as the larger gate material that connects out

to the features of the bondpad photo layer.  The lithography process is similar to that used for

photolithography: a plastic resist is spun onto the chips, the desired patterns exposed with an

electron beam microscope (ebeam), then developed.  At Stanford I used the converted Leica Leo

Stereoscan 440 electron microscope in the Ginzton cleanroom. Each machine requires different

design files and different operation, so I will not discuss details that relate to a particular ebeam

system.

The recipe I used consists of a double layer PMMA (polymethyl methacrylate) recipe

with a light-weight bottom layer and heavy-weight top layer. The light-weight bottom layer is

more soluble in the developer, so gives an undercut.  The lithography process is as follows:

• Three-solvent clean, 5 min. each in boroethane (or TCE or equivalent), acetone,

methanol. Use ultrasound unless thin metal gates have already been deposited.

• Hotplate bake, 2 min. at 180° C.

• Spin on 550 A of 495K PMMA.

• Hotplate bake, 20 min. at 180° C.

• Spin on 1100 A of 950K PMMA.

• Hotplate bake, 30 min. at 180° C.

• Expose with the ebeam system (at ~ 240 µC/cm2).

• Develop in a solution of 3:1, isopropanol : MIBK with 1.3% methyl ethyl ketone (MEK)

added for 35 sec.
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• The developed chip is now ready to be loaded into the evaporator for gate metal

deposition.  For standard Cr/Au gates, we typically use 25 Å Cr and 120 Å Au.  Liftoff in

acetone.  Use ultrasound as a last resort.

As with the photolithography process described above, I strongly advise the parallel

processing of at least one junk chip with every real 2DEG sample.  After the resist is spun and

baked, the junk chip is used to write an exposure matrix with the ebeam.  The exposure matrix

should be written at a 4 – 6 doses that span the range you would expect to yield good results

given the machine being used (center point at ~ 240 µC/cm2).  Sometimes an ebeam system gives

nearly the same results even after several months, while other times you may find exposures

change from week to week or worse, day to day.  The exposure matrix is also a good opportunity

to test all of your device designs to make sure they write as expected.  Keep at least one device

that you write at every exposure to pick the correct dose.  To select the proper exposure, develop

the junk chip, evaporate the gates, and view the chip in the SEM.  If none of the exposures look

good, or devices have not written as expected, repeat the exposure matrix on a second (or third or

fourth) junk chip if you have one.  If not, clean the PMMA off the real sample and start again,

processing more junk chips in parallel.  Once a good exposure dose is found, the real chip should

be written as soon as possible.

Most ebeam metal layers consist of very small features which define the dot or point

contact, as well as larger metal strips which extend the small gates out to the photolithography

bondpad layer. These two (or more) sets of gates are typically written at successively lower

magnification and, correspondingly, successively higher dosages. Usually, only the resolution and

precision of the smallest features are important, so larger gate sets can be overexposed to ensure

they turn out.

A.6 Packaging and Wire Bonding

We use PMMA to glue chips to our 28 pin non-magnetic ceramic chip carriers.  An advantage of

using PMMA as glue means that chips can be easily removed from the carriers by soaking in

acetone.  I have used an ultrasonic wedge bonder (an old West-Bond model 5416) with 25 µm Au

wire to connect the bond pads on the device to the chip carrier pads.  I often use a little heat, ~

70° C, on the sample chuck during wire-bonding.
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Figure A-1.  SEM images of a quantum dot at increasing magnification.  The upper left picture
shows the ohmics and bondpads of the device with wirebonds.  The other three picture show
predominantly ebeam defined gates. (Dot fabrication and images courtesy of M. Switkes).
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Figure A-2.  Mesa, ohmic and bondpad layers of a photolithography mask.  This mask, designed
by M. Switkes, has been used for several generations of dots and point contacts.  Dark areas
represent regions of the mask covered in Cr which is opaque to ultraviolet light.  The photoresist
gets exposed only in the white areas.  From left to right the three layers are the mesa, ohmics and
bondpads for a single device.  Note that only the four square ohmic pads fall on the mesa and will
make electrical contact to the 2DEG.

Figure A-3.  SEM image of two chips in a chip carrier. The circular rim is the final aperture of
the electron microscope. This chip was wire-bonded by me; one can develop an amazing ability
at anything with enough practice. (Image courtesy of A. Huibers).
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Appendix B

Device Noise and Testing

B.1 Background

Over the course of my thesis work, I spent a lot of time looking for “good” devices.  These were

devices in which the CB peak data (height and spacing) did not change over time (say on the

order of 24 to 36 hours).  We believe that the switching noise that we observe in most devices has

to do with an impurity site near the quantum dot that can change its charge state over time.  Andy

Huibers shows some data of typical switching events in a quantum dot in his thesis.  After doing a

lot of testing, we came up with a procedure to be followed during the cool down and testing

which we thought would help minimize the noise during measurement.  The biggest factor in

device noise is the 2DEG.  After fabricating over 200+ dots on many different 2DEGs and testing

around 10% of them, I am lead to believe that if the 2DEG itself is “quiet” then the chances of

finding a “quiet” dot on the chips fabricated from the 2DEG are very high.  Of all the 2DEGs

used during my work, the most quite devices were fabricated from wafer CEM2385A from the

Harris group at Stanford.

B.2 Reducing Switching Noise

Apart from the 2DEG used to fabricate the device, we found that the following items (in order)

would help reduce switching noise observed during measurements:
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1. Slow cool from room temperature to 4K.  Although we did not do exhaustive testing to

show the effectiveness of this process, we have seen good correlation between low

frequency of switching events and a slow cool to 4K (over ~ 24 hours).  The cooling rate

is controlled by introducing a very small amount of the heat exchange gas into the IVC

during the cool down step.

2. Positive gate bias during cooling.  This process was suggested to us by a visiting student:

David Sprinzak from Heiblum’s group at Weizmann Institute of Science in Israel.  The

procedure involves applying ~ +0.5 V to the gates used to form the quantum dot; after

cool down, a negative bias would be applied to the gates to form the quantum dot.  This

was not tested completely, but we always saw low switching noise after following this

procedure.

3. Fridge cold time.  We did observe a reduction in the low frequency switching noise (< 1

Hz) after the device had been cold for long periods of time (~ 3 – 4 weeks).  This

encouraged us to schedule experiments back-to-back so that a particular chip in the fridge

could be kept at base temperature for as long as possible.  For the same reason, we would

deplete the 2DEG and form the quantum dots to be tested later even if a particular device

was to be tested 1st.

Gate ramping exercise.  For the long strings of CB peak data I gathered, I found that ramping the

voltage on the gate over the range of interest many times (~ 50 – 100) before starting the data

acquisition would lead to fewer switching events.  I suspected that higher temperatures were

better during this procedure and would do the exercise at 800 mK.

B.3 Testing Details

Device measurement and hardware set-up has already been covered in theses from former group

members.  I refer the reader to theses by:  S. Cronenwett[58], A. Huibers[33], D. Stewart[21], and

M. Switkes[59] for additional information.
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Appendix C

AC + DC circuit Diagram

Figure C-1.  Circuit used to passively add a small ac lock-in bias signal to a large dc source-drain
bias.  Optimized for 13 Hz; at that frequency, the dc (ac) voltage divider has 1,000:1 (105:1) ratio.
(Figure courtesy of S. Cronenwett).
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