
Coherence and Spin

in GaAs Quantum Dots

A thesis presented

by

Dominik Max Zumbühl
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Abstract

This thesis describes a number of experiments performed in quantum dots as well as 2D

systems fabricated in GaAs/AlGaAs 2D electron gases. The focus of the studies is set on

spin, coherence and interaction effects of electrons in mesoscopic structures. Experiments

investigating the rich physics of spin-orbit coupling in confined structures in presence of

magnetic fields both perpendicular and parallel to the 2D plane, orbital effects of in-plane

fields on average, variance and correlations of conductance as well as few electron physics

focusing on the two electron system are presented.

In situ control of spin-orbit coupling in coherent transport using a clean GaAs/AlGaAs

2DEG is realized, leading to a gate-tunable crossover from weak localization to antilocaliza-

tion. The necessary theory of 2D magnetotransport in the presence of spin-orbit coupling

beyond the diffusive approximation is developed and used to analyze experimental data.

Spin-orbit coupling in ballistic GaAs quantum dots is investigated. Antilocalization that

is prominent in large dots is suppressed in small dots, as anticipated theoretically. Effects

of parallel fields on average and variance of conductance reflect novel spin-rotation sym-

metries, consistent with random matrix theory once orbital coupling of the parallel field is

included.

High sensitivity of mesoscopic conductance fluctuations to magnetic flux in large quantum

dots is used to investigate changes in the two-dimensional electron dispersion caused by

an in-plane magnetic field. In particular, changes in effective mass and the breaking of

momentum reversal symmetry in the electron dispersion are extracted quantitatively from

correlations of conductance fluctuations. New theory is presented, and good agreement
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between theory and experiment is found.

Few-electron quantum dots are investigated in the regime of strong tunneling to the leads.

Inelastic cotunneling is used to measure the two-electron singlet-triplet splitting above and

below a magnetic field driven singlet-triplet transition. Evidence for a non-equilibrium two-

electron singlet-triplet Kondo effect is presented. Cotunneling allows orbital correlations

and parameters characterizing entanglement of the two-electron singlet ground state to be

extracted from dc transport.
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1.1 Introduction

The theory of quantum mechanics is among the most significant developments in science

of the 20th century, with widely celebrated successes such as a deep understanding of

the stability of matter, discrete emission and absorption spectra of atoms as well as the

periodic table of elements. Quantum mechanics describes physics on a very small length

scale comparable to the size of atoms and molecules, which are typically measured in units

of Angstroms. With the recent advent of techniques that allow researchers to fabricate

structures on a sub-micron length scale, quantum effects such as discrete energy levels due

to size quantization, shell filling and various spin effects of electrons confined in so-called

quantum dots have been observed. The fundamental quantum mechanics for these types

of artificial atoms is the same as for natural atoms. However, there are several important

differences that make these systems an excellent laboratory to investigate various aspects of

quantum mechanics and give us access to exciting new regimes that are impossible to achieve

in natural atoms. These systems are therefore very suitable for fundamental scientific study,

but also offer great technological promise, as witnessed by the emerging fields of coherent

electronics, spintronics and quantum computation. Besides the obvious quantum of electric

charge which is readily accessible with electrical transport measurements, electrons also

carry spin, a property which is interesting for many reasons, not the least of which is that

it has no classical analog. Spin effects such as level pairing [186], bidirectional spin filtering

[60], spin splitting in Zeeman fields [89, 168], millisecond long spin life times [66, 51], shell

filling [193] and spin blockade [160, 167] have been reported in semiconductor quantum dots

in recent years.

While the manipulation and study of single atoms has become possible in condensed matter

experiments [47, 38, 140], the systems investigated in this thesis are mesoscopic objects, with

length scales between the macroscopic every-day world and the microscopic world of elemen-

tary particles and atoms. Mesoscopic length scales span a range from tens of nanometers

up to a few microns in size, typically encompassing hundreds to ten thousands of atoms of

the semiconductor material that the dots studied here are fabricated in. A very important

parameter characterizing mesoscopic systems is the coherence time τϕ or equivalently, the

coherence length Lϕ, the length an electron can travel without loss of quantum mechanical
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Figure 1.1: (left) Schematic diagram of a GaAs/AlGaAs heterostructure with Au Schottky gates deposited
on the surface and annealed NiAuGe ohmic contact. The purple region represents modulation doping of the
AlGaAs with an n-type dopant, typically Si. (right) Conduction band energy diagram showing the well at
the GaAs/AlGaAs interface which confines the 2DEG and its quantum energy levels. At low temperatures,
only the lowest energy level is populated. (Courtesy of M. Switkes, Ph. D. Thesis, Stanford University
(1999))

phase coherence. This length sets the scale for observation of coherent quantum mechanical

effects such as in interference experiments. In mesoscopic devices, the coherence length

Lϕ is larger than the size of the device investigated. This usually requires experiments

to be performed at cryogenic temperatures and materials able to sustain sufficiently long

coherence lengths.

1.2 GaAs 2D Electron Gases

The experiments reported in this thesis are based on a 2D electron gas (2DEG) formed at

the interface of GaAs and AlGaAs layers. The choice of this material has several advantages

which will be briefly summarized here, including mean free paths and coherence lengths ex-

ceeding tens of microns at base temperature of a dilution refrigerator. These heterostructure

materials have enjoyed tremendous progress since the early 1980’s and are the best real-

ization of a two dimensional metal available today, with extremely high electron mobilities

corresponding to mean free paths by far larger than typical device sizes, sometimes even
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Figure 1.2: Side and perspective view of gated quantum dot structure (Courtesy of A. Huibers, Ph. D.
Thesis, Stanford University (1999))

exceeding hundred microns. The electrons are typically confined along one direction in the

lowest quantum mechanical state in a triangular potential at the GaAs/AlGaAs interface,

see Figure 1.1, and move like free particles with a renormalized effective mass m∗ = 0.067me

(me is the free electron mass) in the plane of the remaining two dimensions, which is buried

typically around 100nm below the surface. The combination of GaAs and AlGaAs materi-

als which have practically identical lattice constants minimizing strain, super clean growth

conditions in molecular beam epitaxy chambers resulting in nearly defect free interfaces

and the modulation doping technique that removes the ionized Si-donor atoms away from

the interface minimizing scattering allows the fabrication of extremely high mobility elec-

tron gases. Transistors built on these GaAs 2DEG’s are today’s lowest noise and highest

frequency transistors and are extensively used in mobile telecommunication. If cooled to

low temperatures and placed in high magnetic fields, integer [198] and fractional quantum

Hall effects [188, 195, 189, 127] appear.

What makes semiconductor heterostructure materials attractive for mesoscopic experiments

is a relatively large Fermi wavelength typically around 50 nm (compared to Angstroms in

most metals) due to low carrier densities in the 2DEGs, long coherence times enabling the

observation of coherent quantum mechanical effects as well as the easy gateability of this

material, resulting in tunable devices. With today’s micro fabrication techniques, in par-

ticular electron beam lithography, features comparable to the Fermi wavelength can readily

be made. Fabrication of metallic gates on the surface of the heterostructure and application

of voltages on these gates can be used to control the carrier density in the 2DEG and upon
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application of a sufficiently negative voltage (typically around −0.3 V) the 2DEG under-

neath the gate can be depleted completely, creating a shadow of the gate in the 2DEG

which electrons are forbidden to travel through, the size of which can be controlled by

the applied voltage. This also enables one to confine the electrons in the remaining two

dimensions in a tunable way, see Figure 1.2, allowing for the creation of quantum dots, in

which the electrons are confined in all three directions [106, 118, 120]. The confinement

at the heterointerface is usually substantially stronger than the lateral confinement due to

the surface gates, with characteristic widths of the wave function of around 10 nm in the

ẑ -direction perpendicular to the interface, whereas laterally the electrons are confined on a

length scale of 30 nm or larger. Consequently, the electrons usually occupy only the lowest

quantum mechanical state in the ẑ -direction, making these quantum dots two dimensional.

While quantum dots fabricated in semiconductor materials are highly tunable by applying

voltages that can control the confinement potential of the dot as well as the number of elec-

trons on the dot, electrons in natural atoms are always bound by the spherically symmetric

Coulomb potential generated by the nuclear charge.

1.3 The Closed Dot Regime

Whereas attaching leads to an atom is relatively difficult, it is easy to connect quantum

dots to reservoirs allowing electrons to tunnel onto and out of the artificial atoms and

hence probe the regime of measurable coupling. Direct measurement of electrical transport

through a quantum dot is a very common method to investigate these systems, for a review

see [118], although there are other ways to study quantum dots, including capacitance spec-

troscopy [13, 12]. All experiments reported in this thesis are based on electrical transport

measurements. The coupling to the reservoirs can be achieved either with tunnel barriers—

resulting in so called closed dot experiments because this type of coupling is relatively weak,

effectively closing off the dot from the reservoirs—or with quasi 1D leads that carry one or

more modes of quantum conductance, resulting in so called open dot experiments. Both the

closed and open dot regimes are of great interest; I will focus first on closed dot experiments

and discuss the open dot regime later.

In closed dot experiments, current through the dot can only flow if a state in the quantum
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dot is available in the window of energy between the source and drain chemical potentials,

which can be controlled with a bias voltage VSD applied across the leads. Because of the

sub-micron device sizes, which results in a small capacitance C of the dot to the rest of the

system, adding an electron with charge e, in addition to the quantum confinement energy,

costs a classical Coulomb charging energy EC = e2/2C that can be much larger than the

temperature T of the electrons, resulting in Coulomb Blockade of electrons [69, 173, 84, 146,

16, 190, 13]. The coupling strength of the dot to the leads can in many cases be tuned during

the experiment with gate voltages. In the limit of weak coupling giving only lowest order

sequential tunneling [16], which is the most commonly investigated case, electrons tunnel

through the dot one by one. By supplying a finite energy via a source-drain voltage VSD,

not only ground states but also excited states can be observed [104, 62]. When coupling

to the leads is increased, higher order cotunneling processes can become significant and in

the limit of strong tunneling [42, 200], coherent superposition of all cotunneling processes

involving spin flips can result in the Kondo effect [74, 39], a correlated many body effect

which entangles electrons in the leads with the dot [73, 155].

1.4 Few Electron Quantum Dots

Though historically not the first quantum dots to be created, systems containing only a few

electrons have become available over the last several years, both in structures where the

tunneling onto and out of the dot is in the vertical direction [193, 118, 119] as well as in

dots which couple to adjacent reservoirs laterally [176, 204, 36, 50, 168], see Figure 1.3. The

number of electrons on the dot can be controlled one by one by changing a plunger gate

voltage that effectively controls the size of the lateral confinement, allowing these devices to

be completely emptied of electrons and enabling observation of one, two, three and larger

number of electron systems all in the same device. While the confinement potential in

quantum dots is tunable and often breaks circular symmetry [36, 168], fabrication of dots

with circularly symmetric and close to harmonic potentials has also been achieved [193, 121]

by etching a circular pillar into a 2DEG with a metallic gate covering part of the walls of

the cylinder that is used to control the number of electrons on the dot. In these structures,

electrons are confined in a circular 2D disc of variable radius where angular momentum is
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Figure 1.3: (left) Vertical few electron quantum dot displaying shell filling. (Courtesy of M. Ciorga,
Reference [36]) (right) Lateral few electron dot where the confinement potential breaks rotation symmetry.
(Courtesy of S. Tarucha, Reference [193])

a good quantum number, giving rise to a 2D shell structure in the addition energies which

are filled according to Hund’s rule [193, 121], in analogy with the 3D shell structure of

atoms. Due to the 2D nature of these systems, the magic numbers of elements that have

particularly large addition energies (“noble elements”) are different from their 3D atomic

counterparts.

The fact that these artificial atoms are substantially larger than their natural counterparts

not only makes their fabrication possible, but also opens up magnetic field regimes that

are not accessible in atoms. Due to the relatively large cross sectional area of these dots,

application of magnetic fields B⊥ perpendicular to the 2DEG on the order of a few Teslas,

easily produced in laboratories with superconducting solenoid magnets, allows for observa-

tion of orbital effects of the applied magnetic field causing transitions in the level structure

of the dot, for example a singlet to triplet ground state transition in quantum dot “helium”

[191, 13, 182, 121, 194, 126]. In real atoms, this singlet-triplet transition is predicted to

occur in a huge magnetic field on the order of 105 T, which is impossible to generate in a

laboratory.
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1.5 Larger Dots containing Many Electrons

By simply increasing the lithographic area enclosed by the gates when fabricating lateral

dots, it is easy to make devices that contain essentially arbitrarily large numbers of elec-

trons [141, 33], typically reaching up to hundreds or thousands in number but not usually

exceeding ten thousands, as the loss of coherence coming with very large device sizes pro-

hibits observation of the quantum mechanical effects of interest. These dots, though large

compared to few electron dots discussed earlier, are still sufficiently small to be in the bal-

listic regime where electrons scatter only off the walls of the dot and impurity scattering

is essentially absent. As most shapes of confinement potentials are classically chaotic with

only a few highly symmetric exceptions such as the circle, these large quantum dots allow

us to investigate the quantum mechanics of classically chaotic systems in the semiclassical

limit of large quantum numbers.

The theory of quantum mechanics as developed by the pioneers of the early 20th century

gives a prescription how to quantize systems with classically stable periodic orbits, such

as the hydrogen atom, but fails to quantize classically chaotic systems. Though this was

already pointed out by Einstein in 1917 [48], progress has been made only in 1970: chaotic

systems can be quantized semiclassically via the Gutzwiller trace formula [83] which gives

the energy eigenvalues in terms of unstable periodic orbits embedded in a sea of non-

periodic, chaotic orbits. These unstable periodic orbits turned out to be important not

only for the eigenvalues but also for the eigenfunctions of the system [93], which can have

high probability amplitude along certain periodic orbits (“scarred states”). The tunability

of the confinement potential with gate voltages as well as the quantum phase effects of

orbital magnetic fields—readily observable even in small, mT-scale magnetic fields in such

large devices—make large quantum dots suitable systems for investigating open questions

of the correspondence principle and quantum chaos.

1.6 The Open Dot Regime

Often these larger devices are studied in the open dot regime where the quantum point

contacts coupling the dot to the reservoirs are tuned to support one or a few fully trans-
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Figure 1.4: Conductance fluctuations through a quantum dot (left) as a function of perpendicular magnetic
field (top) and gate voltage (right) . (Courtesy of A. Huibers, Ph. D. Thesis, Stanford University (1999))

mitting quantum modes of conductance each [141, 33, 97], since Coulomb Blockade may

become harder to observe because the charging energy decreases with increasing dot area

and can become smaller than the available temperature of the electrons. The level broaden-

ing Γ = (NL + NR)∆/(2π) of a dot of area A due to escape out through the point contacts

with NL and NR modes in the left and right leads is significant in this regime, becoming

larger than the spin degenerate average level spacing ∆ = 2π�
2/(m∗A) even for only one

mode in each point contact. Typical escape times τesc = �/Γ are significantly larger than

the crossing time τcross =
√

A/vF an electron takes to traverse the device with the Fermi

velocity vF , corresponding to multiple bounces of electron trajectories in a semiclassical

picture.

1.7 Mesoscopic Conductance Fluctuations

Transport through the dot occurs via a number of levels proportional to max(3.5kT, Γ)

which can fluctuate randomly as a function of controllable parameters such as device shape,

magnetic field and Fermi energy, resulting in a fluctuating conductance through the dot.

These mesoscopic fluctuations of conductance can also be understood in terms of interference

of multiple transport paths through the device, see Figure 1.4, in analogy to universal
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conductance fluctuations in disordered mesoscopic samples [61, 125, 196, 6, 130]. Due to

the large number of electrons in these devices, a description in terms of individual states

is not usually convenient and one instead uses a statistical description of the system in

terms of, for example, average, variance, correlations or distributions of conductance. This

requires gathering of statistically independent samples, which in some earlier experiments

had to be done in a cumbersome way, for example by thermal cycling the sample, but

is easily accomplished in semiconductor quantum dot samples by simply changing gate

voltages.

1.8 Weak Localization

Besides mesoscopic conductance fluctuation, weak localization [1, 7, 129] is another hallmark

feature of mesoscopic systems, first discovered in disordered metallic samples [43, 19], and

widely used to measure phase coherence in various systems [35]. Weak localization is a

quantum mechanical interference effect of trajectories scattering back to their point of origin,

see Figure 1.5. In the absence of a magnetic field breaking time reversal symmetry and

assuming coherence is not lost, the quantum phase of a semiclassical electron accumulated

along a closed trajectory returning to its origin is exactly the same as the phase of the

time reversed trajectory, creating constructive interference and an increased probability

for the electron to remain at the origin, hence increasing the backscattering amplitude

and decreasing conductance. To obtain the conductance, all possible trajectories need to

be summed up. If time reversal symmetry is broken with a small orbital magnetic field,

the phases of the two trajectories can differ due to a Aharonov-Bohm phase [2] and the

constructive interference can be suppressed, resulting in a characteristic dip at zero field

in the magneto conductance. If coherence is lost on a length scale Lϕ, then effectively

all trajectories of length L greater than Lϕ are cut off from the sum and reduction of

conductance at zero field is less pronounced than in the fully coherent situation. The 0D

equivalent of weak localization was observed in closed quantum dots [59] as well as open

quantum dots [98, 96], and was used to study the coherence time τϕ, finding that τϕ is

independent of the dot size.
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Figure 1.5: (a) A pair of paths contributing to weak localization in a 4 µm2 quantum dot. (b) Average
conductance as a function of magnetic field obtained from sampling different dot shapes using a gate at
T = 400 mK and T = 1 K. (c) Average conductance and individual conductance traces as a function of
magnetic field. (Courtesy of A. Huibers, Ph.D. Thesis, Stanford University (1999))

1.9 Universal Distributions of Level Spacings

Obviously, the spectral properties of these dots are very important and determine transport

through the dot. Quite remarkably, the distribution of eigenenergies displays universality,

depending only on whether the dot is classically chaotic or integrable and depending on

additional symmetries of the system, such as time reversal symmetry and spin rotation

symmetry, but is independent of other details of the system, such as the particular device

shape, which of course is what determines the detailed dynamics [20]. The quantum level

spacing probability distribution of an ergodic, classically chaotic system turns out to be

given by Wigner-Dyson statistics, whereas a classically regular system has a Poissonian

distribution of quantum level spacings. Interestingly, the imaginary parts of the zeros of

the Riemann Zeta function follow exactly the same Wigner-Dyson statistics as the quantum
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levels of a classically chaotic system when time reversal symmetry is broken, giving a seem-

ingly deep but curious connection between the distribution of prime numbers and quantum

chaos [21]. Maybe more importantly, the eigenvalue distributions of complex Hermitian

matrices also obey the same Wigner-Dyson statistics, allowing a description of chaotic, er-

godic quantum dots in terms of theories of random matrices, which were first developed by

Wigner, Dyson, Metha and others starting in the 1950s to describe the complex many-body

physics of compound nuclei.

1.10 Random Matrix Theory

Random matrix theories ignore the particular details determining the microscopic Hamil-

tonian and retain only the fundamental symmetries of the system which are used to constrain

the random matrices H based upon which calculations are done, assuming the system is

ergodic. For a thorough review see [17, 5]. A characterization of systems can be done

using a symmetry parameter β that counts the degrees of freedom of the elements of H. β

can take the values β = 1 for systems with time reversal symmetry resulting in the real,

symmetric matrices H of the Gaussian orthogonal ensemble (GOE), β = 2 for systems

with broken time reversal symmetry giving the matrices of the Gaussian unitary ensemble

(GUE) and β = 4 for systems with time reversal symmetry intact but broken spin rotation

symmetry, giving the matrices of the Gaussian symplectic ensemble (GSE), whose matrix

elements are the four dimensional quaternions which can be parameterized in terms of pauli

spin matrices. The matrix elements in all of these ensembles are taken to have an indepen-

dent Gaussian distribution. Coherent transport through quantum dots is very successfully

described by random matrix theories, see Figure 1.6.

1.11 Scattering Matrix Formalism

As the dots are connected to the leads via a variable number of open channels, a description

in terms of an isolated Hamiltonian is no longer appropriate. Rather, a formalism based on

the scattering matrix S of the dot is often used, where S describes the reflection and trans-

mission probabilities of the dot coupling to the various channels. The conductance through
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Figure 1.6: Measured conductance distributions for B = 0 (open circles) and 40 mT (closed circles) for a
0.5 µm2 dot at four temperatures. Curves show theoretical β = 1 (dotted) and β = 2 (dashed) distributions
for T = 0 and for measurement temperatures (solid). (Courtesy of A. Huibers, Reference [97])

the dot can then be written with the widely used Landauer formula as g = (2e2/h) Tr tt†,

where the transmission matrix t relates an incoming wave from one lead to an outgoing wave

in the other lead. The scattering matrix can be related to the isolated Hamiltonian via a

simple matrix equation involving coupling constants Wµ,a that characterize the coupling of

the scattering states |a〉 at the Fermi energy in the leads with the eigenstates |µ〉 of the dot

[25]. There are various approaches to calculate statistical properties of conductance through

the dot, including Monte-Carlo simulations and diagrammatic Green’s function methods to

average over the Hamiltonian. Instead of considering random Hamiltonians, a random ma-

trix theory can be constructed based on random unitary scattering matrices, which can in

principle be done for any number of open channels in the leads, though often calculations

become substantially easier in the limit of a large number of modes in the point contacts

N → ∞. It is common to include the effects of decoherence into random matrix theories

via a third voltage probe [29, 25] that decoheres electrons but draws no current, charac-

terized with a non-integer number of decoherence modes γϕ = h/(τϕ∆). Effects of finite

temperature can also be included via thermal smearing the zero temperature expressions.
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1.12 Spin-Orbit Coupling

1.12.1 Introduction and Basics

Another interesting property of GaAs 2D electron gases is spin-orbit coupling. Spin-orbit

coupling is a relativistic effect that can be derived from first principles starting with the

covariant Dirac equation of a spin 1/2 particle and shows up as one of the lowest order rela-

tivistic corrections to the non-relativistic pauli theory, leading to the fine-structure splitting

in atomic spectra [99]. In atoms, it is due to the nuclear electric field and becomes strong

for large nuclear charges. On a more intuitive level, it can be understood as a coupling of

the electron spin to a magnetic field arising from a Lorentz-transformed electric field. As

is known from the theory of special relativity, an electron moving with velocity −→v through

an electric field
−→
E also feels a magnetic field

−→
Bso = −(−→v /c ∧ −→

E )/
√

1 − v2/c2 in its rest

frame [103] which is orthogonal to both the direction of motion as well as the electric field,

where c is the speed of light. This spin-orbit magnetic field couples to the electron spin via
−→σ ·−→Bso and leads to a Larmor spin precession. To calculate the coupling constant correctly,

the Thomas precession, a further relativistic effect leading to an opposite precession of half

the size, needs to be taken into account as well. However, direct expansion of the Dirac

equation in the non-relativistic limit to first order in c−2 directly yields the correct coupling

strength

Hso = −−→σ · (−→E ∧ −→p )e�/(4m2c2). (1.1)

Note that spin-orbit coupling, though involving effective spin-orbit magnetic fields, does

not break time reversal symmetry and therefore the Kramers degeneracy holds.

1.12.2 Rashba Term

The conduction band electrons involved in transport in GaAs 2DEG’s are moving with the

Fermi velocity of typically a few 100, 000 m/s in electric fields that can be present either

due to the heterointerface resulting in the Rashba term [31] or due to absence of inversion

symmetry in the Zinc-blende structure of GaAs, leading to the Dresselhaus term [44]. The

Rashba term originates from the electric field perpendicular to the 2DEG that confines the

the electrons at the heterointerface and is therefore a pure 2D term which is absent in bulk
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GaAs. The Rashba spin-orbit magnetic fields therefore always lie in the plane of the 2DEG.

It has the form

HR = α2(σxky − σykx), (1.2)

i.e. linear in momentum or wave vector kx,y, with a coupling constant α2. The Rashba term

causes the spin to precess around the x̂ -axis if an electron is moving along the ŷ-direction

and vice versa, with the axis of rotation perpendicular to the velocity and in the plane of

the 2DEG for motion in an arbitrary direction in the 2DEG. The Rashba term by itself

is isotropic, i.e. the precession frequency is independent of the direction of motion of the

electron, but the axis of rotation depends on the direction of motion. Though seemingly

intuitive, it is wrong to think that the Rashba term is proportional to the average electric

field confining the electrons. Rather, a full bandstructure calculation needs to be performed

to capture the Rashba effect quantitatively. In nearly symmetric quantum wells, the Rashba

term has been shown to be tunable with externally applied gate voltages that control the

asymmetry of the well [115, 156]. However, in heterostructures which have a triangular

confinement potential, the Rashba coefficient α2 is roughly independent of gate voltage

[91], but HR depends on carrier density via the wave vector |−→kF | =
√

2π n.

1.12.3 Dresselhaus Terms

The Dresselhaus terms appear in semiconductor crystals lacking inversion symmetry giving

polar bonds which cause electric fields between the atoms leading to spin-orbit coupling.

The crystal structure of GaAs is face centered cubic with a 2 atomic basis, with one Ga

and one As atom each in the unit cell, yielding the zinc blende structure of two simple

cubic lattices offset by a quarter of the body diagonal. Inversion symmetry about the point

midway between two nearest neighbor atoms is broken because one of the atoms is Ga and

the other one is As with a polar bond between them, unlike in Si, which has the same crystal

structure but all filled with Si atoms conserving inversion symmetry. The bulk 3D spin-orbit

Hamiltonian for conduction electrons near the bottom of the band can be derived in a band

structure calculation treating the spin-orbit Hamiltonian Hso = −−→σ · (−→∇V ∧−→p )e�/(4m2c2)

as a perturbation, giving [44]

H3D
D = γ[σxkx(k2

y − k2
z)] + cyclic, (1.3)
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where γ is a material parameter characterizing the polarity of the Ga-As bond. Note that

H3D
D = 0 if the motion is purely along one of the axes x̂,ŷ,̂z and the dependence on k is

cubic in 3D. However, in a 2DEG grown along the [001] direction, the wave vector in the

ẑ -direction is quantized. Using 〈kz〉 = 0 but keeping terms 〈k2
z〉 	= 0, the 2D form follows,

with a term linear in k given by

H
(1)
D = α1(−σxkx + σyky), (1.4)

where α1 = γ〈k2
z〉 depends on the width of the wave function in the ẑ -direction, and a term

cubic in k reading

H
(3)
D = γ(σxkxk2

y − σykyk
2
x). (1.5)

Because the width of the wave function is typically only weakly dependent on the carrier

density, the linear Dresselhaus coefficient α1 is also roughly independent of density, similar

to the Rashba coefficient, but all three spin-orbit terms can be tuned by changing the fermi

velocity, for example with a gate changing the carrier density in the 2DEG. Due to the

relatively stronger k-dependence of the cubic Dresselhaus term compared with the linear

terms, the cubic term is relatively weak at low densities and can become somewhat stronger

in magnitude than the linear terms at densities, though all three terms turn out to be of

the same order of magnitude in typical GaAs heterostructure materials.

1.12.4 Weak Antilocalization

The signature of spin-orbit coupling in quantum transport is weak antilocalization, a max-

imum of conductance at zero magnetic field [94, 8]. It is the analog of weak localization in

the regime where the spin of the electron traveling along a closed trajectory interfering with

its time-reversed path is rotated substantially compared to the initial spin state. Because

the rotation group of a spin 1/2 particle is SU(2), which has the characteristic property that

a full 2π rotation around any axis gives minus the unrotated spinor, the constructive inter-

ference which gives rise to the conductance minimum of weak localization of the spin-less

particle becomes destructive interference if the relative rotation of the electron spin having

completed a closed trajectory and its time-reversed echo is 2π. Note that because spin-orbit

coupling conserves time reversal symmetry, the spin rotation R ∈ SU(2) undergone by the
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electron completing a closed trajectory forward in time is exactly the inverse of the rotation

of the electron spin traveling along the time reversed trajectory. Starting with an initial

spin |s〉, the two final spin states corresponding to the two directions in which a closed

trajectory can be traversed are |s′〉 = R|s〉 and |s′′〉 = R−1|s〉 = R†|s〉, due to the property

R†R = 1 of all R ∈ SU(2). The relevant interference term therefore contains the projection

〈s′|s′′〉 = 〈s|R2|s〉. In the limit of strong spin-orbit coupling, the rotated spins |s′〉 are as

likely to point in a specific direction as in any other direction after completion of a closed

trajectory, giving an isotropic distribution of spinors on the pauli sphere over which 〈s|R2|s〉
needs to be averaged when summing up all possible trajectories. It is straightforward to

perform this isotropic spin average, for example using an Euler angle parametrization of R

[58], giving exactly 〈s|R2|s〉 = −1/2 [18], which is negative and half the amplitude of the

spin-less case. This results in a conductance maximum at zero field and in the opposite

sign of magneto conductance compared to weak localization. In the regime of intermediate

strength spin-orbit coupling where trajectories resulting in significant spin rotations need to

be rather long but are still shorter than the coherence length, a combination of weak local-

ization at large magnetic fields where long trajectories are cut off and weak antilocalization

at small magnetic fields also allowing longer trajectories is possible.

1.12.5 Elliot and Dyakonov-Perel Mechanisms

Weak antilocalization was first discovered in disordered metallic samples, for example in

the elegant experiments of Bergmann [19]. In metals, the spin-orbit coupling mechanism

is quite different from the semiconductor picture described above. Rotations occur during

elastic scattering event with the heavy nucleus of the host atoms and the spins are invariant

during ballistic motion. This situation is commonly referred to as the Elliot mechanism [49].

In semiconductors, on the other hand, the elastic scattering is due to remote donors and

leaves the spin invariant, with the spin action taking place during ballistic propagation. This

is referred to as the Dyakonov-Perel mechanism [46], though with this name it is usually

additionally assumed that the electron motion is diffusive with only small spin rotations

between elastic scattering events causing a spin random walk. This last assumption is not

necessarily fulfilled in some of the higher mobility and high density 2DEG’s investigated in

this thesis, which has required us to search for a new theory applicable beyond the diffusive
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approximation to interpret the measurements. In metals the spin-orbit coupling strength

depends strongly on the nuclear charge, resulting in weak spin-orbit scattering in the light

metals such as magnesium and in strong spin-orbit scattering in metals such as gold [19]. It

is mentioned that spin-orbit scattering, even though it creates an effective randomization of

the electron spin, is a coherent effect, markedly different from magnetic scattering or other

spin flip scattering causing loss of coherence that results in a suppression of weak-localization

but can never lead to antilocalization. The experimental observation of antilocalization in a

solid state system is an elegant demonstration via a quantum interference experiment that

spin 1/2 particles must be rotated by 4π to transfer the spin wave function onto itself. This

important consequence of the quantum mechanics of spin 1/2 particles was previously only

observable in rather sophisticated neutron interference experiments.

1.13 Preview of Chapters and Outlook

1.13.1 Chapter 2: Antilocalization Experiments in 2D

This rest of this thesis is organized by publications. Chapter 2 discusses 2D experiments

investigating spin-orbit coupling in Hall bars, where a top-gate tuned transition from weak

localization at low carrier concentrations to antilocalization at high carrier concentrations

was observed. Though antilocalization had been observed previously in high density GaAs

2DEG’s [45] establishing the Dyakonov-Perel mechanism of spin-orbit coupling as well as in

other 2DEG materials, notably InGaAs [113], the samples investigated here have compara-

tively high mobility. This makes the diffusive approximation employed in existing theories

not applicable for most of the data taken, and a new theory had to be developed that al-

lowed for significant spin rotations between elastic scattering events and taking into account

in a coherent way the various spin-orbit terms. Based on this theory, the Rashba as well as

the linear and cubic Dresselhaus coefficients could be determined from the experiment by

fitting to the density dependence of the spin-orbit fields H∗
eff and H∗

so characterizing the

spin-orbit strength at a given density, allowing the angular dependence of the spin-rotation

frequencies to be calculated. It was found that the Rashba and both Dresselhaus terms

are of comparable magnitude, though the cubic Dresselhaus term depends more strongly

on carrier density, and the coefficients extracted are consistent with both band structure
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calculations as well as previous experiments.

1.13.2 Chapters 3 and 4: Spin-Orbit Experiments in Quantum Dots

Chapter 3 and 4 present an experimental investigation of spin-orbit coupling in quantum

dots. These investigations are motivated by experiments of Folk et al. [59] and theory

describing these experiments by Halperin et al. [87] finding evidence of spin-orbit coupling

in the variance of open quantum dots in in-plane fields. Antilocalization in large dots

made in high carrier density material was found, while a suppression of spin-orbit effects in

smaller devices made on the same high density material was observed. Also, a suppression

of spin-orbit effects in large quantum dots made on a more conventional, lower density

2DEG was also seen. The measurements presented include both average conductance as

well as variance of conductance, and the effects of temperature as well as magnetic fields

B⊥ perpendicular and B‖ in the plane of the 2DEG were investigated. B‖ suppresses

antilocalization and weak-localization is recovered at moderate in-plane fields B‖ < 1 T. The

spin-orbit coupling strength is seen to be independent of temperature. The phase coherence

time τϕ depends strongly on temperature, in agreement with previous experiments. In a dot

with a center gate covering a small area inside the dot, spin-orbit coupling could be tuned

from more pronounced antilocalization than the ungated device to weak localization. The

effects of spin-orbit coupling on the variance of conductance are also significant and can be

characterized in terms of novel spin rotation symmetries in the system. When spin-rotation

symmetry is broken due to spin-orbit coupling, such as in a dot showing antilocalization, the

variance in presence of a small, time-reversal symmetry breaking perpendicular field depends

only weakly on the in-plane magnetic field, whereas in devices showing weak localization

where spin-rotation symmetry is intact, the variance in an in-plane field is reduced by a

larger factor, consistent with the earlier experiments [59]. The measurements reported here

are all in quite good agreement with a new extension of random matrix theory by Aleiner

and Fal’ko [4] and Cremers, Brouwer and Fal’ko [37] that includes the effects of spin-orbit

coupling and parallel magnetic fields.
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Spin-Orbit Hamiltonian and Spin-Orbit Length

This random matrix theory includes the spin-orbit terms linear in momentum and neglects

the cubic Dresselhaus term. Effects of the cubic term are subject of ongoing investigations,

but are currently thought to not qualitatively change the physics, although there may

be significant quantitative effects due to a possibly weaker suppression of the cubic term

compared to the linear terms in small dots. Keeping only the linear terms, the spin-orbit

Hamiltonian can then be rewritten as [4]

Hso =
1

2m∗ [(p1 − �σ2

2λ1
)2 + (p2 +

�σ1

2λ2
)2] (1.6)

using a coordinate transformation into a system with axes along the crystallographic di-

rections −→e1 =[110] and −→e2 =[11̄0], where the spin-orbit lengths λ1,2 = �
2/(2m∗(α2 ± α1))

are defined as the distance an electron has to travel ballistically along the 1,2 direction to

acquire a rotation of its spin by one radian. Note that motion along the 1-direction results

in precession of the spin around the 2-axis. An interesting but unusual regime is obtained

when Dresselhaus and Rashba coefficients are equal, resulting in one of the λ’s being in-

finite, corresponding to no spin-orbit effects along that direction due to a cancelation of

Dresselhaus and Rashba terms. It is convenient to introduce the average spin-orbit length

λso =
√|λ1λ2| and the spin-orbit anisotropy νso =

√|λ1/λ2|. The suppression of antilo-

calization due to confinement in dots of size L << λso is due to translational invariance

combined with the fact that infinitesimal rotations commute.

Suppression of Spin-Orbit Coupling in Small Dots

To understand this in some more detail, consider a closed trajectory of an electron in the

shape of a rectangle with elastic scattering at the corners (A,B,C,D) due to the confinement

potential of the dot, see Figure 1.7. Magnetic fields weak enough to not bend electron

trajectories significantly are assumed. Due to time reversal symmetry, the spin-rotation

RBA acquired by going from A to B is the inverse of going from B to A, RAB = R−1
BA.

If translational symmetry is present as well, RBA is also the inverse of going from C to

D, RDC = R−1
BA. An electron going once around the rectangle starting in a spin state |s〉

ends up in a state |s′〉 = RADRDCRCBRBA|s〉 = R−1
CBR−1

BARCBRBA|s〉. Note that the first
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Figure 1.7: Illustration of a rectangular trajectory.

two rotations RCBRBA are not undone in reverse order R−1
BAR−1

CB, in which case |s〉 = |s′〉
would always result. Due to the non-Abelian nature of the SU(2) spin rotations, the order

in which rotations are applied matters. This results in appreciable spin-rotations |s′〉 	= |s〉
and antilocalization in the case where the device size is comparable with the spin-orbit

length giving substantial spin rotations upon traversing the dot. However, as is known

from elementary mechanics [75], infinitesimal rotations commute to lowest order, and in the

limit L << λso, the rotations a spin feels when traversing the dot are infinitesimal rotations

giving R−1
CBR−1

BA ∼ R−1
BAR−1

CB resulting in |s′〉 = |s〉 and a suppression of antilocalization.

Interestingly, if α1 = α2, half of the rotation matrices are the identity matrix, say RCB = 1,

resulting also in |s′〉 = |s〉. The particular geometry of a rectangular trajectory can easily

be extended to all closed, returning paths. The discussion of the suppression of spin-orbit

effects applies to the linear as well as cubic terms, as the rotations used above are generic.

However, the linear terms are strongly suppressed scaling in size with a large power as

(L/λso)4, whereas the cubic term might scale with a weaker power. Therefore, the cubic

term might possibly become stronger than the linear terms in small dots.

Conclusions

The good agreement between theory and experiment represents quite a stringent test on

quantum mechanics, the special theory of relativity from which spin-orbit coupling arises as

well as the statistical description employed by random matrix theory. Further, a spin-filter

based on a quantum dot in the regime of strong spin-orbit coupling can be proposed, working

analogous to the quantum interference based bipolar quantum dot spin-filter recently shown
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experimentally by Folk et al. [60], but replacing the strong Zeeman field that creates the

spin splitting with the spin-orbit coupling in the dot where time reversal symmetry is broken

with a small mT-scale perpendicular field. The challenge is to build a device small enough

to have only one or a couple of levels in the window of transport of width 3.5kT while still

maintaining significant spin-orbit coupling. This may potentially be achieved in GaAs by

using a proposal by Brouwer et al. [26], where spatially inhomogeneous spin-orbit coupling

can undo the suppression of spin-orbit coupling in small devices, essentially by breaking the

translational symmetry mentioned in the above discussion. Alternatively, materials with

stronger spin-orbit coupling could be of interest, such as InAs or hole systems, where the

spin-orbit coupling is very strong, with a spin-orbit length of the order of 100 nm. However,

one of the properties that makes GaAs electrons so attractive is that by using devices of

different sizes, spin-orbit coupling can be controlled very effectively, going from a regime of

significant rotations in large devices to very weak spin-orbit effects in small devices. The

suppression of the energy scales describing spin-orbit effects is quite strongly dependent on

the dot size and for the linear spin-orbit terms scales as (L/λso)4 [4], allowing for very long

spin life times of up to a ms in few electron dots, as recently reported [66, 52].

1.13.3 Chapters 3-5: Orbital Effects of an In-Plane Magnetic Field

Even though the GaAs 2DEG’s used in the experiments reported are the best realization of

a two-dimensional metal available, there are still effects representing a deviation from true

2D behavior due to the finite width of the wave function that can become important when

modest in-plane fields B‖ of about 1 T are applied, even in the absence of occupation of

higher sub-bands and in the absence of spin-orbit coupling effects. This was first predicted

by Fal’ko and Jungwirth [56] in 2D quantum dots and Meyer and Alt’shuler [148, 149] in

bulk 2D. The naive view of transport in a planar, 2D metal suggesting that in-plane fields B‖

couple only to the spin degree of freedom, allowing applied magnetic fields to be separated in

spin and orbital parts, has to be replaced with a more rich picture of quantum transport in

2D systems, where in-plane fields can have significant orbital coupling, break time reversal

symmetry and generate mesoscopic conductance fluctuations. In chapters 3 and 4, these

effects are evident as a suppression of weak-localization corrections to conductance on a

one-Tesla B‖ field scale, due to breaking of time reversal symmetry by B‖. Analogously,
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on the same B‖ scale, the variance at B⊥ = 0, which is also sensitive to time reversal

symmetry, is reduced to the variance at B⊥ 	= 0 in an in-plane field B‖. By assuming

that the combined effects of spin-orbit coupling and orbital effects of the in plane field can

be written as a product of the random-matrix theory and a correction factor due to the

Fal’ko-Jungwirth theory [56], good agreement with theory is found. The orbital effects of B‖

breaking time reversal symmetry are due to a trivial term due to surface/interface roughness

effectively converting the applied B‖ into a B⊥ fluctuating in space and an additional term

due to the inversion-asymmetry of a triangular heterostructure, which would be absent

in a symmetric well. The later term has a strong B6 term and can be estimated from

self-consistent simulations, which gives reasonable agreement with the experiment.

In Chapter 5, orbital effects of B‖ on the electron dispersion relation going beyond break-

ing of time reversal symmetry are investigated using mesoscopic conductance fluctuations

and their correlations, finding effects of an anisotropic effective mass term. Symmetries

of conductance in B⊥ and B‖ are investigated, and a B‖ correlation field that depends

strongly on B‖ is observed, which is attributed to the anisotropic mass term and the term

due to absence of inversion symmetry in a triangular heterostructure. The coefficients

extracted from the full correlations of conductance fluctuations at a field B‖1 with conduc-

tance fluctuations at a field B‖2 are in good agreement with the previous weak-localization

measurements. The measurements of conductance correlations requires a dot stable over

the period of measurements up to several hours staying free from switching noise of charged

impurities, which, when present, can artificially destroy the conductance correlations. A

way to quantize switching noise is to correlate g(B⊥, B1 ‖) with g(−B⊥,−B‖), which, in

the absence of switchers, has to be maximally correlated due to Landauer-Büttiker symme-

try g(B⊥, B‖) = g(−B⊥,−B‖). The devices made on the low density material were fairly

stable, giving correlations > 0.8, whereas in the high density devices, switching was far

more frequent, making such a measurement unfeasible. In fact, one of the major practical

limitations today in the field of GaAs quantum dots is switching noise due to charge re-

arrangement somewhere in the material rather close to the dot and it is not quite known

yet how create quiet GaAs 2DEG materials.
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1.13.4 Chapter 6: Cotunneling Spectroscopy in Few Electron Quantum
Dots

Chapter 6 presents experiments done in few electron quantum dots in the regime of strong

coupling to the leads allowing cotunneling processes. Inelastic cotunneling is used to mea-

sure the singlet-triplet splitting J of the two electron dot both below and above a singlet-

triplet transition induced with a perpendicular magnetic field. J is an important parameter

for realizing a proposed scheme of a spin-based qubit in GaAs quantum dots [133]. It

controls the Heisenberg exchange interaction J
−→
S1 · −→S2 [28], which can be used to perform

quantum gate operations such as a swap and square-root of swap that can be used to en-

tangle two electrons if J can be controlled as a function of time. The J ∼ 0.2 meV measured

here was significantly smaller than the single particle excited state energy of ∆1 = 1.2 meV,

indicating strong electron-electron interactions, and could also be tuned with a plunger gate

voltage Vg due to effects going beyond a simple shift of the dot potential [194, 117]. The

field dependence J(B) is in reasonable quantitative agreement with theoretical calculations.

From the magnetic field dependence of the single-particle excited state splitting ∆1(B), an

anisotropic confinement was deduced, based on a 2D anisotropic harmonic oscillator model,

which also gave consistent results for the second single-particle excited state ∆2(B). The

harmonic confinement energies found are �ωa = 1.2 meV and �ωb = 3.3 meV, giving a

spatially elongated potential with main axes of lengths �a =
√

�/(m∗ωa) = 31 nm and

�b =
√

�/(m∗ωa) = 19 nm.

Inelastic cotunneling through the single-particle Zeeman split ground state [116] was used to

measure the Zeeman energies in the one electron system as a function of different directions

of an in-plane magnetic field B‖, finding no directional dependence of the Zeeman splitting.

A zero-bias anomaly in the three electron system due to the Kondo effect was observed, and

was seen to split in an in-plane magnetic field B‖, confirming independence of the direction

of B‖ in the plane of the 2DEG. The slopes of the Kondo peak splitting ∆K as a function

of B‖ are consistent with the isotropic g-factors |g| ∼ 0.44 extracted from the N = 1

inelastic cotunneling splitting ∆Cot, but the Kondo splitting ∆K(B) does not extrapolate

to ∆K(0) = 0, giving an additional small offset of 8 ± 2 µeV. The origin of this offset is

not presently understood, though it is not excluded that it might be caused by spin-orbit

coupling in the leads of the dot, keeping in mind that in the present measurements, time
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reversal symmetry in the leads is broken due to a perpendicular component of the applied

B‖ due to sample misalignment. It has been shown theoretically that spin-orbit coupling

in the leads can result in offsets of the Kondo-peak splitting when time reversal symmetry

is broken [145]. If this explanation turns out to be applicable, it would alow for an in-situ

measurement of the spin-orbit coupling strength in the leads of the dot, which might be

interesting because spin-orbit coupling in combination with phonon emission is thought to

be the dominant mechanism for spin-relaxation in few electron quantum dots [76]. Though

it is the spin-orbit coupling in the dot itself which is really of interest, this could allow an

in-situ measurement of the material spin-orbit parameters which are thought to be not be

very different inside the quantum dot.

The inelastic cotunneling ridge shows a significant overshoot at eVSD ∼ J , particularly in

a second device that showed qualitatively similar effects but had stronger coupling to the

leads and a somewhat larger singlet-triplet spacing J . The peak conductance of this over-

shoot decreases linearly with increasing temperature when plotted against the logarithm of

temperature, indicative of a Kondo-like correlation. This constitutes the first observation

of a non-equilibrium singlet-triplet Kondo effect in the paradigmatic two electron system,

for which there is currently no theory available which calculates the non-equilibrium con-

ductance.

Finally, quantum correlations of the two electron singlet ground state wave function that

are related to a non-trivial entanglement recently introduced [180] called concurrence have

been extracted consistently using three different methods. Whereas measurements of entan-

glement often require comparatively complicated measurements of the noise of the system,

this was done by considering dc-transport and using theory [77, 78] to extract the amount of

entanglement. The maximal concurrence of c = 1 describes a state where the two electrons

are spatially separated into two different orbital states, whereas for the minimal concurrence

of c = 0 both electrons occupy the same orbital wave function. The present experiment finds

that the concurrence is significant, c ∼ 0.75 ± 0.07, and increases slightly in a perpendicu-

lar magnetic field, consistent with the concept that B⊥ introduces additional confinement

separating the two electrons more strongly into their own spatially separated orbitals. The

field dependence is shown in Figure 1.8, where additionally the double occupance D and the

interaction parameter φ are plotted. The double occupancy D is the probability two find
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Figure 1.8: Interaction parameter φ, concurrence c and double occupance D as a function of magnetic
field extracted using sequential tunneling (open symbols) and elastic cotunneling (filled symbols).

both electrons simultaneously in the same orbital. φ quantifies the amount of admixture of

the excited orbital state.
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In situ control of spin-orbit coupling in coherent transport using a clean GaAs/AlGaAs

2DEG is realized, leading to a gate-tunable crossover from weak localization to antilocaliza-

tion. The necessary theory of 2D magnetotransport in the presence of spin-orbit coupling

beyond the diffusive approximation is developed and used to analyze experimental data.

With this theory the Rashba contribution and linear and cubic Dresselhaus contributions to

spin-orbit coupling are separately estimated, allowing the angular dependence of spin-orbit

precession to be extracted at various gate voltages.
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2.1 Introduction

An important component along the path toward realizing quantum “spintronic” devices

[202, 14] is a structure that allows manipulation of electron spin without destroying phase

coherence. Spin-orbit (SO) coupling has been the focus of recent studies because of its

potentially useful role in coherent spin rotators [40], spin interference devices [11], and spin-

filters [114, 112]. The mechanisms by which SO coupling affects transport [94, 8, 19, 45] have

recently been considered in the context of Aharonov-Bohm (AB) phase and Berry phase

[11, 143, 137, 101, 136, 4, 205], underscoring the richness of the underlying physics. The

results in this and other recent experiments [154] cannot be explained without considering

these AB-like effects.

The conductivity of low-dimensional systems shows signatures of quantum interference that

depend on magnetic field and SO coupling [94, 8, 1, 7, 79]. In particular, constructive

(destructive) backscattering associated with pairs of time-reversed closed-loop electron tra-

jectories in the absence (presence) of significant SO interaction leads to negative (positive)

magnetoresistance effects known as weak localization (antilocalization). Antilocalization

is the paradigmatic experimental signature of SO coupling in phase coherent electronic

systems [19].

In this Letter, we demonstrate in situ control of SO coupling in a moderately high mobil-

ity GaAs/AlGaAs two-dimensional electron gas (2DEG), inducing a crossover from weak

localization (WL) to antilocalization (AL) as a function of an applied top-gate voltage

(see Figure 2.1). Theory beyond the diffusive approximation must be used to extract gate-

voltage-dependent SO parameters from magnetotransport when the SO precession frequency

becomes comparable to the inverse transport scattering time (τ−1) as occurs here, and when

the magnetic length becomes comparable to the mean free path. Such a theory, which also

takes into account AB-like spin quantal phases and spin-relaxation [135], is developed here

and used to estimate separately the various SO terms (Rashba, linear and cubic Dresselhaus,

defined below) over a range of gate voltages, ranging from WL to AL.
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2.2 Previous Theory and Experiments

Conventional WL theories assume SO times much longer than transport scattering times

[94, 8, 101] and so cannot be applied to clean materials such as high-mobility 2DEGs.

Previous theories that go beyond the diffusive approximation do not treat SO [70, 32], or

treat it only as spin-relaxation [107, 203] without accounting for Berry phase effects which

play a crucial role, as we show here.

Previous experiments in which SO rates are measured using WL/AL in a gated GaAs

heterostructure have not reported in situ gate control [45, 88, 172]. Very recently, Koga

et al. [115] demonstrated gate controlled SO coupling in InGaAs heterostructures using

WL/AL, but did not report a full crossover from WL to AL in any single sample. We

know of no previous study in which an in situ crossover from WL to AL is demonstrated.

Modification of Rashba SO coupling using gated quantum wells has been observed using

beating patterns in Shubnikov-de Haas oscillations in InGaAs [156, 178], InAs/AlSb [91]

and HgTe [184]. Gate controlled SO coupling in GaAs 2D hole systems [164, 201, 134]

has also been investigated using beating of Shubnikov-de Haas oscillations. The angular

variation of SO coupling in GaAs quantum wells has been measured using Raman scattering

[105], but to our knowledge has not been extracted from transport data.

2.3 Theory of Two-Dimensional Magnetotransport with
Spin-Orbit Coupling beyond the Diffusive Approxima-
tion

The Hamiltonian for conduction band electrons in a [001] 2DEG is H = �
2k2

2m∗ +(σ · Ω), where

m∗ is the effective mass, k = |k| (k = (kx, ky)) is the in-plane wave vector, σ = (σx, σy) is

the Pauli spin operator and Ω = (Ωx, Ωy) is the total SO frequency. Ω = ΩD1 +ΩD3 +ΩR

can be written as the vector sum of linear (ΩD1) and cubic (ΩD3) Dresselhaus terms and
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the Rashba term (ΩR),

ΩD1 = α1 (−x̂kx + ŷky) /�, (2.1a)

ΩR = α2(x̂ky − ŷkx)/�, (2.1b)

ΩD3 = γ(x̂kxk2
y − ŷk2

xky)/�. (2.1c)

where γ arises from the lack of inversion symmetry of the GaAs crystal, while α1 = γ〈k2
z〉 also

depends on the thickness of the wave function in the quantization direction. The Rashba

coefficient α2 depends on the potential profile of the heterointerface. In fitting the data

below, we assume the effect of gate voltage, Vg, on Ω (≡ |Ω|) is through the carrier density,

n = k2/2π. Good agreement between theory and experiment (Figure 2.2) supports this

assumption, as do previous studies of SO coupling in single-interface heterostructures [113].

Although α2 can be treated as directly proportional to a uniform electric field [102], the

magnitude of α2 in a single-interface heterostructure originates mainly from the band-offset

at the heterointerface, which is essentially independent of Vg [91, 166].

The symmetry of the linear (in k) SO terms, ΩD1 and ΩR, allows these terms to be rep-

resented as a spin-dependent vector potential A that affects the orbital motion and phase

of electrons, σ · (ΩD1 + ΩR) ∝ k · A [11, 143, 137, 101, 136, 4]. That is, the linear terms

affect electronic interference as a spin-dependent AB-like effect. In contrast, the cubic term,

Eq. (1c), upon removing terms with the symmetry of Eq. (1a), only causes spin relaxation

in the diffusive regime (although it also can produce AB-like effects in the quasi-ballistic

regime [11]).

To develop the theory of 2D magnetotransport with SO coupling beyond the diffu-

sive approximation [135], we follow Refs. [70, 32, 107], which treat the quasi-ballistic

case �B < � (�B =
√

�/2eB is the magnetic length and � is the transport mean free

path) without spin-orbit coupling. The approach is to introduce an operator P =

GR
ε+ω(r1, r2, σ1)GA

ε (r1, r2, σ2)�/2πντ for the probability of an electron to propagate both

forward and backward along a path segment from r1 to r2, where GR (GA) are single-

electron retarded (advanced) Green functions, σ1(2) are the Pauli spin operators for particle
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moving forward (backward), ν is the density of states per spin, and τ is the scattering time.

The interference contribution from the nth traversal of a closed path is given by the trace

of (P )n. In the presence of SO coupling of the form in Eq. (2.1), formulas in [32] remain

valid once a summation over spins is included in the trace.

Introducing the total spin of interfering partial waves, S = σ1 + σ2, we write Tr[(P )n] =

1
2Tr[(P1)n − (P0)n], where operators P0 and P1 describe singlet (S = 0) and triplet (S = 1)

contributions. To calculate Tr[(P0(1))n], we diagonalize P0(1). We find that when ΩD1

and ΩR are taken into account, P0(1) has the same eigenfunctions as the Hamiltonian H for

particles with charge 2e, spin S and spin frequency 2Ω: H = �
2

2m∗ (k−2eAem+2eAS)2, where

Aem is the vector potential associated with the applied perpendicular magnetic field, B, and

AS = m∗
2e�3 (−α1Sx−α2Sy, α2Sx+α1Sy) is the SO vector potential. For S = 0, the eigenstates

are Landau levels for a charge 2e particle in the magnetic field B, analogous to the spinless

problem [107]. For S = 1, eigenstates of H and P1 in general require a numerical solution,

although analytic solutions exist when either α1 or α2 equals zero [135]. An analytic solution

is found when both α1 and α2 may be nonzero, when �B < λso, where λso = (2α1(2)m
∗/�

2)−1

is the distance over which spin rotates appreciably (if � > λso) or dephases (if � < λso) due

to spin AB-like effects. Performing a unitary transformation H → H̃ = U †HU , with

U = exp (−ieAS · r), and expanding in coordinates, we find H̃ = �
2

2m∗ (k − 2eAem + Sza)2,

where a = Heff r × ẑ/(2�
2), and Heff = 2(α2

2 − α2
1)m

∗2/e�
3 is the effective SO field. P1

can then be block-diagonalized for each m (m = 0,±1) using the Landau basis for particles

with charge 2e in the magnetic field B − mHeff . Thus, the effect of ΩD1 and ΩR is to

produce spin quantal phases of the AB type [11, 143, 137, 101, 136, 4]. Higher expansion

terms to H̃ describe spin flip processes and can be taken into account by introducing a

spin relaxation time τso and its corresponding field scale Hso = �τ/(2e�2τso). The resulting

quantum interference contribution takes the form [135]

∆σ(B) = − e2

4π2�

⎡
⎣ ∑

m=−1,0,1

C(x1m, f1m) − C(x00, f00)

⎤
⎦ (2.2)
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where xSm = (B − mHeff)/Htr describes the AB dephasing in Heff , C(x, fSm) =

x
∑∞

N=0
P 3

N (fSm)

1−PN (fSm) , PN (fSm) = y
∫ ∞
0 exp(−yfSmt − t2/2)LN (t2)dt, LN (z) are Laguerre

polynomials, y = (2/|x|)1/2, and Htr = �/(2e�2). The dephasing factors fSm are given

by f1±1 = (1 + (Hϕ + Hso)/Htr); f00 = (1 + Hϕ/Htr); f10 = (1 + (Hϕ + 2Hso)/Htr), where

Hϕ = �/(4eL2
ϕ) and Lϕ is the phase breaking length.

Equation (2.2) does not include all B-dependent interference terms, notably excluding

Cooper-channel contributions due to electron-electron interactions [7] and a reduction

of WL due to electron diffraction effects [70]. Also, in an attempt to capture the ef-

fects of cubic terms on Heff and Hso, we introduce an effective vector potential A∗
S =

AS + γ m∗
e�2 (ky

2,−kx
2) ∼ AS + γ m∗

2e�2 (k2,−k2) which leads to an effective SO field,

H∗
eff = 2(α2

2 − α2
1 + 2πnα1γ − π2γ2n2)m∗2/e�

3. (2.3)

Equation (2.2) is applicable when B > H∗
eff , which corresponds in the present experiment

to B between 20-100 µT depending on Vg (see Figure 3.2). We have confirmed that fitting

only to data where B > H∗
eff gives, within error bars, the same results as fitting over the

entire measured range of B.

Modification of the commutator [k + 2eA∗
S , r] by A∗

S induces spin flipping terms ∼ γk3/4

in the transformed Hamiltonian H̃∗. The corresponding H∗
so = 1

36π2m∗2γ2n2/e�, using its

expression in the diffusive regime.

2.4 Experimental Details

We now turn to a discussion of the experiment. Three similarly fabricated samples made

on three separate heterostructure materials were measured, all showing qualitatively similar

behavior. The sample for which data is presented consists of a GaAs/AlGaAs heterostruc-

ture grown in the [001] direction with double δ-doping layers set back 143 Å and 161 Å from

the 2DEG and a total distance of 349 Å from the surface to the 2DEG. A 200 µm wide Hall
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Figure 2.1: (a) Experimental magnetoconductance, ∆σ = σ(B) − σ(0), (circles) offset for clarity, along
with three-parameter fits to Eq. (2.2) (solid curves) for several gate voltages. Inset: Experimental magne-
toconductance data for the most negative gate voltage, showing pure WL. (b) Density and mobility as a
function of Vg, extracted from longitudinal and Hall voltage measurements. (c) Experimental conductivity,
showing strong dependence on Vg. Note that ∆σ ∼ 10−3σ.

bar with 700 µm between voltage probes was patterned by wet etching. A lithographically

defined Cr/Au top gate was used to control density and mobility in the Hall bar over the

range n = 1.4-7.0 ×1015 m−2 and µ = 3.6-31 m2/Vs. Measurements were made in a 3He

cryostat at temperature T = 300 mK using ac lock-in techniques with bias currents ranging

from 50 to 500 nA (depending on the gate voltage). At each gate voltage, the bias current

was experimentally determined not to affect the results.

2.5 Crossover from WL to AL and Separation of Spin-Orbit
Parameters

Figure 2.1 (a) shows the longitudinal magnetoconductance as a function of Vg. A crossover

from pure WL (Figure 2.1(a), inset) at Vg = −240 mV to essentially pure AL at Vg =
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Figure 2.2: Spin-orbit effective fields, H∗
so (filled circles) and H∗

eff (open squares), as extracted using
Eq. (2.2), plotted as a function of sheet density squared. The best fit of Eq. (2.3) to H∗

eff (dotted curve) is
used to extract γ, α1 and α2. Alternatively, the best linear fit to H∗

so (solid line) is used to extract γ.

+250 mV is observed. This crossover demonstrates that a gate can be used to control SO

over a wide range, as pure WL corresponds to negligible SO rotations within the phase

coherence length Lϕ, while AL corresponds to spin rotations � 2π. The solid curves in

Figure 2.1(a) are fits of Eq. (2.2) with three free parameters, Hφ, H∗
so, and H∗

eff . Htr is fixed

at each gate voltage by measured values of density and mobility.

Figure 2.2 shows extracted parameters H∗
so and H∗

eff as a function of n2. H∗
so is well described

by the predicted linear dependence on n2, with a best fit (Figure 2.2, solid line) giving

γ = 31 ± 3 eVÅ3 with zero y-intercept (see Equation (2.1c)). The density dependence of

H∗
eff is well described by Equation (2.3), (Figure 2.2, dotted curve), giving fit parameters

γ = 28 ± 4 eVÅ3, α1 = 4 ± 1 meVÅ and α2 = 5 ± 1 meVÅ. In this way, the three

SO parameters α1, α2, and γ are separately obtained from transport measurements by

explicitly making use of the density dependence of H∗
eff and H∗

so. Extracted values of Hϕ

correspond to dephasing times in the range τϕ ∼ 0.1-1.0 ns at 300 mK, which decrease by

more than an order of magnitude as temperature is increased to 2.5 K. Within the error

bars, H∗
so and H∗

eff do not depend on temperature over this temperature range.

Figure 2.3(a) displays the magnitudes of the three spin-orbit terms as functions of Vg, n,

and µ, determined using Eq. (2.1) and the extracted values of α1, α2, and γ. Plotted are
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Figure 2.3: (a) Magnitudes of isotropic linear Dresselhaus (ΩD1) and Rashba (ΩR) terms, and nonisotropic
cubic Dresselhaus (ΩD3) term as functions of gate voltage, Vg, density, n, and mobility, µ. Insets show
theoretical dependence on momentum direction for the three terms, indicating that the linear terms are
isotropic, while the cubic term has a four-fold symmetry and is highly anisotropic. Maximum magnitude
(when φ = (j + 1

4
)π) is shown for the anisotropic (ΩD3) term. (b) Angular variation of Ω, the magnitude of

the total SO precession vector at Vg = −150 mV (dotted), 0 mV (dashed), and 250 mV (solid), corresponding
to densities of 2.3, 5.0, and 7.0 × 1015 m−2 respectively.

values along the [110] direction, φ ≡ tan−1(ky/kx) = π
4 , where ΩD3 is maximum. Error bars

indicate uncertainties in the fitting procedure and noise in the data.

2.6 Angular Dependence of Spin Precession Rates

The total spin precession rate, Ω, is plotted as a function of the direction, φ, of the electron

momentum in Figure 2.3(b). While for most directions Ω is an increasing function of density,

it is seen to decrease with increasing density near φ = 3π
4 and 7π

4 . The linear Dresselhaus
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and Rashba terms (ΩD1 and ΩR) are of comparable magnitude to each other for all densities

and in all directions. Near φ = jπ
2 (j an integer), ΩD3 � ΩD1, ΩR and the SO is controlled

by the linear terms. For φ near (2j+1)π
4 , the cubic term becomes comparable to or even

exceeds (at high densities) the linear terms. Depending on φ, the linear and cubic terms

either add (φ ∼ π
4 , 5π

4 ) or subtract (φ ∼ 3π
4 , 7π

4 ).

The extracted values for γ (31 ± 3 eVÅ3 using H∗
so, 28 ± 4 eVÅ3 using H∗

eff) are in good

agreement with the value 27.5 eVÅ3 from band structure calculations [113, 166]. Estimates

for α1 give values for 〈k2
z〉 that correspond to a wave function width of ∼ 10 nm in the ẑ

direction, which is also reasonable. The extracted α2 corresponds to a uniform [102] electric

field E ∼ 10 MV/m, using α2 = α0eE and a value of α0 = 5.33 Å2 from a k · p model

[113, 166].

2.7 Comparison with previous Theory

We note that previously existing models for WL/AL [8, 101, 113] provide fits to the data

that appear qualitatively reasonable, giving values for Hso that are ∼ 5 times higher than

those found using Eq. (2.2). However, these fits also lead to the unphysical result that

τso < τ . Such unphysical results are not surprising given that, for Vg > −50 mV, the SO

length, vF /〈Ω〉, is less than �, while theory [8, 101, 113] assumes diffusive spin evolution

� � λso, Lϕ. Finally we note that a theory for arbitrarily strong SO coupling [136] may

also be used to fit this data by including B via Lϕ, yielding values for ΩD3 and ΩD1 for all

Vg’s which agree with our estimates using Eq. (2.2) to within a factor of ∼ 3. However, the

theory in [136] does not separate ΩD1 and ΩR terms.

2.8 Conclusion

In conclusion, we have realized an in situ gate-controlled crossover from weak localization to

antilocalization in a GaAs/AlGaAs 2DEG, experimentally demonstrating that spin rotation

can be strongly modulated in a clean, phase-coherent system. New theory addresses spin-
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orbit effects in the quasi-ballistic regime and allows separate measurement of the Rashba,

linear Dresselhaus, and cubic Dresselhaus terms.
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We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum

dots. Antilocalization that is prominent in large dots is suppressed in small dots, as

anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also,

at larger fields, weak localization, consistent with random matrix theory results once orbital

coupling of the parallel field is included. In situ control of spin-orbit coupling in dots is

demonstrated as a gate-controlled crossover from weak localization to antilocalization.
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3.1 Introduction

The combination of quantumcoherence and electron spin rotation in mesoscopic systems

produces a number of interesting transport properties. Numerous proposals for potentially

revolutionary electronic devices that use spin-orbit (SO) coupling have appeared in recent

years, including gate-controlled spin rotators [40] as well as sources and detectors of spin-

polarized currents [27, 112, 108]. It has also been predicted that the effects of some types

of SO coupling will be strongly suppressed in small 0D systems, i.e., quantum dots [109,

110, 87, 4, 37].

In this Letter, we investigate SO effects in ballistic-chaotic GaAs/AlGaAs quantum dots.

We identify the signature of SO coupling in ballistic quantum dots to be antilocalization

(AL), leading to characteristic magnetoconductance curves, analogous to known cases of

disordered 1D and 2D systems [94, 8, 19, 45, 151, 150, 113]. AL is found to be prominent in

large dots and suppressed in smaller dots, as anticipated theoretically [109, 110, 87, 4, 37].

Results are generally in excellent agreement with a new random matrix theory (RMT) that

includes SO and Zeeman coupling [4, 37]. Moderate magnetic fields applied in the plane

of the 2D electron gas (2DEG) in which the dots are formed cause a crossover from AL to

weak localization (WL). This can be understood as a result of Zeeman splitting, consistent

with RMT [4, 37]. At larger parallel fields WL is also suppressed, which is not expected

within RMT. The suppression of WL is explained by orbital coupling of the parallel field,

which breaks time-reversal symmetry [56, 148]. Finally, we demonstrate in situ electrostatic

control of the SO coupling by tuning from AL to WL in a dot with a center gate.

In mesoscopic conductors, coherent backscattering of time-reversed electron trajectories

leads to a conductance minimum (WL) at B = 0 in the spin-invariant case, and a con-

ductance maximum (AL) in the case of strong SO coupling [94, 8]. In semiconductor het-

erostructures, SO coupling results mainly from electric fields [46] (appearing as magnetic

fields in the electron frame), leading to momentum dependent spin precessions due to crys-

tal inversion asymmetry (Dresselhaus term [44]) and heterointerface asymmetry (Rashba
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term [31]).

3.2 Previous Experiments

SO coupling effects have been previously measured using AL in GaAs 2DEGs [45, 151, 150]

and other 2D heterostructures [113]. Other means of measuring SO coupling in heterostruc-

tures, such as from Shubnikov-de Haas oscillations [91, 163, 80] and Raman scattering [105]

are also quite developed. SO effects have also been reported in mesoscopic systems such as

Aharonov-Bohm rings, wires, and carbon nanotubes [124, 11, 154, 157, 185, 53, 24, 152].

Recently, parallel field effects of SO coupling in quantum dots were measured [85, 59]. The

observed reduction of conductance fluctuations in a parallel field [59] was explained in terms

of SO effects [87, 4, 37], leading to an extension of random matrix theory (RMT) to include

new symmetry classes associated with SO and Zeeman coupling [4, 37].

3.3 Random Matrix Theory

This RMT addresses quantum dots coupled to two reservoirs via N total conducting chan-

nels, with N � 1. It assumes (γ, εZ) � ET , where γ = N∆/(2π) is the level broadening

due to escape, ∆ is the mean level spacing, εZ = gµBB is the Zeeman energy and ET

is the Thouless energy (Table 3.3). Decoherence is included as a fictitious voltage probe

[29, 15, 25, 4, 37] with dimensionless dephasing rate Nϕ = h/(∆τϕ), where τϕ is the phase

coherence time. SO lengths λ1,2 along respective principal axes [110] and [11̄0] are assumed

(within the RMT) to be large compared to the dot dimensions L1,2 along these axes. We

define the mean SO length λso =
√|λ1λ2| and SO anisotropy νso =

√|λ1/λ2|. SO cou-

pling introduces two energy scales: εso
⊥ = κ⊥ET (L1L2/λ2

so)
2, representing a spin-dependent

Aharonov-Bohm-like effect, and εso
‖ ∼ ((L1/λ1)2 + (L2/λ2)2)εso

⊥ , providing spin flips. AL

appears in the regime of strong SO coupling, (εso
⊥ , εso

‖ ) � γ̃, where γ̃ = (γ + �/τϕ) is the

total level broadening. Note that large dots reach the strong SO regime at relatively weaker

SO coupling than small dots. Parameters λso, τϕ, and κ⊥ (a factor related to trajectory
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A ∆ τd ET /∆ εso
⊥ /∆ εso

‖ /∆ a1, a2 b2

µm2 µeV ns (ns)−1T−2 (ns)−1T−6

1.2 6.0 0.35 33 0.15 0.04 6.6, 6.6 0.24
5.8 1.2 1.7 73 0.32 0.33 3.2, 0 140
8 0.9 2.3 86 3.6 3.1 1.4, 0.9 3.7

Table 3.1: Dot area A = L1L2 (130 nm edge depletion); spin-degenerate mean level spacing ∆ = 2π�
2/m∗A

(m∗ = 0.067me); dwell time τd = h/(N∆); Thouless energy ET = �vF /
√

A; εso
⊥ /∆ and εso

‖ /∆ for the fits in

Figure 3.1; B2 coefficients a1 and a2 from one and two parameter fits; B6 coefficient b2 from two parameter
fit, see text.

areas) are extracted from fits to dot conductance as a function of perpendicular field, B⊥.

The asymmetry parameter, νso, is estimated from the dependence of magnetoconductance

on parallel field, B‖.

The quantum dots are formed by lateral Cr-Au depletion gates defined by electron-beam

lithography on the surface of a GaAs/AlGaAs heterostructure grown in the [001] direction.

The 2DEG interface is 349 Å below the wafer surface, comprising a 50 Å GaAs cap layer

and a 299 Å AlGaAs layer with two Si δ-doping layers 143 Å and 161 Å from the 2DEG.

An electron density of n ∼ 5.8× 1015 m−2 1 and bulk mobility µ ∼ 24 m2/Vs (cooled in the

dark) gives a transport mean free path �e ∼ 3 µm. This 2DEG is known to show AL in 2D

[150]. Measurements were made in a 3He cryostat at 0.3 K using current bias of 1 nA at

338 Hz. Shape-distorting gates were used to obtain ensembles of statistically independent

conductance measurements [33] while the point contacts were actively held at one fully

transmitting mode each (N = 2).

3.4 Antilocalization and Confinement Suppression of Spin-
Orbit Effects

Figure 1 shows average conductance 〈g〉, and variance of conductance fluctuations, var(g),

as a function of B⊥ for the three measured dots: a large dot (A ∼ 8 µm2), a variable size

dot with an internal gate (A ∼ 5.8 µm2 or 8µm2, depending on center gate voltage), and a
1All measured densities are below the threshold for second subband occupation n ∼ 6.6×1015 m−2, which

is known from Shubnikov-de Haas measurements and a decreasing mobility with increasing density near the
threshold.
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Figure 3.1: Average conductance 〈g〉 (squares) and variance of conductance var(g) (triangles) calculated
from ∼ 200 statistically independent samples (see text) as a function of perpendicular magnetic field B⊥
for (a) 8.0 µm2 dot (b) 5.8 µm2 center-gated dot and (c) 1.2 µm2 dot at T = 0.3 K, along with fits to RMT
(solid curves). In (b), the center gate is fully depleted. Vertical lines indicate the fitting range, error bars of
〈g〉 are about the size of the squares.

smaller dot (1.2 µm2). Each data point represents ∼ 200 independent device shapes. The

large dot shows AL while the small and gated dots show WL. Estimates for λso, τϕ and κ⊥,

from RMT fits are listed for each device below the micrographs in Figure 3.1 (see Table 3.3

for corresponding ε⊥ and ε‖). When AL is present (i.e., for the large dot), estimates for

λso have small uncertainties (±5%) and give upper and lower bounds; when AL is absent

(i.e., for the small and gated dots) only a lower bound for λso (−5%) can be extracted from

fits. The value λso ∼ 4.4 µm is consistent with all dots and in good agreement with AL

measurements made on an unpatterned 2DEG sample from the same wafer [150].

Comparing Figures 3.1(a) and 1(c), and recalling that all dots are fabricated on the same

wafer, one sees that AL is suppressed in smaller dots, even though λso is sufficient to produce

AL in the larger dot. We note that these dots do not strongly satisfy the inequalities

L/λso � 1, N � 1, having N = 2 and L/λso = 0.64 (0.34) for the large (small) dot.

Nevertheless, Figure3.1 shows the very good agreement between experiment and the new
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RMT.

3.5 Suppression of Antilocalization by an In-Plane Magnetic
Field

We next consider the influence of B‖ on 〈g〉. In order to apply tesla-scale B‖ while main-

taining subgauss control of B⊥, we mount the sample with the 2DEG aligned to the axis

of the primary solenoid (accurate to ∼ 1◦) and use an independent split-coil magnet at-

tached to the cryostat to provide B⊥ as well as to compensate for sample misalignment

[59]. Figure 3.2 shows shape-averaged magnetoconductance (relative to B⊥ � φ0/A, i.e.,

fully broken time-reversal symmetry), δg(B⊥, B‖) = 〈g(B⊥, B‖)〉 − 〈g(B⊥ � φ0/A, B‖)〉 as

a function of B⊥ at several values of B‖, along with fits of RMT [4, 37] with parameters λso,

τϕ and κ⊥ set by a single fit to the B‖ = 0 data. The low-field dependence of δg(0, B‖) on

B‖ [Figure 3.2(b)] allows the remaining parameter, νso, to be estimated as described below.

Besides Zeeman energy εZ (calculated using g = −0.44 rather than fit), parallel field com-

bined with SO coupling introduces an additional new energy scale, εZ
⊥ = κzε2ZA

2ET

∑
i,j=1,2

li
λi

lj
λj

,

where κZ is a dot-dependent constant and l1,2 are the components of a unit vector along B‖

[4, 37]. Because orbital effects of B‖ on δg(B⊥, B‖) dominate at large B‖, εZ
⊥ must instead

be estimated from RMT fits of var(g) with already-broken time reversal symmetry, which

is unaffected by orbital coupling [206].

The RMT formulation [4, 37] is invariant under νso → r/νso, where r = L1/L2
2, and

gives an extremal value of δg(0, B‖) at νso =
√

r. As a consequence, fits to δg(0, B‖) cannot

distinguish between νso and r/νso. As shown in Figure 3.2(b), data for the 8µm2 dot (r ∼ 2)

are consistent with 1 ≤ νso ≤ 2 and appear best fit to the extremal value, νso ∼ 1.4. Values

of νso that differ from one indicate that both Rashba and Dresselhaus terms are significant,

which is consistent with 2D data taken on the same material [150].

2The symmetry is precise if one takes εZ
⊥ = κz

ε2Z
2ET

A
λ2

so
. See Ref. [4, 37].
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3.6 Breaking of Time-Reversal Symmetry due to an In-Plane
Magnetic Field

Using νso = 1.4 and values of λso, τϕ, and κ⊥ from the B‖ = 0 fit, RMT predictions

for δg(B⊥, B‖) agree well with experiment up to about B‖ ∼ 0.2 T [Figure 3.2(a)], show-

ing a crossover from AL to WL. For higher parallel fields, however, experimental δg’s are

suppressed relative to RMT predictions. By B‖ ∼ 2 T, WL has vanished in all dots [Fig-

ure 3.2(c)] while RMT predicts significant remaining WL at large B‖.

One would expect WL/AL to vanish once orbital effects of B‖ break time-reversal symmetry.

Following Ref. [56, 148] (FJ), we account for this with a suppression factor fFJ(B‖) = (1 +

τ−1
B‖/τ−1

esc)
−1, where τ−1

B‖ ∼ aB2
‖ + bB6

‖ , and assume that the combined effects of SO coupling

and flux threading by B‖ can be written as a product, δg(0, B‖) = δgRMT (0, B‖) · fFJ(B‖).

The B2
‖ term reflects surface roughness or dopant inhomogeneities; the B6

‖ term reflects the

asymmetry of the quantum well. We either treat a as a single fit parameter (a1, Table 3.3),

using b = 1.4 108 s−1T−6 from device simulations 3, or treat both a and b as fit parameters

(a2 and b2, Table 3.3). Fitting both parameters only improves the fit for the (unusually

shaped) center-gated dot.

3.7 Effects of Temperature on Antilocalization

Increased temperature reduces the overall magnitude of δg and also suppresses AL compared

to WL, causing AL at 300 mK to become WL by 1.5 K in the 8µm2 dot [Figure 3.3(a)].

Fits of RMT to δg(B⊥, 0) yield λso values that are roughly independent of temperature

[Figure 3.3(b)], consistent with 2D results [151], and τϕ values that decrease with increasing

temperature. Dephasing is well described by the empirical form (τϕ[ns])−1 ∼ 7.5 T[K] +

2.5 (T[K])2, consistent with previous measurements in low-SO dots [98, 96]. As dephasing

increases, long trajectories that allow large amounts of spin rotations are cut off, diminishing

the AL feature.
3V. Falko, T. Jungwirth, private communication.
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Figure 3.3: (a) Difference of average conductance from its value at large B⊥, δg(B⊥, 0), for various
temperatures with B‖ = 0 for the 8.0 µm2 dot (squares), along with RMT fits (solid curves). (b) Spin-orbit
lengths λso (circles) and phase coherence times τϕ (triangles) as a function of temperature, from data in (a).

3.8 In Situ Control of Spin-Orbit Coupling with a Center
Gate

Finally, we demonstrate in situ control of the SO coupling using a center-gated dot. Fig-

ure 3.4 shows the observed crossover from AL to WL as the gate voltage Vg is tuned from

+0.2 V to −1 V. At Vg = −1 V, the region beneath the center gate is fully depleted, giving

a dot with area 5.8 µm2 that shows WL. In the range of Vg ≥ −0.3 V, the amount of AL

is controlled by modifying the density under the gate. For Vg > 0 V the AL peak is larger

than in the ungated 8µm2 dot. We interpret this enhancement not as a removal of the SO

suppression due to an inhomogeneous SO coupling [26], which would enhance AL in dots

with L/λso � 1 (not the case for the 8 µm2 dot), but rather as the result of increased SO

coupling in the higher-density region under the gate when Vg > 0 V.

One may wish to use the evolution of WL/AL as a function of Vg to extract SO parameters

for the region under the gate. To do so, the dependence may be ascribed to either a

gate-dependent λso or to a gate-dependence of a new parameter κ‖ = εso
‖ /(((L1/λ1)2 +
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Figure 3.4: Difference of average conductance 〈g〉 from its value at B⊥ = 0 as a function of B⊥ for various
center gate voltages Vg in the center-gated dot (squares), along with fits to RMT [4, 37]. Good fits are
obtained though the theory assumes homogeneous SO coupling. Error bars are the size of the squares.
Inset: λso and κ‖ as a function of Vg extracted from RMT fits, see text.

(L2/λ2)2)εso
⊥ ). Both options give equally good agreement with the data (fits in Figure 3.4

assume λso(Vg)), including the parallel field dependence (not shown). Resulting values for

λso or κ‖ (assuming the other fixed) are shown in the inset in Figure3.4. We note that

the 2D samples from the same wafer did not show gate-voltage dependent SO parameters

[150]. However, in the 2D case a cubic Dresselhaus term that is not included in the RMT

of Ref. [4, 37] was significant. For this reason, fits using [4, 37] might show λso(Vg) though

the 2D case did not. Further investigation of the gate dependence of SO coupling in dots

will be the subject of future work.
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We present measurements of conductance fluctuations in open quantum dots fabricated in a

GaAs 2D electron gas. The variance of the fluctuations in a magnetic field in the 2D plane

depends on spin-orbit coupling, reflecting novel spin-rotation symmetries in the system. In

a large in-plane field, the variance becomes independent of the perpendicular field due to

breaking of time-reversal symmetry by the in-plane field. These results are in quantitative

agreement with recent theories.



4.1 Introduction

The combination of quantum confinement, spin-orbit (SO) coupling and Zeeman effects in

lateral semiconductor quantum dots gives rise to rich physics, including novel spin-rotation

symmetries [4, 37], a suppression of SO effects due to confinement [109, 110, 87, 4, 37,

205, 59] leading to very long spin life times [109, 110, 66, 52, 76] and lifting of the SO

suppression by an in-plane field [87, 4, 37, 59] as well as by a spatial dependence of the SO

parameters [26]. Further, magnetic fields B‖ applied in the plane of the 2D electron gas

(2DEG) change the electron dispersion and in particular can break time reversal symmetry

(TRS) [56, 148, 205, 207], adding additional complexity to this system.

In this communication, we present an experimental study of the variance of conductance

fluctuations var g through open quantum dots defined by lateral gates on a GaAs/AlGaAs

2DEG. The B‖ dependence of the variance var g(B⊥ 	= 0, B‖) with TRS broken by a perpen-

dicular field B⊥ 	= 0 is seen to depend strongly on the SO strength and can be characterized

by novel spin-rotation symmetries found in Ref. [4, 37], which gives good fits to our data.

Further, var g(B⊥, B‖) is seen to become independent of B⊥ at large B‖ due to effects of

B‖ breaking TRS. This is in good agreement with theory [148, 56] as well as experiments

on average [205] and correlations [207] of conductance fluctuations.

4.2 Previous Work

Theory of low-dimensional, diffusive systems has long predicted conductance fluctuations

[6, 130] to be reduced by both SO coupling [144, 137] as well as Zeeman effects [9, 187, 57].

Random matrix theories [100, 17, 5, 9] offer a universal classification of statistical properties

such as the average and variance of conductance in terms of the fundamental symmetry

classes. These theories were widely confirmed by experiments in diffusive 2D and 1D systems

in both metals and GaAs 2DEG’s, including observed reductions in variance due to Zeeman

splitting [41, 153], SO coupling [151, 68] and breaking of TRS both in the presence [22] and

absence of SO coupling [138].
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In open quantum dots, an observed large reduction of conductance fluctuations in B‖ [59,

85, 82, 81] has been explained by SO effects that increase upon application of B‖ while SO

effects at B‖ = 0 are confinement suppressed [87]. This has led to an extended random

matrix theory (RMT) [4, 37], including a classification of transport properties in terms of

spin-rotation symmetries. Subsequent experiments found AL [205, 86] in high density dots

due to strong SO coupling at B‖ = 0, allowing the SO length λso to be extracted. Orbital

effects of B‖ were observed via a suppression of weak (anti)localization [205] as well as in

correlations of conductance fluctuations [207]. In this study, we report on effects of B‖ on

the variance in dots of various SO strength.

4.3 Spin-Rotation Symmetry Classes

The RMT [4, 37] gives the variance (at zero temperature T = 0) in terms of symmetry

parameters: var g ∝ s/(βΣ) [4, 37], where β is the conventional parameter describing time-

reversal symmetry, s is the Kramers degeneracy parameter and Σ characterizes mixing of

different spins when Kramers degeneracy is already broken. Spin rotation symmetry is

classified as either not broken (s = 2, Σ = 1), partially broken (s = 1, Σ = 1) or completely

broken (s = 1, Σ = 2). The variance is reduced by a factor of two when a crossover into

the class with next-lower symmetry occurs. The Kramers degeneracy can be lifted by a

Zeeman field as well as SO coupling if B⊥ 	= 0. Once Kramers degeneracy is broken (s = 1),

mixing of spins (Σ = 2) is due to SO coupling and can be possible already at B‖ = 0 due

to SO coupling or can be revived by B‖ when SO coupling is confinement suppressed [87]

at B‖ = 0. Finite temperatures and decoherence strongly reduce var (g) [4, 37], but the

relative reduction factor R = var g(B⊥ 	= 0, B‖ = 0)/var g(B⊥ 	= 0, B‖ � 0) is affected only

weakly.
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4.4 Experimental Techniques

Four quantum dots of various sizes were measured, made on two different 2DEG’s with

electron densities n = 2× 1011cm−2 and n = 5.8× 1011cm−2, see Ref. [205, 207] for details.

Figures 1 and 2 show device micrographs (insets). Measurements were made in a 3He

cryostat at 0.3 K using current bias of 1 nA at 338 Hz. In order to apply tesla-scale B‖ while

maintaining sub-gauss control of B⊥, we mount the sample with the 2DEG aligned to the

axis of the primary solenoid (accurate to ∼ 1◦) and use an independent split-coil magnet

attached to the cryostat to provide B⊥ [59]. The Hall effect measured in a GaAs Hall bar

as well as the location of weak (anti)localization extrema in transport through the dot itself

(visible B‖ � 2T ) were used to determine B⊥ = 0.

Statistics of conductance fluctuations were gathered using two shape-distorting gates [33]

while the point contacts were actively held at one fully transmitting mode each (N = 2).

Based on about ∼ 400 (∼ 200) statistically independent samples for the low density (high

density) dots, the average and variance of conductance were obtained. Measurements were

taken at various fixed B‖ as a function of B⊥, with high resolution around B⊥ = 0, increasing

the number of statistically independent samples for B⊥ 	= 0 by about a factor of 5.

4.5 Characterization of Spin-Orbit Strength at Zero In-Plane
Field

The average conductance 〈g(B⊥)〉 is used to characterize the strength of SO coupling. The

large dot on high density material shows AL due to SO coupling [Fig. 4.1(a)], while the

smaller dot on the same material displays WL [Fig. 4.1(b)], showing that SO effects in the

small dot are suppressed due to the extra confinement, as previously reported [205]. Fits of

〈g(B⊥)〉 to the RMT [4, 37] give the average SO length λso =
√|λ1λ2|, where λ1,2 are the

SO lengths along the main crystal axes, the phase coherence time τϕ and κ⊥, a parameter

related to typical trajectory area. The SO inhomogeneity νso =
√|λ1/λ2| can be extracted

from 〈g(B‖)〉 in the presence of AL, and is taken as νso = 1.4(1.0) for the high(low) density
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Figure 4.1: Average 〈g(B⊥)〉 (solid dots) and variance var g(B⊥) (open symbols) of conductance as a
function of magnetic field B⊥ perpendicular to the 2DEG at a temperature T = 300 mK and zero magnetic
field B‖ = 0 in the plane of the 2DEG, measured in the devices on high density 2DEG. Insets show device
micrographs. AL due to SO coupling is seen in the big 8 µm2 dot (a). WL is seen in the smaller 1.2 µm2

dot (b) fabricated on the same material, demonstrating confinement suppression of SO effects. Both dots
show a larger variance at B⊥ = 0 when TRS is not broken. Fits of the RMT [4, 37] to 〈g(B⊥)〉 are shown
as dashed curves. Solid curves are the RMT for var g(B⊥) with the same parameters as obtained from fits
to 〈g〉 times an overall correction factor (see text).
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density device shows AL. RMT is shown as dashed and solid curves, as described in the caption of Figure 1.

devices. An additional parameter κ′ of order one in the RMT—relevant in the strong SO

limit—is taken as κ′ = 1 for all devices. For fit details see Ref. [205], parameters are listed in

Table I. In absence of AL, only a lower bound on λso can be found. The extracted coherence

times are comparable for all devices and consistent with previous experiments [96]. Note

that the SO length λso is comparable to the device diameter L =
√

A of the big dot.

On the low density material, both devices show WL, see Figure 4.2, indicating that for

both dots λso � L, the regime of confinement suppressed SO coupling. Note that while

both 8µm2 dots have nominally identical geometries, only the device on the high density

2DEG shows AL. Constrained by experiments observing WL (rather than AL) in identical

devices made on this wafer [96] down to the lowest dilution-refrigerator temperatures, a

lower bound λso � 8.5 µm is estimated. It is noted that a λso = 8.5 µm noticeably reduces

the WL correction amplitude at the lowest temperatures T = 50 mK. The resulting low-

temperature saturation of coherence times extracted using theory neglecting SO effects is
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n A τϕ λso νso κ⊥ fvar ξ a b
m−2 µm2 ns µm ns−1T−2 ns−1T−6

2.0 3.0 0.18 8.5 1.0 0.15 1.0 2.8 0.5±0.1 0.028
2.0 8.0 0.21 8.5 1.0 0.25 0.6 3.0 0.37±0.07 0.028
5.8 1.2 0.10 3.2 1.4 0.33 1.9 1.0 6.6±1 0.14
5.8 8.0 0.39 4.4 1.4 0.23 0.7 0.45 1.4±0.4 0.14

Table 4.1: Carrier density n, dot area A = L2, coherence time τϕ, spin-orbit parameters λso and νso, RMT
parameters κ⊥, fvar and ξ and FJ parameters a and b, see text.

consistent with the large dot results of Ref. [96].

4.6 Variance at Zero In-Plane Field

The variance of conductance fluctuations var g(B⊥) at B‖ = 0 is seen to be reduced upon

application of a small perpendicular field B⊥ [Figures 4.1 and 4.2]. This is due to breaking of

TRS by B⊥ and is well known [33, 97]. Using the parameters obtained from fits to 〈g(B⊥)〉
and an additional overall factor fvar (Table I) to match the RMT variance at B⊥ 	= 0 with

the experiment, the solid RMT curves in Figures 4.1 and 4.2 are obtained from Eq. (37)

of Ref. [4, 37], which includes effects of thermal smearing and decoherence. The RMT—

applicable for N � 1 in chaotic dots—calculates a ratio var g(B⊥ = 0, B‖)/var g(B⊥ 	=
0, B‖) of two, independent of B‖ (see below). Theories valid for N = 2 are not currently

including SO effects [10].

4.7 Effects of Spin-Rotation Symmetry on the Variance

The variance in an in-plane field B‖ when TRS is broken by B⊥ 	= 0 depends strongly on

the SO properties. The open symbols in the main panels of Figures 4.3 and 4.4 show that

the variance is reduced upon application of B‖ and saturates at large B‖, giving reduction

factors R = var g(B⊥ 	= 0, B‖ = 0)/var g(B⊥ 	= 0, B‖ � 0) between R ∼ 1.6 for the dot

showing pronounced SO effects at B‖ = 0 and R ∼ 4 for the low density dots showing WL

at B‖ = 0. Reduction factors as small as R ∼ 1.3 are seen in center gated devices with

stronger SO coupling (not shown). Within the RMT these new experimental results are
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explained in terms of spin-rotation symmetries: in dots showing AL, SO coupling breaks

Kramers degeneracy s = 1 and mixes up and down spins to some extent at already B‖ = 0

if B⊥ 	= 0, resulting in small reduction factors 1 ≤ R ≤ 2. In dots showing WL, on the

other hand, spin-rotation symmetry is intact at B‖ = 0 (s = 2, Σ = 1) but can be broken

upon application of B‖, resulting in reduction factors R ∼ 4 (low density dots).

Breaking of spin rotation symmetry—besides the Zeeman effect εZ = gµBB (|g| = 0.44)

which breaks Kramers degeneracy—is caused by SO coupling combined with B‖, introducing

a new energy scale [87, 4, 37] εZ
⊥ = ξ2ε2

Z/(2ET )(A/λ2
so). A is the device area, ξ is a geometry

and B‖ direction-dependent coefficient and ET is the conventional Thouless energy. The

associated field scale, given by εZ
⊥ � γ̃, where γ̃ is the level broadening due to escape and

decoherence [205], becomes large in small dots and in the weak SO limit and is inaccessible in

the smallest dot, giving R ∼ 2 due to breaking of Kramers degeneracy only. In the bigger,

low density dots, where this field scale is one to two Tesla, the SO strength λso cannot

be independently extracted from a var g(B‖) measurement because of the extra coefficient

ξ. Using ξ as the only fit parameter, the dashed RMT curves in Figures 4.3 and 4.4 are

obtained, giving good agreement for all devices.

4.8 Orbital effects of B‖ on the Variance

Finally, we turn to orbital effects of B‖ on the variance measured when TRS is not externally

broken (B⊥ = 0). As B‖ is increased from zero, var g(B⊥ = 0, B‖) is seen to decrease

sharply, approaching var g(B⊥ 	= 0, B‖). At large B‖, the measured variance becomes

independent of B⊥ within the errorbars (solid symbols, Figures 4.3 and 4.4) while the

RMT predicts that the variance with B⊥ = 0 is twice the value at B⊥ 	= 0, independent

of B‖. On a comparable B‖ field scale, quantum corrections to the average conductance,

δg(B‖) = 〈g(B⊥ = 0, B‖)〉 − 〈g(B⊥ 	= 0, B‖)〉, are seen to be vanishing upon application of

B‖ in all devices (open symbols, insets), whereas the RMT calculates a reduced but finite

δg (dashed curves, insets). Suppression of δg in B‖ was previously reported [59, 205] and
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is due to effects of B‖ to break TRS [148, 56].

Following Ref. [56] (FJ), the suppressions of average and variance can be accounted for by a

factor fFJ(B‖) = (1 + τ−1
B‖/τ−1

esc)
−1, where τ−1

B‖ ∼ aB2
‖ + bB6

‖ and τ−1
esc = N∆/h is the escape

time. The B2
‖ term reflects interface roughness and dopant inhomogeneities; the B6

‖ term

is due to the asymmetry of the well. It is assumed that the combined effects of the RMT

and flux threading by B‖ can be written as products δg(B‖) = δgRMT (B‖)fFJ(B‖) and

var g(B⊥ = 0, B‖) = var gRMT (B⊥ 	= 0, B‖)(1 + fFJ(B‖)) 4. The coefficient a is obtained

from a fit to the experimental δg(B‖) while b is estimated from device simulations5 (Table

I). The resulting theory curves for both δg(B‖) (solid curves, insets) and var g(B⊥ = 0, B‖)

(solid curves, main panels) are in good agreement with the experiment. We emphasize that

the theoretical variance curves are not fit. The coefficients a, b estimated from correlation

functions [207] are consistent with the values obtained here from δg(B‖).

4.9 Conclusion and Acknowledgements

In summary, the variance of conductance fluctuations in open quantum dots in presence

of SO coupling and in plane fields B‖ is understood in terms of symmetries in the system,

including novel spin rotation symmetries as well as time reversal symmetry, which can be

broken both by perpendicular fields B⊥ and parallel fields B‖.
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5.1 Introduction

A simplified view of transport in a planar two-dimensional conductor, as formed for instance

by a semiconductor heterostructure, suggests that when only the lowest quantized subband

is occupied, an in-plane magnetic field couples only to the electron spin, allowing the in-

fluence of an applied magnetic field to be separated into spin and orbital parts. However,

the emerging picture of quantum transport in parallel fields [148, 149, 56, 205, 206] has

turned out to be surprisingly rich, indicating that even modest parallel (i.e., in-plane) fields

can have significant orbital coupling, break time-reversal symmetry, and generate meso-

scopic conductance fluctuations with field-dependent correlations—even without spin-orbit

coupling or occupation of higher subbands.

In this Letter, we use the high sensitivity of mesoscopic conductance fluctuations (CF’s) to

magnetic flux and time-reversal symmetry (TRS) to examine in detail the orbital effects of

an in-plane magnetic field, B‖, in a quasiballistic quantum dot formed in a GaAs/AlGaAs

2D electron gas (2DEG). Quantitative comparison of experiment and theory developed here

allows the effects of B‖ on the electron dispersion in a planar 2DEG, including an anisotropic

effective mass and a breaking of TRS (in spatially asymmetric confinement potentials), to

be distinguished using various correlation functions of CF’s. Effects of nonplanarity of

the 2DEG are also included in the theory, and have distinguishable signatures in the CF

correlations. The significance of the present work is to demonstrate experimentally that the

effects of an in-plane field go far beyond Zeeman coupling, but cannot be characterized in

terms of simple flux threading through the finite thickness of a 2D electron layer. Also, this

study shows that phase coherent CF’s can be used as a sensitive quantitative tool, much as

one uses a superconducting quantum interference device (SQUID).

5.2 Previous Experiments

Effects of parallel fields on quantum transport have been investigated in 2D systems, in-

cluding metal films [162, 71], silicon MOSFET’s [23, 147, 123], and GaAs/AlGaAs 2DEG’s
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[132, 92], as well as in ballistic focusing geometries [159, 161]. Those results were mostly in-

terpreted in terms of flux threading due to finite thickness in the confined direction, surface

roughness, or deformation of the Fermi circle due to the field. Subband depopulation, decou-

pling of bilayer systems and diamagnetic shifts caused by B‖ have also been observed using

cyclotron resonance techniques [179], magnetoresistance measurements [128, 142, 139, 192],

and tunneling [34], as well as optical spectroscopy [175, 111, 122]. Related investigations

based on quantum-dot weak localization [205, 206] were only sensitive to the breaking of

TRS by a parallel field. Here, by using the full CF correlations, the effect of B‖ on the full

electron dispersion is investigated, and the various contributions are distinguished.

5.3 Experimental Setup

Two quantum dots, with areas A = 8 µm2 and 3µm2, made on the same wafer, were

measured and showed similar behavior. Data from the 8µm2 dot (see Figure 5.3, inset) will

be presented in detail. The dots are formed by lateral Cr-Au depletion gates defined by

electron-beam lithography on the surface of GaAs/AlGaAs heterostructures grown in the

[001] direction. The 2DEG interface is 900 Å below the wafer surface, comprising a 100 Å

GaAs cap layer and a 800 Å Al0.34Ga0.66As layer with a 400 Å Si doped layer set back 400 Å

from the 2DEG. An electron density of n = 2 × 1015 m−2 and bulk mobility µ ∼ 14 m2/Vs

(cooled in the dark) gives a transport mean free path �e ∼ 1 µm. Note that the 8µm2 dot

contains of order 104 electrons.

Measurements were made in a 3He cryostat at 0.3 K using current bias of 1 nA at 338 Hz.

Shape-distorting gates were used to obtain ensembles of statistically independent conduc-

tance measurements [141, 33, 98] while the point contacts were actively held at one fully

transmitting mode each (N = 2). In order to apply tesla-scale B‖ while maintaining sub-

gauss control of B⊥, we mount the sample with the 2DEG aligned to the axis of the primary

solenoid (accurate to ∼ 1◦) and use an independent split-coil magnet attached to the cryo-

stat to provide B⊥ [59]. The Hall effect measured in a separate GaAs Hall bar mounted
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next to the quantum dot, as well as the location of weak localization minima in transport

through the dot itself (visible B‖ � 2T ) were used to determine the offset in B⊥ (i.e. the

residual sample tilt), which was then corrected by computer control of the two independent

magnets.

5.4 Conductance Fluctuations and Symmetries of Conduc-
tance in an In-Plane Magnetic Field

The raw data consist of measured dot conductance g(B‖, B⊥, V ) as a function of shape-

distorting gate voltage V (inner loop of multiparameter sweeps), B⊥, and B‖ (outer

loop, swept from −2.5 T to +4 T over ∼ 20 h), giving 20 independent shape, 15 in-

dependent B⊥ and about 10 independent B‖ samples. Conductance fluctuations are

found by subtracting the gate-voltage averaged conductance over the measured range:

δg(B‖, B⊥, V ) = g(B‖, B⊥, V ) − 〈g(B‖, B⊥, V )〉V .

Figure 5.1 shows 2D slices of conductance fluctuations in the full 3D space of B‖, B⊥, and V .

Note that because gate-voltage-averaged conductance is subtracted from the fluctuations,

weak localization effects on 〈g〉 are not evident in Figure 5.1. A principal result is already

evident in Figure 5.1: The horizontally elongated features around |B‖| ∼ 0 in Figure 5.1(c)

show qualitatively that CF’s are less sensitive to B‖ in the vicinity of |B‖| ∼ 0, giving

a larger correlation field near |B‖| ∼ 0, than at larger parallel fields. This elongation,

demonstrating reduced flux sensitivity near |B‖| ∼ 0, is consistent with the B‖ dependent

effective mass and momentum reversal symmetry breaking terms of our theory. Effects

of nonplanarity alone would result in a B‖ independent correlation field. A quantitative

analysis is presented in Figure 5.2.

The 2D slices in Figure 5.1 also illustrate the fundamental symmetries of conductance

with respect to magnetic fields B‖ and B⊥: when B‖ = 0, conductance is symmetric

under inversion of B⊥, g(B⊥) = g(−B⊥) [see Figure 5.1(b)]; when B⊥ = 0, conductance

is symmetric under inversion of B‖, g(B‖) = g(−B‖) [see Figure 5.1(c)]. When both B‖
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and B⊥ are nonzero, the symmetry of conductance requires the reversal of both fields,

g(B‖, B⊥) = g(−B‖,−B⊥) [see Figure 5.1(a)] [30]. The fact that a nonzero B‖ breaks the

symmetry g(B⊥) = g(−B⊥) is a simple qualitative demonstration that B‖ breaks TRS

[205, 206]. A quantitative analysis of this effect is presented in Figure 5.3.

5.5 Theory of Correlations of Conductance Fluctuations in
an In-Plane Field

To quantify the correlations of the various parameters used to generate CF’s — including

in particular B‖ — we define the normalized correlation functions,

Cv(B‖) =
〈δg(B‖, V )δg(B‖, V + v)〉

〈δg2(B‖)〉
(5.1)

Cb⊥(B‖) =
〈δg(B‖, B⊥)δg(B‖, B⊥ + b⊥)〉

〈δg2(B‖)〉
(5.2)

Cb‖(B‖) =
〈δg(B‖)δg(B‖ + b‖)〉√
〈δg2(B‖)〉〈δg2(B‖ + b‖)〉

, (5.3)

where 〈. . .〉 is shorthand for 〈. . .〉V,B⊥ , i.e., averaging over both gate voltage and B⊥, with

B⊥ sufficiently large to fully break TRS throughout the measured range.

Theoretical expressions for the correlation functions in Equations (3.1-3.3) can be found

using the effective 2D Hamiltonian

Ĥ2D =
p2

2m
− p2

⊥γ(B‖) + p3
⊥β(B‖) + u(r), (5.4)

for electrons confined to a plane perpendicular to ẑ [56]. Here, p = −i�∇ − e
cA2D, with

rotA2D = B⊥, is the 2D momentum operator in the plane, with component p⊥ = �p ·
[ �B‖ × �lz]/B‖ perpendicular to B‖, and u(r) is the impurity and dot confining potential.

The middle terms in Ĥ2D arise from p⊥-dependent subband mixing: the γ(B‖) term lifts

rotational symmetry with an anisotropic mass enhancement [92] but does not break TRS;
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the β(B‖) arises from the broken spatial inversion symmetry of the heterointerface and

breaks TRS in presence of B‖.

Extending the analysis of Ref. [56] to higher temperature yields a correlation between con-

ductance fluctuations at B‖ and at B‖ + b‖ of the form

Cb‖(B‖) =

[
1 +

τ−1
d (B‖, b‖)

τ−1
esc

]α

, (5.5)

in the unitary ensemble, where τ−1
esc = N∆/h is the escape rate from the dot, with ∆ =

2π�
2/m∗A the mean level spacing of the corresponding closed dot (effective electron mass

m∗ = 0.067me), τ−1
d is an additional escape rate due to orbital effects of B‖, as discussed

below. The exponent α equals −1 in the high temperature limit kT � (�τ−1
esc , �τ−1

d , εZ),

applicable in the present experiment, and −2 in the low temperature limit, where εZ =

gµBB is the Zeeman energy, with g = −0.44 for GaAs. The difference between the high and

low temperature regimes is caused by the necessity to average the interference contributions

coming from electrons at different energies. For parallel fields with εZ � 3kT , appropriate

for the present measurements, the deviation of Equation (5.5) from the full expression is

negligible 6.

The additional escape rate τ−1
d due to B‖ is given by

τ−1
d (B‖, b‖) =

τp4
F

8�2

[
γ(B‖) − γ(B‖ + b‖)

]2 (5.6)

+
τp6

F

8�2

[
β(B‖) − β(B‖ + b‖)

2

]2

+
ζ2p2

F

2τ
b2
‖,

where τ = µm∗/e is the elastic scattering time in a diffusive dot or the crossing time

τ = m∗L/pF in a ballistic device, where L is the diameter of the device and pF = �(2πn)1/2

is the Fermi momentum. The ζ term describes effects of nonplanarity, including interface

roughness and dopant inhomogeneities, and also breaks TRS.
6V. I. Fal’ko and T. Jungwirth, unpublished.
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Figure 5.2: a) Correlation functions Cb‖ at B‖ = 0, 2.2 T (open circles, squares) as well as Cb⊥ (open
diamonds) and Cv (open triangles) at B‖ = 0. Half width at half maximum values give the characteristic
voltage vc and fields bc

⊥ and bc
‖, shown in b) (solid circles) as a function of B‖. Markers in b) refer to

corresponding curves in a). The solid curve shows the three-parameter theory. A typical error bar is
indicated. Insets: g(x) and f(x) used for fits (see text) as obtained from numerical simulations (solid
curves) as well as quadratic and cubic low field approx. (dashed curves).

Writing the functions γ(x) and β(x) in Equation (5.6) in terms of scale factors γ̃ and

β̃ and normalized functions g(x) and f(x) as γ(x) = γ̃g(x) and β(x) = β̃f(x), we find

g(x) and f(x) from self-consistent simulations of the heterostructure 7 and treat γ̃ and

β̃ as fit parameters. Below ∼ 2 T , the normalized functions are well approximated by

g(x) ≈ x2 and f(x) ≈ x3 [see Figure 5.2(b), insets]; however, the full functions are used for

all comparison of theory and experiment. We note that γ̃ and β̃ can also be obtained from

the heterostructure simulations, giving values in reasonable agreement with those obtained

from the fits.
7The simulations take into account band offsets, Hartree and exchange-correlation potentials as well as

the potential due to residual acceptor impurities, as obtained from the onset of second subband population.
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5.6 Correlation Lengths

Figure 5.2(a) shows experimental correlation functions, Cb‖ , Cb⊥ , and Cv, for representative

parallel fields, as indicated. The corresponding characteristic voltage vc and fields bc
‖ and

bc
⊥ are shown in Figure 5.2(b) as a function of B‖, as obtained from the half width at

half maximum (HWHM) values of the correlation functions, indicated by dashed lines in

Figure 5.2(a). It is evident from Figure 5.2(b) that both bc
⊥ and vc are independent of

B‖ within the error bars, in agreement with theory and previous experiments [59]. (An

alternative procedure, not shown, for extracting these same quantities from the slopes of

log-power spectra of CF’s yields similar values for vc and bc
‖ that are again independent of

B‖, within error bars.)

In contrast, the parallel field correlation length, bc
‖, shown in Figure 5.2(b) decreases sub-

stantially from its zero-field value on a field scale of ∼ 1 T. Good agreement with theory is

found: the solid curve in Figure 5.2(b) is the best-fit (described below) theoretical HWHM

correlation field for Cb‖(B‖) obtained from Equation (5.5). This decrease is due to the γ

and β terms in Equation (5.6) and cannot be accounted for with the ζ term alone.

5.7 Symmetries of Conductance Fluctuations

Symmetries of conductance in parallel and perpendicular fields are investigated in Fig-

ure 5.3. We define the cross-correlation functions

C±±(B‖) =
〈δg(B‖, B⊥)δg(±B‖,±B⊥)〉√
〈δg2(B‖, B⊥)〉〈δg2(±B‖,±B⊥)〉

. (5.7)

With this definition, the first (second) subscript index of C refers to whether B‖(B⊥) is

reversed when computing the correlation function. Correlations for total field reversal, C−−

(i.e., both B‖ and B⊥ inverted) remain near unity for all parallel fields, as expected from the

full Landauer-Büttiker (Onsager) symmetry [see Figure 5.3(a)]. Deviations from a perfect
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correlation C−− = 1 are small, indicating that the confining potential of the dot did not

drift significantly over periods of a day. Figure 5.3(a) also shows conductance fluctuations

at (B‖,B⊥) and (B‖,−B⊥) (C+−) become uncorrelated (C+− ∼ 0) at parallel fields of

a few tesla, indicating the field scale at which B‖ breaks TRS. Within error bars, C−+ is

indistinguishable from C+−, as expected from Landauer-Büttiker symmetry, δg(−B‖, B⊥) =

δg(B‖,−B⊥). The theoretical cross-correlation using Equation 5.5), shown as a solid curve

in Figure 5.3(a), is in very good agreement with experiment data.

5.8 Full Conductance Correlations and Echo

Finally, we discuss the full correlation, Cb‖(B‖), of CF’s at B‖ with CF’s at B‖ + b‖.

Representative curves for B‖ = 0, 0.6, 1, 1.4 T are shown in the lower part of Figure 5.3 as

a function of B‖ + b‖, along with best-fit theory curves based on Equation (5.5). Besides

the perfect correlation at b‖ = 0 (Cb‖=0 = 1), there is an “echo” of correlations, both in

experiment and theory, that occurs at b‖ ∼ −2B‖. Within the present theory, this field-

reversed correlation “echo”, C−2B‖ , is suppressed from unity only to the extent that parallel

field breaks TRS. The agreement between theory and experiment, including the unusual

asymmetric curves in Figure 5.3, is quite good. A single, consistent set of three parameters

(γ̃, β̃, ζ) have been obtained from fits of Equation (5.5) to 131 curves like those in Figure 5.3,

ranging over −2.5 T ≤ B‖ ≤ 4 T. We emphasize that all theory curves shown in Figure 5.2

and Figure 5.3 used this single set of three fit parameters and were not individually fit. The

values obtained in this way were γ̃ = 11±2×10−4 [m∗]−1T−2, β̃ = 4±4×10−4[m∗pF ]−1T−3,

and ζ = 44± 8 × 10−3[pF ]−1T−1, consistent within the error bars with values extracted for

the 3 µm2 dot. We note that parameters β̃ and ζ obtained from the parallel-field-induced

crossover from the orthogonal to the unitary ensemble [205, 206] are in good agreement.

The self-consistent simulations give theoretical values of γ̃ = 35 × 10−4 [m∗]−1T−2, β̃ =

3 × 10−4[m∗pF ]−1T−3.
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5.9 Conclusion

In summary, orbital effects of an in-plane magnetic field B‖ were experimentally investi-

gated using the high sensitivity of CF’s to magnetic flux in a large quasiballistic quantum

dot. Detailed quantitative comparison of correlations of CF’s induced by B‖ with theory

developed here reveal the mechanisms of coupling, including an induced anisotropic effec-

tive mass, the breaking of time-reversal symmetry due to the heterostructure asymmetry

and effects of nonplanarity. In the present experiment, spin-orbit coupling is weak. On the

other hand, the combined influence of stronger spin-orbit coupling [205, 206] and parallel

fields is expected to yield interesting additional features in the correlations and symmetries

of CF’s [37, 4]. These remain to be investigated experimentally.
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Few-electron quantum dots are investigated in the regime of strong tunneling to the leads.

Inelastic cotunneling is used to measure the two-electron singlet-triplet splitting above and

below a magnetic field driven singlet-triplet transition. Evidence for a non-equilibrium two-

electron singlet-triplet Kondo effect is presented. Cotunneling allows orbital correlations

and parameters characterizing entanglement of the two-electron singlet ground state to be

extracted from dc transport.



6.1 Introduction

Transport studies of few-electron quantum dots have proven to be a rich laboratory for

investigating the energetics of electrons in artificial atoms [193, 121, 89, 168, 51] as well as

related spin effects, including ground-state spin transitions [191, 13, 182, 126, 66, 67, 76],

spin lifetimes [76, 66, 67, 52] and Kondo effects [74, 39, 177, 181, 197, 64]. The interplay of

electron-electron interactions, electron spin, and coupling to a Fermi sea makes transport

in the few-electron regime a subtle problem in many-body physics [77, 78, 199, 165, 90, 54,

169, 72, 55, 170, 95, 171, 174]. Of particular importance is the two-electron case (“quantum

dot helium”) [174] since this is a paradigm for the preparation of entangled electronic states

[28], and in double quantum dots is the basis of a quantum gate proposal [133].

In this Letter, we present a detailed experimental investigation of cotunneling through quan-

tum dots containing one, two, and three electrons. Measurements of inelastic cotunneling

are used to extract the singlet-triplet (ST) splitting across the two-electron ST transition.

Evidence of a non-equilibrium ST Kondo effect for two electrons is presented. Cotunneling

and Kondo effects are used to determine the g-factor for magnetic fields along different

directions in the plane of the 2D electron gas (2DEG), giving isotropic g-factors close to the

bulk GaAs value. Using both cotunneling and sequential tunneling data, we extract quan-

tum correlations of the two-electron singlet ground state, allowing the degree of spatially

separated entanglement to be measured.

6.2 Previous Experiments and Theories

Previous transport studies of few-electron quantum dots have identified the ST ground

state transition for two electrons [193, 121, 66, 67, 126, 191, 13, 182] as well as for larger

electron numbers [117, 65, 194]. Inelastic cotunneling was recently investigated in few-

electron vertical structures in Ref. [42, 200]. These authors demonstrated that inelastic

cotunneling provides a direct and sensitive measure of excited state energies. Here, we

use this fact to measure the ST splitting, J , across the ST transition (for both negative
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Figure 6.1: (a) Differential conductance g (log color scale) as a function of source-drain bias VSD and
gate voltage VG at B⊥ = 0, at base electron temperature Tel = 45 mK. Numbers 0 through 4 are number
of electrons in the dot. White vertical lines identify the locations for data shown in (c) and (d). (b) Same
as (a), at B⊥ = 1 T. (c) Differential conductance through the N = 2 diamond showing step with overshoot
at VSD = J(B⊥)/e at B⊥ = 0 and 1 T. (d) Differential conductance through the N = 3 diamond showing
Kondo peak at VSD = 0 for B = 0, split by B⊥ = 1 T.

and positive J), and for the first time extract two-electron ground state wave function

correlations from cotunneling.

Transport through the ST transition has been studied theoretically [199, 165, 90], with a

prediction of enhanced Kondo correlations at the ST crossing [54, 169]. Effects of lifting

spin degeneracy of the triplet have also been theoretically investigated [72, 55, 170]. For the

degenerate triplet case, a characteristic asymmetric peak in conductance at the ST crossing

has been predicted [95, 171, 77, 78]. This predicted asymmetric peak is observed in the

present experiment. Previous measurements of ST Kondo effects [177, 181, 197, 64, 158, 131]

in dots have not treated the two-electron case.

Measurements were carried out on two similar lateral quantum dots formed by Ti/Au deple-

tion gates on the surface of a GaAs/Al0.3Ga0.7As heterostructure 105 nm above the 2DEG

layer (Figure 6.5, inset). The two devices showed similar results; most data are from one of
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the dots, except those in Figure 6.5. The dilution refrigerator base electron temperature was

Tel = 45 ± 5 mK, measured from Coulomb blockade peak widths. Differential conductance

g = dI/dVSD was measured with typical ac excitations of 5 µV.

6.3 Few Electron Coulomb Blockade Spectroscopy

Figures 6.1(a,b) provide an overview of transport spectroscopy data. Diamond patterns of

high conductance correspond to gate voltages VG where the ground state of the dot aligns

with the chemical potential of either the source or drain, allowing sequential tunneling

through the dot 8 [3]. Transport is absent at more negative gate voltages, indicating the

absolute occupancy of the dot (N = 0 to 4). Conductance features that vanish below a

finite source-drain voltage |VSD| = ∆/e involve transport through an excited state at energy

∆ above the ground state. An example of the latter is the nearly horizontal band running

through the center of the N = 2 diamond. Beyond this band transport through the excited

triplet channel of the N = 2 dot becomes allowed, as discussed below.

Inside the diamonds, sequential tunneling is Coulomb blockaded and transport requires

higher order (cotunneling) processes [42, 200, 3]. Elastic cotunneling leaves the energy of

the dot unchanged; inelastic cotunneling, which leaves the dot in an excited state, requires

energy supplied by the source-drain bias. The inelastic mechanism becomes active above a

threshold VSD and is independent of VG.

6.4 One Electron Inelastic Cotunneling

We first discuss the one-electron regime. A conduction threshold within the N = 1 diamond

[Figures 6.1(a,b)] emerges from the crossing of ground-state and excited-state sequential

tunneling lines [42, 200]. These features correspond to the onset of inelastic cotunneling

through the first orbital excited state lying ∆1 ∼ 1.2(1.0) meV above the ground state
8Density of states modulations in the leads, here due to nanostructures adjacent to the dot, can give

additional weak diagonal lines (see for example VSD > 0, VG ∼ −0.05 V
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Figure 6.2: (a) Differential conductance g as a function of VSD in the N = 1 diamond (VG = 0.1 V) for
in-plane fields BX = 0, 0.4, 0.6, 0.8, 1 T, (top to bottom, curves offset). Dashed grey lines are guides to the
eye showing the cotunneling gap. (b) g(VSD) shows a zero-bias peak in the N = 3 valley (VG = 0.42 V)
that splits in an in-plane field BY = 0, 0.25, 0.45, 0.7, 0.95 T (top to bottom, curves offset). (c,d) splitting
energies (see text) versus magnetic field as in (a,b) with linear fits. Insets: angular dependence of the g-factor
in the plane of the 2DEG indicating isotropic behavior. Dashed circles show direction-averaged g-factors.
Directions X and Y in the plane are arbitrary.

for a field B⊥ = 0(1) T perpendicular to the 2DEG. Measurements with magnetic fields

up to 1 T along different directions in the plane of the 2DEG show inelastic cotunneling

through Zeeman split one-electron states [Figure 6.2(a)]. Measurement of Zeeman energies

via cotunneling was established in Ref. [116]. The cotunneling gap ∆Cot—extracted by

taking half the peak splitting of dg/dVSD—is shown in Figure 6.2(c) for one of the field

directions. The g-factors are extracted from a linear fit to ∆Cot(B) and are found to be

isotropic within experimental error, giving a value of 〈g〉 = 0.40 ± 0.03 averaged over the

measured field directions. This is close to the bulk GaAs value and consistent with previous

(few-electron) experiments [89, 168, 51].

6.5 Three Electron Kondo Effect

For N = 3, a zero-bias conductance peak, presumably due to the Kondo effect [74, 39],

splits in both perpendicular [Figure 6.1(d)] and in-plane [Figure 6.2(b)] magnetic fields.

The splitting ∆K due to in-plane field—taken as half the distance between maxima of
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the split peaks [indicated in Figure 6.2(b)]—is shown in Figure 6.2(d) along with a best

fitting line. Slopes from the fits do not depend on direction in the plane, and give 〈g〉 =

0.43 ± 0.03, consistent with the one-electron cotunneling data [Figure 6.2(c)]. Note that

unlike the cotunneling data, the Kondo data does not extrapolate to ∆K(0) = 0, as also

reported in previous experiments [116]. The threshold in-plane field BK for the appearance

of Kondo peak splitting gives an estimate of the Kondo temperature (gµBBK � kBTK) of

TK ∼ 150 mK [116].

6.6 Two-Electron Singlet-Triplet Crossover in a Magnetic
Field

A detailed view of two-electron transport is shown in Figure 6.3(a). The nearly horizontal

band running through the N = 2 diamond [see also Figure 6.1(a,b)] corresponds to the

onset of inelastic cotunneling through the triplet excited state, which becomes active for

|VSD| > J/e. The inelastic cotunneling edges align with the triplet excited state lines seen

in sequential tunneling outside the diamond, as expected [42, 200]. We use this cotunneling

feature to measure the ST splitting J . The zero-field value measured here, J(B = 0) ∼ 0.2

meV, is much less than the N = 1 orbital level spacing due to strong interactions, consistent

with theoretical estimates [28] and previous measurements [126]. A surprising zero-bias

conductance peak in the middle of the cotunneling gap, visible in Figure 6.3(a) in the range

0.12 V� VG � 0.15 V is not understood.

Perpendicular field dependence of the ST splitting J(B⊥) is investigated by plotting g

along a cut through the N = 2 valley as a function of B⊥ [Figure 6.3(b)]. Near B⊥ =

B∗ ∼ 1.3 T the ST gap closes and then re-opens at larger fields. We interpret this as a

ST crossing where the triplet state becomes the ground state for B⊥ > B∗ [Figure 6.4(b)].

We note that in-plane fields up to 1 T cause no observable change in the two electron

spectrum. We also find that J depends on the gate voltage VG [Figure 6.4(c)], as observed

previously [117, 126], though at larger fields this dependence becomes significantly weaker

[Figure 6.4(d)]. The zero-bias conductance within the N = 2 diamond as a function of field
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shows a large, asymmetric peak at B⊥ = B∗ [Figure 6.3(d)], consistent with predictions for

elastic cotunneling at the ST crossing [77, 78] (see also [95, 171]).

6.7 Anisotropic Confinement Potential of the Quantum Dot

Before turning to wave function correlations, we first extract some useful information about

the dot shape from the N = 1 excitation spectrum. Transport spectra for the N = 0 → 1

transition, extracted from plots like Figure 6.1(a) in the region between the N = 0 and

N = 1 diamonds, give first (second) excited state energies lying ∆1(2) above the ground

state. We find ∆2 ∼ 2∆1, indicating roughly harmonic confinement. Dependencies of ∆1(2)

on perpendicular field are well described by a 2D anisotropic harmonic oscillator model [183].

From zero-field data, we extract �ωa = 1.2 meV where a(b) is along the larger (smaller)

dimension of the dot; the energy scale for the smaller direction is found by fitting the field

dependence of ∆1(B⊥), which gives �ωb = 3.3 meV [183]. As a check of these values, good

agreement between experimental and predicted values for ∆2(B⊥) is found [Figure 6.4(a)].

We conclude that the dot potential is spatially elongated by a factor of ∼ 1.6 =
√

ωb/ωa.
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6.8 Two-Electron Singlet-Triplet Kondo Effect at Finite Bias

We note that for strong coupling of the dot to the leads, the onset of inelastic cotunneling at

VSD = J/e shows considerable overshoot, as seen in Figure 6.5 (measured in a device similar

to the one discussed above, with larger ST splitting, J(0) ∼ 0.57 meV). The temperature

dependence of the maximum overshoot is shown in the inset of Figure 6.5 along with a line

indicating a Kondo-inspired log(T ) dependence [177, 181, 197, 64, 158, 131]. The FWHM of

the corresponding positive peak in dg/dVSD is proportional to T at high temperatures and

saturates at T ∼ 80 mK, giving an estimate of TK for this device. However, a quantitative

theory of nonequilibrium ST Kondo effect would be needed to further analyze these data.

6.9 Measurement of Quantum Correlations in the Two-
Electron Singlet Ground State

Finally, we investigate correlations in the two-electron wave function following the analysis of

Ref. [77, 78]. We note that Ref. [77, 78] specifically considers a two-electron double quantum

dot; we anticipate that the elongated shape of our single dot will lead to a spatially separated

charge arrangement for N = 2, not unlike a double dot in the limit of strong interdot

coupling. Selecting basis states appropriate for a double dot but applicable here as well—

i.e., symmetric (|+〉) and antisymmetric (|−〉) states along the long axis of the dot—we
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identify |+〉 and |−〉 with the orbital ground and first excited states of the one-electron

dot. Because of electron-electron interactions, the N = 2 ground-state singlet generally

comprises an admixture of the one-electron ground and excited orbital states. The amount

of admixed excited state |−〉 is parameterized by φ (0 ≤ φ ≤ 1), the so-called interaction

parameter. Knowing φ allows two other important quantities to be extracted: the double

occupancy, D = (1 − φ)2/2(1 + φ2), and the concurrence [180], c = 2φ/(1 + φ2), which

respectively parameterize correlations and entanglement of the two-electron singlet ground

state [77, 78].

To extract φ from elastic cotunneling data, one also needs to know the charging energy

for adding the second electron, the operating position within the N = 2 diamond, and the

couplings to each lead for both the singlet and the triplet, ΓS,T
1,2 . At fields well below the ST

transition, these Γ’s can be estimated from excitation spectra at the N = 1 → 2 transition

by fitting a thermally broadened Lorentzian to the tunneling lines [63]. Upon inserting these

quantities into Eqs. 8 and 10 of Ref. [77, 78], we find φ ∼ 0.5±0.1, indicating that the N = 2

ground-state singlet contains a significant admixture of the excited one-electron orbital state

due to electron-electron interactions. We emphasize that this method does not rely explicitly

on a double dot interpretation 9. From this value of φ we extract a concurrence of c ∼ 0.8

for the two-electron singlet. This is close to the maximum concurrence value c = 1, which

characterizes a pair of singlet-correlated electrons in fully non-overlapping orbital states.

Two alternative methods for estimating φ give consistent results with the cotunneling

method. First, one may adapt the formula φ =
√

1 + (4t/U)2 − 4t/U from [77, 78] by

associating the measured ∆1 with the tunnel splitting 2t of the two lowest noninteracting

single-particle states, and the charging energy to add the second electron with U. The sec-

ond alternative method uses the size of the elastic cotunneling step at the ST transition

[see Figure 6.3(d)] which is shown to be related to φ in [77, 78]. It is notable that all three

methods allow the concurrence, a measure of “useful” (i.e., spatially separated) two-particle

entanglement, to be extracted from a dc transport measurement.
9V. Golovach and D. Loss, private communication.
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vak, and S. Hasenöhrl, Out-of-Plane Weak Localization in Two-Dimensional Electron

Structures, Phys. Rev. Lett. 80, 4020 (1998).

[143] H. Mathur and A. D. Stone, Quantum Transport and the Electronic Aharonov-Casher

Effect, Phys. Rev. Lett. 68, 2964 (1992).

[144] Y. Meir, Y. Gefen, and O. Entin-Wohlman, Universal Effects of Spin-Orbit Scattering

in Mesoscopic Systems, Phys. Rev. Lett. 63, 798 (1989).

[145] Y. Meir and N. S. Wingreen, Spin-Orbit Scattering and the Kondo Effect, Phys. Rev.

B 50, 4947 (1994).

[146] U. Meirav, M. A. Kastner, and S. J. Wind, Single-Electron Charging and Periodic

Conductance Resonances in GaAs Nanostructures, Phys. Rev. Lett. 65, 771 (1990).

[147] P. M. Mensz and R. G. Wheeler, Magnetoconductance due to Parallel Magnetic Fields

in Silicon Inversion Layers, Phys. Rev. B 35, 2844 (1987).

[148] J. S. Meyer, A. Altland, and B. L. Al’tshuler, Quantum Transport in Parallel Magnetic

Fields: A Realization of the Berry-Robnik Symmetry Phenomenon, Phys. Rev. Lett.

89, 206601 (2002).

94



[149] J. S. Meyer, V. I. Fal’ko, and B. L. Al’tshuler, Field Theory of Strongly Correlated

Fermions and Bosons in Low-Dimensional Disordered Systems, in NATO Science

Series II, edited by I.V. Lerner, B.L. Altshuler, V.I. Fal’ko and T. Giamarchi (Kluwer

Academic Publishers, Dordrecht) Vol. 72, 117–164 (2002).
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